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Pricing Options on Hog and Soybean Futures

R. J. Hauser, D. K. Andersen, and S. E. Offutt¥*

The foundation of contemporary option pricing theory was developed in
1973 by Black and Scholes and by Merton. The well known Black-Scholes
option pricing formula, per se, did not represent a "new" solution (Boness,
for example, offered the same formula in 1964); however, the arguments used
by Black and Scholes to deri;e the formiia provided a theoretical comstruct
which implied that the formula yielded an equilibrium premium under any risk
preference structure. In 1976, Black derived an "equilibrium" pricing
formula for options on futures. ! Although this futures options formula was
developed in the comtext of the capital asset pricing model, it is actually
just a special case of Mertom's continuous proportional dividend model for
options on physicals.

In this paper, we will focus on Black's basic option formulalbut not on
the arguments leading to the solution. The following section reviews the
formula in an expected value context. and identifies assumptions underlying
the formula which may not hold for agricultural futures prices. 1In the next
section, the validity of these assumptions with respect to hog and soybean
futures is investigated. Based on this investigatiom, Black's pricing
formula is modified and premium estimates from the modified model are com—
pared to the premia generated under traditional assumptions. Concluding

remarks are then offered.

* The authors are assistant professor, graduate research assistant, and

assistant professor, respectively, in the Department of Agricultural

Economics, University of Illinois, Urbana=Champaign.
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Pricing Options on Futures

Insight into Black's pricing formula can be gained by expressing it in
éxpected value terms rather than in its computational form. (Appendix A
contains the Black-Scholes and Black models in computational form.) In an
expected value context, Black's formula for call and put premiums can be
expressed, respectively, as:

W ¢, = e_rcT_t)j:(FT—x)L'(FT)dFT, arit

(2) e = e'r(T't)j:(x—FT)L'(FT)dFT,
where Ct is the call premium at time t; Pt is the put premium; FT is the
futures price at expiration time T (T>t); X is the exercise price; r is the
rate of return on a risk-free investment under continuous compounding; and
L' is a log-normal probability density function. Estimates Ct and Pt ére
expected option values atr expiration discounted at rate r to time t. Under
the assumption that FT is distributed log-normally at expiration, the
integral in (1) is an expected value because CT is FT-X if FT>X, and C, is
zero if FT<X; likewise, PT is X-FT iﬁ X>FT, and zero if X(FT. For more detail
on option formulae in thisg context, sée Hauser and Smith.2

The characteristics of the log-nommal distribution are clearly of

central importance to option pricing. The expected value of FT is Ft’

F
variance of ln(?E;J. The estimate of this variance is based on underlying
t
Ft"’At
price dynamics which imply that the variance of ln(—-—?r——) is o2at, where
t

At is change in time and o2 (in concept) is the variance when At is an

instant. Virtually all option Pricing models assume that o2 is known and
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+ the life of the option contract. Given that ¢ is constant,

F F
T . : t + At
jance of ln¢§:) is equal to the variance of 1n(-—1r:—~—),

@lied by (T-t)/at. If, for instance, At is one day, then V(1)
mated by computing the variance of the log-price first differ—
sing futures pr{ces. Assuming that V(1) is constant throughout
n V(250), the annualized variance given 250 trading days per
times 250.3

cral interest in this paper is whether V(1) for hog and soybean
dnstant throughout the year. Samuelson's time-to-maturity

for futures price variance) suggests that price volatility may
.aturity approaches. Anderson's state-variable hypothesis

i volatility may change in response to seasonal factors. If a

ange in V(1) can be found, then Black's formula should be modi-

ond empirical question (which is certainly related to the first
;¢onstant volatility) coé;erns the assumption of log-normality.
ies (e.g., Houthakker, Mandelbrot, Mann and Heifner, and

_ Bear) have found leptokurtotic distributioms for agricultural
‘Eommon reason offered for leptokurtocity is that a non-constant

t exist over time.

