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Characterizing Probability Distributions for

Farm Prices, ?ields, and Net Returns
Steven T. Buccola

Introduction

Analysts frequently find it convenient to assume that the economic
variables in which they are interested are realizations of a normal or
Gaussian process. In a price forecasting model, a normally distributed
dependent variable leads naturally (although not necessarily) to
supposition of a normally distributed residual. The latter, in turn,
permits use of t distributions for hypothesis testing and for
characterization of forecast confidence intervals. A further advantage
of normality is that it permits one to draw, on the basis of mean and
variance statistics alone, meaningful statements about the probabilities
of various events. Risk analystsroften posit net return normality in
-order to base optimal choices on mean and variance. For example, both
E-V and MOTAD frameworks assume normally distributed portfolio returns
(Hazell).

The assumption that a particular variate may be Gaussian is, in
practice, rarely subjected to test. Failure to test is sometimes
legitimafe: research time or data to investigate the normality

assumption may be too costly. Or the édvantages of analytic methods
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ng normality may be deemed so great that only the most extreme
re from normality would lead ome to abandon such methods. 1In
cases, the likelihood that testing would indicate extreme
mmality may seem quite remote.
n other circumstances, however, the case for normality tests is
11ing. Accuracy of t-based interval forecasts can crucially
{ upon departures from normality in a model’s residual. Feldstein
_ofhers, in addition, have indicated the significant errors in
;mal choice that may result if normality-based decision procedures
e employed in the presence of nonnormality. Conversely, the
kwardness of such distribution-free methods as stochastic dominance
ggests that analysts pay a price for abandoning mean-variance
ﬁroaches when they need not do so.
The purpose of the present paper is to inguire whether prices,
elds, or returns on Oregon a%falfa and wheat farms can reasonably be
iepresented as Gaussian. The analysis emphasizes data whitening
procedures and the importance of employing a variety of normality tests.
%iIrrigated alfalfa’s price and net return distributions are shown to
~contrast sharply with those of dryland wheat. Implications for other

- Cropping situations and for risky decision models are suggested.

Initial Considerations

The simple net return model

(l) T=PY =-C
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will be considered, where P is price in dollars per unit, Y is yield in
units per acre, and C is cash cost in dollars per acre. Behavior of
noncash costs raises issues beyond the scope of our study. At the time
production is initiated, P, Y, and C generally are unknown and their
outcomes random. The distribution of m depends upon the distribution of
each of these variables as well as upon the nature and extent of their
stochastic interdependence. For this reason alone, some attention to
the individual densities of P, Y and C is warranted.

It is frequently argued on the basis of the central limit theorem
that the latter variables are Gaussian, especially if each observation
represents an average of data points from shorter time periods (Freund,
P. 208). But the central limit theorem is not applicable if, in a given
time interval, the major factors affecting the variable are not
“numerous” or if they are not mutually independent. For example, the
theorem does not apply to price averages if the shorter-period prices
comprising the average are serially correlated.

There is substantial evidence of nonnormality in daily prices of
many agricultural commodities. In separate studies, Houthakker,
Mandelbrot, and Mann and Heifnér found daily changes in the logs of a
variety of cash and futures prices to be leptokurtic. That is, the
distributions appeared to have "longer™ or thicker tails than occur in
the normal distribution. Apparently the densities usually were
symmetric, implying positively skewed actual price changes.i/ Little
attention has been devoted to distributions of weekly or monthly average

prices.
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gt Day and Bessler have provided evidence of nonnormality in field
yields. Day found Mississippi Experiment Station. cotton yields
rmally distributed, corn yields nonsignificantly skewed, and oat

s nonsignificantly or negatively skewed. The cotton yields

ally were leptokurtic, while corn and oat data tended not to depart
icantly from normal kurtosis. Bessler found subjective

:Vributions of California field crop yields to be negatively skewed in
cases and positively skewed in others. Because data series
¢iesponding to a given production technology are so short, comparable
ies of farm cost distributions are not often found.