._;ical analysis below investigates the distribution and variance

tics of the log-price returns of hog and soybean futures prices.

bean futures were chosen for analysis because of the high

_hat options on these futures will be traded and because we

b B

amine the distributional characteristics of a storable versus a

> commodity.,
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}1f ' Options on Hog and Soybean Futures

il To investigate evidence of log-normality, normality tests were con-

ducted on series of log-price first differences of daily closing prices
under the assumption that the differences are independent. The March, July,
and November soybean contracts traded at ;he Chicago Board of Trade during
1960-1983, and the February, June, and October live hog contracts traded at
the Chicago Mercantile Exchange during 1970-1984 were examined.* Normality
tests were conducted on each contract's yearly distribution of "raw" log-
price first differences. In addition, tests were conducted on "standardized"
series in which each log=price difference isrdivided by the estimated standarq
deviation of the differences for the respective month. This transformation is
intended to account for the effects on normality test results of possible
nonconstant variance within a year. Three normality tests are used: (a) a
kurtosis test, (b) a skewness test, and (c) a test using the Kolmogorov D
statistic.

The test results for the 1976-1983 June hog contracts and the 1976—1982
November soybean contrécts are summarized in Table 1. The results for these
MOSt recent years provide the most relevant perspective on today's price
Structures. The results shown essentially mirror the general results of the
other contracts for the respective commodity. (For further detail on these
tests and on models discussed later for soybeaﬁ futures, see Andersen; see
Hahn for more detail on the hog futures tests and models) .

Evidence of a log-normal distribution for the hog pfice series is
rather strong. For the raw series, the skewness statistics do not indicate
non-normality for anmy year, and the kurtosis and Kolmogorov D statistics
lead to rejection of the normality hypothesis in only two years and one year,

respectively. The results for the standardized series are basically the
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same as those for the raw series. For soybeans, however, there is strong
evidence of non-normal yearly distributions for the raw series but, when

standardized, the series usually appear to be distributed normally. This
suggests that the soybean series may be distributed normally, but that the

distributions change within the year as variance changes.

If variance does change, an important issue in option pricing is
whether this change is systematic. We examined this issue by developing
explanatory least-squares regression models of V(l), using monthly binary

variables, annual binary variables, and time-to-maturity variables as

independent variables. For soybeans, the explanatory model specified is

similar to Anderson's (p. 14) and can' be expressed as:
3 V., =a + #.b.8. + + e.
(3) e = @ blM blSL tht s
where Vit is the variance of log-price first differences of observations in

month i and year t; M is the number of months until maturity; S. is a binary

variable for month i (seasonality effect, i=2,3,...,;12); Yt is a binary
variable for year t (year effect, t261,62,...:,83); and e is the error

term under classical assumptions. A major difference between this model and

Anderson's is that Anderson used observations across all contracts within
one model whereas we run separate regressions for individual contracts
because of the intertemporal price dependence of a storable commodity.

Another difference is that Anderson's dependent variable is the natural

logarithm of the variance of prices.

Regression results are presented in Table 2. Three general con-

clusions are drawn. First, the time to maturity effect does not seem to be

strong; although its coefficient is of expected sign for all three con-

Eracts, it is significant at the .05 level for only the November contract.

i
¥
§
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Table 2. Regression Results for Explanatory Models?
March July November

Vari-
ableb Coefficient t-value Coefficient t-value Coefficient t-value
Inter—
cept 2.634 0.40 3+230 0.27 4,369 0.59
TTM -0.785 -1.87 -0.429 =0.57 -0.866 -2.04%
s2 -4.452 =L../(05 -3.278 -0.37 -3.:411 -0.68
53 -0.814 =), 13 0.454 0.05 -1.690 -0.33
S4 2,242 0.40 0.608 0.07 =2,051 -0.40
85 1.494 0.28 -2.196 -0.26 -3.629 -0.69
36 12,347 2.43%% . 15,962 1.88 7.089 1.3}%
s7 19.506 3.98%% 43,216 3.56%% 14,453 2.58%
S8 11.393 2.39% 11.482 1. 18 6.366 1.10
S9 4,321 0.93 3.326 0.36 -1.114 -0.21
S10 2.759 0.60 1.627 0.18 -0.800 -0.16
Sll 2,244 0.49 1.092 0.12 0.433 0.07
S12 -0.040 ~0.23 -1,217 0.14 -0.212 -0.04
Y6l 3.398 0.43 4.535 1.09 4,784 0.65
Y62 0.174 0.02 =2.334 =018 1.265 Q.17
Y63 0.575 0.08 0.596 0.05 7.405 1.00
Y64 8.297 1.08 5351 0.41 5821 0.79
Y65 5.725 0.74 8.284 0.64 3.130 0.43
766 1.857 0.24 2.149 017 8.260 1.12
Y67 5.415 0.70 0.822 0.06 0.848 Q.12
Y68 ~1.284 =0.17 -2.290 -0.18 0.195 0.03
Y69 -1.698 -0.22 -2.457 -0.19 0.559 0.08
Y70 =0,457 -0.06 -1.080 =0.01 6.147 0.85
Y7l 6.382 0.84 0.933 0.07 6. 217 0.87
Y72 9.349 0.69 1.269 - 0.10 5.624 0.78
T3 9.349 1.23 54.906 4,22%*%  §7.331 9.55%*
Y74 78.718 10.52%% 60.334 4,7 2%% 41.415 5.88%%*
Y75 39,225 5.09%* 34.497 2.65%% 36.382 5.16%%
Y76 29,311 3.92%% 21.897 1.78 28.544 4., 00%*
Y77 24,659 3.30%*  31.408 2.50% 35.089 3.92%*
Y78 29.571 4.03%* 30.381 2.47% 17.824 2.50%
Y79 15.604 2.06% 12.048 0.97 I5.517 2.14%
Y80 15,729 2.13% 8.505 0.69 20.386 2.89%%
Y81 23.268 3.14% 18.804 1.46 17.982 2.55%
Y82 l3.047 1.76 3.438 0.28 9.926 1.41
Y83 9.958 1.36 — --- — —

a

Watson=1.00,

respectively.
TTM=time to maturity in months: S2-512 are binar

December, respectively; and Y61
respectively.

For the March, July, and November models,

B30 30 and 6 Diwline

-Y83 are binary v

1.15, and 1.24; and number of observations=287, 275, and 281,

y variables for February-
ariables for 1961-1983,

Significance levels for hypothesis of zero parameter are: *¥=1%; #=5%,
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Second, the seasonal effect is largest during June, July, and August, corre-
sponding with the time of year in which supply and demand uncertainty is
relatively high. Third, the annual level or year effect can be divided into
three gemeral periods: 1960—197é, 1973-1978, and 1979-1983. These period
classifications are most appropriate for the July contracts and perhaps
reflect uncertalnty emanating from the export market.

In contrast, preliminary results show little evideﬁce of systematic
variance change for hog futures. Using 1970-1983 prices, the equations
using seasonal and/or time-to-maturity variables were characterized by
insignificant coefficients and ad justed R2'g always less than .05. With
annual dummy variables, the adjusted R%'s were always greater than .4 but
improved little, (except for the October contract) when seasonal and time-
tomaturity variables were added. These results suggest that the level of
variance may change mafkedly from year to year but, within the year, there
is little systematic change in the variance.S$

Thus, when determining volatil{}y estimates for optionms on hog and
soybean futures, the explanatory models indicate that one should focus on
the annual level for hogs and both the annual level and within year systema-
tic effects for soybeans. The systematic change in variance can be incorpo-

rated into Black's model by replacing the overall variance estimate (V(1)

mate found by summing different V(1) estimates distinguished by time period
within the year (see Ingersoll, p. 112), Regardless of whether the variance
is consﬁant, it is obvious that the variance is not known for the option
contract life. Thus, the option pricing assumption of known variance is

always broken in practice, Identifying systematic changes in the variance

D
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is done to improve the overall variance forecast.

To demonstrate the differences in option premium estimates caused by
incorporating systematic variance changes, we consider a put option on
November soybean futures being priced at the end of April; thus V(1) must be
forecasted for the months May-October, inclusively. Three alternative pre-
diction models were examined. The first model (MOD I) ié an adaptation of
(3) in which individual year-effect dummy variables are dropped so that a
year-effect coefficient does not have to be estimated for the forecasting
period; one binary variable for the period 1973-1975 is added on the basis
of model performance; and the sample variance is lagged one month to
represent current year effects. The second model (MOD II) is an auto-
regressive integrated moving average (ARIMA) model based on past variances
specified as (0,1,3) x (0,0,1)7. The third forecasting model (MOD III) is a
naive model which assumes that the current sample variance (April's wvari-

ance) is the best variance forecast for any future month between April and
November. _ |