Only in special cases would knowledge of price, yield, and cost
istributions be sufficient to derive analytically the distribution of
et returns. Where P, Y, and C are lognormally distributed and

ﬂtually independent, revenue (PY) also is lognormal but w is not
Johnson and Kotz, p. 119). If Py Y, and C all are Gaussian, the:
 distributions of PY and m are complex and generally ponGaussian, the
'ex;ent of departure from normality depending upon statistical dependence
among the three variables (Haldane). In most applied contexts,
furthermore, prices, yields, and costs would not conform exactly to any
theoretical probability family. Thus, it is helpful to consider

historical distributions of PY and 7 directly.

Data Whitening

Data first were assembled to reflect historical net returns on an

irrigated alfalfa farm and dryland wheat farm. State mid-month prices
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of baled alfalfa from 1949 to 1981 and monthly average soft white wheat
prices from 1913 to 1980 were obtained from the Oregon Extension
Service. Assuming the alfalfa grower sells his hay more or less
continuously during the harvest season, annual alfalfa prices were
estimated by averaging monthly prices from June to October.z/ The wheat
grower was assumed to sell all his wheat on the cash market in
September.

Alfalfa yield data for 1949-1981 were supplied by the Medford branch
of the Oregon Agricultural Experiment Station. Wheat yields for
1913-1980 were obtained from the Moro Station. As would be expected,
varieties grown at the stations changed during the sample period.
Alfalfa yields represent averages for Lahontan, Talent, and Vernal
varieties while wheat yields are drawn successively from nine different
varieties.

Per-acre cash costs were consfructed by multiplying historical input
prices with per-acre input requirements listed in Oregon Extension
Service budgets. Items included are labor, fertilizer, pesticides,
fuel, electricity, and seed. Imput requirements were held fixed under
the aSSUmption they are known by the grower and that cost uncertainty is
due primarily to uncertainty about input prices.é/ Consistent series
for fertilizer and pesticide inputs could be abtained only for
1965-1982. All prices and costs were deflated with the CPI to reflect

constant 1980 purchasing power.
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ning Price, Yield, and Cost Series

' To permit valid normality tests a series must be random, that is,
h-observation drawn independently from an identical distribution.
sample runs tests, making use of the number of runs above and below
the estimated median, are useful for distinguishing serial dependence
eéular shifts in the location of a distribution (Swed and
Eisenhart). Runs tests were applied to all the original series just
?described. Results, shown at the left of table 1, suggest there
ﬁwmﬂwwmemo%wmmFutMsumsmhmeMmcmﬂﬂﬂy
random. The nature of the patterns were various. Deflated prices of
both commodities followed a wavelike motion with no overall trend,
whereas yields had slight to moderate trends with no apparent waviness.
Deflated costs of both commodities were roughly constant through 1973,
after which there was a marked increase followed by a slight negative
trend. o

To accommodate these patterns; price first-differences were formed
and linear trends removed from yield series. Post-1973 costs were
segregated from earlier ones and linear trends removed from the
post-1973 segments. Wheat price first-differences before 1931 were
eliminated because they clearly were more volatile than in subsequent
years. Similarly, cost trend residuals prior to 1974 were removed
because they were less variable than residuals in the 1974-1982 period.
Results of runs tests on remaining price first-differences and yield and
cost trend residuals are given at the right of table L. The tests

failed to indicate, at the 95 percent confidence level, any regular
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Table 1. Sample Sizes, Runs Statistics, and Means of Alfalfa and

Wheat Series

Original Series Whitened Series
Number Number |
Sample of Sa@ple of a/ Mean :
Size Runs Size Runs="  (Standard Error) 1
Alfalfa
Price 33 B 32 20 -0.81
(2.58)
Yield 33 1% 33 12 0.00
(0.25)
Revenue 33 13 32 17 -4.00
(25.17)
Cost 18 2% 9 5 0.00
(2.68)
Wheat #
Price 68 14% 50 25 0.01
(0.16)
Yield 68 30 50 22 -1.13
(1.47)
Revenue 68 18% 50 28 -0.14
| | (6.71)
i Cost 18 2% 9 4 0.00
(0.95)

a/ Runs listed are those above or below the median. An asterisk
indicates presence of too few runs at the five percent error level
in a two-tailed test. Critical values are given in Swed and

Eisenhart.:
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rns in the transformed series. As shown also at the right of table
ected values of transformed series were much less than their
ard errors, suggesting the adjusted means were nonsignificantly

4/

ferent from zero.—
TEyen after removal of secular changes in location and variance, the
lmay be nonstationary with respect to higher moments. Day showed
that skewness gnd kurtosis of Mississippi field crop yields varied
gglarly with fertilizer level. Fertilizer data were not available for
yields used here, so this input could not be controlled. And, given
e information at hand, reliable methods are not available for

detecting serial changes in higher moments. Our estimates of such

moments may therefore reflect their historical averages.

:Whitening the Revenue Series

Mean-constant revenue series can be formulated by deducting expected

Tevenue

(2) E(PLY) = E[Pt)E(Yt) + cov (Pt,Yt)

from actual revenue PyYp. For gimplicity in estimating (2), cov (Pt,Yt)
may be considered fixed in t. Lagged price Pt-l is a reasonab;e

estimate of E(Pt) since E(Pt - Pt_l) = 0 (table 1). A good estimate of
E(Y,) is its linear trend value because detrending removed mean drift in

yields. Designating the estimated yield trend by (g + ht), (2) becomes,
for both alfalfa and wheat,

(2)’ E(P,Y,) = (Py_)(G + ht) + cov (PoY,).
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To the extent (2)’ is a valid model of expected revenue, the revenue

déeviation series

(3) Pth - E(Pth)

i i e

has stationary mean of zero.

The latter hypothesis was tested by calculating (3) for both
commodities and subjecting the series to runs tests. Results in
table 1 show that while there was significant nonrandomness in series
Pth, the series transformed by (3) apparently are serially independent
and location stationary. Estimates of means of both transformed series

are negligibly small compared to their standard errors.

Price, Yield, Revenue, and Cost Distributions

Numerous methods are available for testing the hypothesis that a

sample has been drawn from a normal garént. Birnbaum points out that

the power of a test to detect departures from normality depends on the
nature of the departure with which one is concerned. Kolmogorov-type !
tests, for example, are sensitive to the maximum distance between sample
and hypothesized cumulative distribution and hence are most appropriate
for detecting départures from normality in the center of the

distribution. Other tests are more powerful at detecting departures in

the tails. For the present purpose a mix of tests was employed.

Tests Used
To detect significant skewness, estimates of Pearson’s skewness

parameter g = rn3/'s3 were used, where m is the sample estimate of the
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: third central moment and s the sample standard deviation. The
diétribution of 9, is symmetrical about zero if the parent population

s normal, approaching N(0,/8/n) with large sample size.’ Tests based on
this distribution have been shown sensitive to asymmetry in the parent
(Snedecor and Cochran, pp. 78-80; Gastwirth and Owens, p. 138).

Asymptotically the kurtosis parameter estimate g, = (m /s ) = By
where mﬁ is the estimated fourth central moment, is at least as power ful
as any other statistic in detecting nonnormal kurtosis (Ggary, PP .
228-239). For small and medium samples, however, Geary and Gastwirth
and Owens show that a (the ratio of mean absolute deviation to standard
deviation) has relatively more power in this task. Statistic a
therefore is employed for alfalfa and wheat tests while the population
equivalent of Gy is referred to in a subsequent discussion. The
distribution of a is slightly asymmetric about its mean, which varies
with sample size (Snedecor and Cgchran, p. 80).