Variance forecasts for each month within the May-October period,
inclusively, are made for 1976-1982, inclusively. The coefficients for MOD
I and MOD II are estimated from observations during the period of 1960 to
April of the year being considered. Thus, since seven years are considered,
seven sets of coefficients for both MOD I and MOD II are estimated. For the
naive model; a variance estimate from April's observations is calculated for
edach year. When using MOD I for forecasting, April's variance is used as
the lagged variable to forecast May's variance; the forecasted May variance

ls then used as the la ged variable to forecast June's variance; and so on.
g

For the non-constant variance scenarios, it is assumed that variance
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changes from month to month are continuous and linear and that a forecast is
for mid-month. Linear functions connecting the mid-month forecasts are
developed. The overall variance is calculated by integrating each of thege
functions over the mid—month to mid-month period and then summing the five
(May=-June, June-July,...., September-October) integrals.®

Premiums for at-the-money put options (which are the same as at-the=-
money call options since the options are on futures) are computed using
closing futures prices on May 20, or the first subsequent trading day. The
premium estimates using the three forecast variances are compared to
"actual"’ premia generated by using the variances observed during the fore-
cast period. The results are shown in Table 3.

In general, the ARIMA model (MOD II) outperforms the other two fore-
casting models when comparing the resulting premia to the "actual" premium.
In 1976, 1979, and 1980, estimates using ARIMA forecasted variances are much
better than estimates from MOD I and MOD III. For 1977, the ARIMA model
performs about as well as the naive model. 1In 198] and 1982, the MOD I and
MOD III models are more accurate th;n the ARIMA model, but the differences
in premiums are not nearly as large as those found in many of the other
years. The only year in which the ARIMA model performed poorly was in 1978,
when volatility decreased during the summer months relative to critical
prior periods.

When the performance of the models as a group is considered, it is seen
that they all consistently over or underestimate the premium when compared
to that computed using the observed variances. This similarity in forecast
behavior is attributable to the importance_of April's price variance in each

forecasting model. It is the only variable in the naive model and figures
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culated Option Premia Using Actual and Forecasted Variances,
ents Per Bushel.

Annualized
e Exercise Interest Method of Variance Estimation
Price Rate?
($) (%) Actual MOD I MOD II MOD III
5.53 6.40 44,0 22.0- - 43,7 16.9
722 6.53 62.7 41.6 55.4 56.2
6.30 8.15 2 1 s 32.4  46.6 37.6
7.28 10.37 44,4 33.2 43.8 18.6
6.55 11.10 41.3 30.9 35.3 253
7.85 14.08 34.4 40.0 43.4 40.0
6.81 10.69 271 32:5. 3.1 25.5

n both the structural and the ARIMA models.

Concluding Remarks

ence presented above saggests that (a) log-normally dis-

e returns assumed in most option pricing formulae is a good

for hog futures, (b) soybean futures price returns may also be
og-normally, but the distribution may change within the year as
anges, (c) there is some systematic change in the soybean vari-
ore "accurate" premiums can usually be found when accounting
YStematic change.

Brporation of systematic variance changes into option pricing

' be very important for options on storable commodities. How-

~ Jear, there are variance changes related to non-systematic

O not foreseeable from the types of prediction models developed
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above. The next step in empirical investigation might be to try to identify
those factors within years and look for some connection among them which may
be incorporated into forecast models. In this respect, composite models may
hold promise and, in practice, traders' familiarity with past supply,
demand, and technical conditions as related to price-return volatility Tay
prove useful in modifying variance forecasts.

The importance of the market's anticipation of volatility om option
premia is highlighted by the large differences among premium estimates shown
in Table 3. From the perspective of agricultural producers ;nd merchan-
disers using options strictly as a marketing tool, the market's implied
volatility forecast will be an important factor in evaluating the cost of
reducing price uncertainty. For instance, a producer who is considering the
purchase of a put option on soybean futures may expect a higher volatility
than that implied by the option premium. If the producer is correct, then
the premium value will decrease at a slower rate as time to maturity ap-
proaches, certeris paribus, than the rate implied by the market's volatility
expectation. This rate of change in premium is an important factor in
determining the effective price received for the soybeans since this ef-

fective price is determined by subtracting the loss from offsetting put

transactions from the largest of either the exercise price or futures price
(ignoring basis). Thus, the actual cost of reducing price uncertainty could
depend a lot on the ability of the producer or merchandiser to forecast
volatility more accurately than the market.