Finally, Monte Carlo experiments indicate Shapiro and Wilk's W is
sensitive to both asymmetry and tail-length departures from normality,
even in small samples (Shapiro and wilk). Statistic W is defined as
02/82, where c is the regression slope of ordered sample observations on
the expected values of the normal order statistics and 52 is the sum of
squared errors about the mean. Shapiro and Wilk tabulated the
distribution of W w to moderate sample sizes. They found (p. 608), for
a five percent critical region at least, that W is more powerful than

Kolmogorov-type or Cramer-vVon-Mises-type tests in detecting a wide range
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of nonnormal shapes. W-tests accordingly are used in conjunction with
the shape parameter tests just mentioned.

Estimates of 9, &, and W for the transformed price, yield, revenue,
and cost series are given in tables 2 and 3. Ten- and two-percent
critical regions for two-tailed tests (the only significance points
published for 9, and a) are listed for comparison. Values of a falling
below the critical intervals indicate significant leptokurtosis, that
is, tails thicker than in the normal distribution. W-values below the
critical points indicate significant nonnormality in either skewness or
kurtosis. Choice between ten- and two-percent significance depends upon
relative costs of a type I and type II error in this situation. The
two-percent level gives greater assurance that we will not falsely
reject normality, but greater risk that we will fail to reject normality
when we should. In the author’s judgment the ten-percent level here
provides the more judicious balanee of risks and the following

discussion is based on ten-percent significance.

Alfalfa Test Results

Alfalfa price and yield in.table 2 are nonsignificantly skewed but
significantly leptokurtic. Using the rule that a variable is nonnormal
if either g, or 8 indicate such, one would reject the normal hypothesis
for each series. Yet in both instances W is well within the $0-percent
bound, suggesting nonsignificant departures from the normal. The a
estimates are not exceptionally low and thick-tailedness apparently is

too weak to greatly affect the overall normality of the sample. Hence,
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Table 2. Normality Tests for plfalfa variables

Coefficient Pearson’ s Geary’s Shapiro-wilk’s
of
Variationg/ 9 2 "
price 0.200 0.404 0.718* 0.954
Revenue 0.275 1.028%* 0.713* 0.924*
Ln Revenue -0.011 0.727* 0.960
Cost 0.056 0515 0.894 0.911
0.645 0.862
Ten Percent 0.94l1
-0.645 0.741
Critical
Regions?’ 0.958 0.881
Two Percent 0.915
'01958 00712

a/ Standard deviation of whitened series divided by mean of original

series. The alfalfa price-yield correlation was -0.173. ”i

b/ Region within which null hypothesis of normality would be rejecfed

at indicated type I error level in a two-tall test. Regions listed
here apply to price, yield, and revenue. Those for cost (n = 9)
are given in Shapiro and Wilk or extrapolated from Geary.

Asterisks indicate significantly differént from a normal distribu-
tion at the 10 percent error level. Pearson and Geary tests are

two-tailed; Shapiro-Wilk's is one-tailed.
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evidence seems best to support the null hypotheses of price and yield
normality.
By contrast, the whitened revenue series is strongly positively

skewed as well as leptokurtic and its W-statistic falls within the

10-percent critical region. Alfalfa price and yield were only slighfly
negatively correlated (r = -0.173), implying that the coincidence of a
high price and high yield was nearly as likely as that of a high price
and low yield. This resulted in a relatively long tail to the right of
the revenue mode and hence a positively skewed revenue distribution.
Revenue’s leptokurtosis partly may be explained by thick-tailedness in
both prices and yields.

Logs of revenue also were subjected to normality tests to see if
revenue could adequately be characterized as lognormal. The logs indeed
are symmetric and W well within the range expected of a normal

distribution (table 2). Although-a low a estimate suggests weak

leptokurtosis in the logs, it would not be far wrong to say that alfalfa

revenues have been lognormally distributed.

Wheat Test Results

Dryland wheat variables in table 3 present a quite different picture
from those of irrigated alfalfa. September wheat price is strongly

positively skewed and leptokurtic, the W-test indicating pronounced

nonnormality. Interestingly, the high wheat price occurring in 1973
alone accounts for this phenomenon. When the 1973 observation was

1f temporarily removed, all statistics shifted away from their 10-percent
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Normality Tests for Wheat variables

Coefficient Pearson’s Geary’s Shapiro-wilk’s
of
variation® 9 a "
0.231 1.979% 0.663% 0.853%
0.359 -0.042 0.803 0.980
0.251 0.258 0.811 0.990
0.085 0.030 0.813 0.964
0.533 0.849
Ten Percent 0.955
-0.533 0.751
egions’ 0.787 0.866
: Two Percent 0.938
-0.787 0.728 )

a3/, b/ See footnotes in table 2. The wheat price-yield correlation was

‘00287c
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critical zones. Of course, there is no basis for removing the 1973 data
point.

Despite skewed wheat prices, wheat revenues in table 3 are normally
distributed according to all three test statistics. There are two
reasons why the product of positively skewed price and ungkewed yield
should result in an essentially unskewed revenue series.éf First, price
and yield are more negatively correlated for wheat (r = -0.287) than
they were for alfalfa. Such negative correlation reduces the frequency
of especially large revenues and thus inhibits positive skewness.
Second, as measured by its coefficient of variation, wheat yield is more
variable than price and one expects the shape of PY to be more
influenced by the shape of that factor having the greater relative
variability. This is corroborated by Haldane, p. 234.

Selected combinations of alfalfa and wheat revenue also were formed
to gauge the effect of farm diversification on the distribution of
portfolio returns. Revenues from combinations involving more than 50
percent alfalfa were sign;ficantly nonnormal in all tests, whereas those
with less than SO-percent alfalfa provided normally distributed
revenues. The implication, from the present data at least, is that
returns of two combined enterprises are not more Gaussian than the
individual returns making up the portfolio. That is, there is no sign
of the central limit theorem at work when only two enterprises are
involved.

Finally, tables 2 and 3 provide no significant indication of

nonnormality in cash production costs. We would not, with only 9
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to employ, expect otherwise. As Geary remarks, only
ases" of population nonnormality would ever result in

the null hypothesis with such small samples. Cost

ents of variation are, however, very low relative to those of
It is shown below that relative variability of cost and

is an important determinant of the distribution of net returns.

Net Return Distributions

‘the absence of cost series of adequate length, one cannot conduct
statistical tests of the shapes of net return distributions. But
make logical inferences about such shapes under certain

nable circumstances. ‘ Anderson and Doran show that if revenue and

are assumed independent, the second through fourth central moments

profit may be expressed as

“2r * Hoe

N
=
|

Hap = Hzp = Mg

&
3
I

= MWyp T Myt SUpring
e numbered ‘'subscripts indicate the moment order and w, r, c refer to
ofit, revenue, and cost, respectively. Substituting (4) into

pressions for net return skewness (Ylw) and kurtosis (Yzw) gives
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oy Hsr ~ U3¢
Yig = Hzp/Mor ° ) )1.5
) [qu Hoe
(5) Hyp * My * Slop ¥
P 2y .12 AL 4c 2r 2¢ |
Yor = (UAH/h2w) o . 2 e
oz Moo

These parameters may usefully be compared with gross revenue skewness
(y,,) and kurtosis (y,.)
15

i = U .
(6) lr 3/2:

N 2
Yop = Wyp/H5p = 3

The third and fourth central moments of cost, Mg s and Mo in (5),
are correlated with powers of the cost variance Moo Hence as the
latter variance falls relative to revenue variance Hops net return
skewness Yig approaches revenue Skewness fie and net return kurtosis
Yon approaches revenue kurtosis Yor: An implication is that the shape
of the net return distribution increasingly is dominated Dy that of the
revenue distribution as cost variance falls relative to revenue
variance.