The evaluation of "correct" option prices is important in determining

TR

how and why producers and merchandisers should incorporate options into

marketing strategies. However, this is only one of many aspects involved

UG,

in the evaluation of options as a means to price agricultural commodities.

To date, the financial economists have provided a wealth of option 4
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pricing research (particularly in theory), but little has been done in the |
area of using options to price and market goods or services. Development of
this theory and empirical research will undoubtedly soon be a product of

agricultural economists.

Footnotes

1 Black and Scholes' and Black's models provide equilibrium solutions for
European options (options which can be exercised only at expirationm) but,
with the exception of particular types of calls, the formulae do not
yield equilibrium solutions for American options (options which can be
exercised at any time before or at expiratiom).

2 Two caveats concerning expressions (1) and (2) should be noted. First,

the expressions represent Black's futures option model and not Black and

Scholes' model for options on physicals. Second, these types of ]

expressions are valid for the most basic option pricing solution;

however, there have been numeroug extensions of these basic models I

developed during the last decade which cannot be represented in this
manner.
3 In practice, T-t is usually based on the number of trading days from time
t to time T when calculating the volatiiity measurement needed in Black's
formula; whereas T-t for discounting purposes is based on the number of
calendar days. -
Price data were obtained from tapes provided by the Chicago Board of

Trade Foundation, the Commodity Futures Trading Commission, MJK

Associates, Inc., and Iowa State University. Observations during a con-
tract's expiration month were not used because options on futures will

expire during the preceding month.
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There is some evidence that volatility increases as maturity approaches,
particularly for the October contract. The time-to-maturity variable is
significant for the October contract in models which include the year
effect variables and in the univariate model with just time to maturity
considered. Additional work is currently being done to identify
systematic change for hog futures.

The use of these funcﬁions illustrates the point that, theoretically, the
variance changes must be continuous for the model to hold. However,
since a linear relationship is assumed, the overall variance found when
calculated by using the simple average of the five variance estimates as
a constant instantaneous variance is only slightly different than the
overall variance found when summing the integrals.

"Actual" in the sense that each month's variance during the forecasting
period is computed and, under the same assumptions of continuity and
linearity as stated above, the overall variance is computed.

For each year during 1976-1980, Epﬁermediate credit bank loan rateé are
used (U.S. Department of Agriculture); rates for U.S. Governmental three
month bills (Bureau of Economic Analysis) are used for 1981 and 1982,
These rates were chosen because they were on low-risk instruments and
readily available. It can be shown that relatively large changes in
interest rates, given the range of other parameters used in this example,

cause very small changes in option premia.
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Appendix A. Computational Formulae for Option Premia.

A general relationship described by Smith (p. 16) can be easily adapted
fit many option pricing scenarios. Assuming L'(S%) is a log=normal

nsity function with

_ AS*=YX  if  S%-yX » 0
Q=1 if  S¥—yX < 0

E(Q) = JWX(AS*"TX)L'(S*)dS*

2
= epTAS-N Jtln(S/X) - lnw5+ (p+V /Z)TJL
Ve’
2
- tln(S/X)--lm,p + (p=V°/2)T

VT'

}

here A, Y, and y are arbitrary parameters; for optiom pricing, S is the
urrent underlying commodity price, T is time to maturity in years, X is the
xercise price, and V2 is the annualized variance of the log-price return;
/8 = e”"; and N is the cumulative standard normal distribution function.

Defining C and P as the call and pug premia, respectively, found with Black-

Scholes model, Cf and Pf as the call and put premia found with the Black's

model, and r as the risk-free interest rate, then:

4 ~pT T

L = E(Q) with A=e F sy YTe : » P=r, and y=1.
; =T -rT

Ce = E(Q) with A=e i y Y=e B » p=0, and y=1.

P = J§(Xe'rT-s)L'(SerT)dSerT

3

= - T
= (Xe rT-S) - f:(Xe rT—S)L'(SerT)dSer

i y =5 s o
therefore, P = (Xe -§) = E(Q) with A=-e * y==e . » p=r, and y=1.

3
- T - - -
Pe= (Xe T 1.T) - E(Q) with i=-e rT, y=-e rT, p=0, and y=1.