To give some idea of the similarity of revenue and net return
distributions in the present study, costs were assumed normally
distributed ("3c =0y Wy = 3u§cj and independent of revenues. These

are, at least for a length of run as short as a year, reasonable

suppositions because farm costs react to a number of inmput price
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variables having little relation to yields or output prices. For the
alfalfa data, cost variance was about 64, or just over 0.3 percent of
the revenue variance figure of 18,714. The result was that “3r/(“2r +
lls

) o
”ZC) was approximately equal to ”3r/h2r , and (HAr * 3ug, +

5u2ru2cj/(u2r £ uzc)z approximately equal to “ar/bzr' with exact
equalities holding at least to the second place past the decimal. The
ratio of wheat revenue variability to cost variability was similarly
very high (compare their coefficients of variation in table 3). Hence,

our discussion of the alfalfa and wheat revenue distributions applies

about equally well to the corresponding distributions of net returns.
Conclusions

The irrigated alfalfa and dryland wheat data investigated here
provide a contrast in probability distribution shapes. Alfalfa price
and yield each are nonsignificantly skewed, whereas alfalfa revenue and
net returns are significantly skewed to the right. Wheat price is
étrongly positively skewed and wheat yield symmetric, yet the
corresponding revenue distribution is itself nonsignificantly skew.

Ore expects a product of two roughly symmetric and independent variables
to have a relatively long right tail, and in this sense the alfalfa
results offer no surprise. A more interesting phenomenon is the failure
of wheat price skewness to induce a comparable skew in wheat revenues.
The failure seems largely a consequence of the symmetrical distribution
of wheat yields combined with yield’s superior contribution to revenue

variability.
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Despite their virtual symmetry, alfalfa price and yield may have
significantly thicker tails than do Gaussian variates, contributing to
leptokurtic alfalfa revenues. Long- or thick-tailedness in wheat prices
does not, however, become manifested in the wheat revenue distribution,
likely because price’s leptokurtosis is mostly a reflection of its skew.
Overall, alfalfa revenues and net returns studied can nearly be
characterized as lognormal (with perhaps a somewhat thicker tail than
the lognormal) and the corresponding wheat returns as normal.
Distribution shapes of combined alfalfa-wheat net returns tend toward or
away from the normal depending upon which product has the greater
combination share.

The foregoing emphasizes that a number of factors can result in
nonnormal returns and that indeed one might expect significant
nonnormality to be more the rule than the exception. A similar
conclusion may be drawn from Hald@ne, who has developed expressions for
the third and fourth central moments of a product of two random normal
deviates. Evaluations of such expressions suggest that even if price
and yield are bivariate normal, only special parameter combinatipns of
the joint distribution ever would result in approximately Gaussian
revenue.

The effect of violating the normality restriction implicit in a
forecasting or risk analytic procedure depends upon the procedure’s
robustness regarding this restriction as well as upon the degree of
nonnormality present. If prices are nonnormal, one expects price

forecast errors also to be nonnormal unless the exogenous information
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explains the nonnormality in some way. Nonnormal forecast errors, in
turn, imply the standard deviation of forecast does not entirely
represent the uncertainty surrounding the forecast. For example,

standard deviation provides no information about asymmetry of actual

price observations around projected prices.

Yield distributions different than those discussed in this paper
might have been obtained from different climatic regions. Drought
conditions in the Plains, for example, sometimes are severe enough to
discourage wheat harvest. A sufficient number of ruined crops would
skew the yield distribution to the right, producing a thick left tail.
Thus, yield distributions need not be as symmetric as those shown in

tables 2 and 3.

_,
'
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Footnotes

Houthakker, Mandelbrot, and Mann and Heifner investigated series of
the form Ln P, - Ln Pe_y If the latter difference is Gaussian

and (Pt, pt-l) are independent, then Pt is lbgnormal (Johnson and
Kotz, p. 119). The-fact that the log difference tends to be
long-tailed suggests Pt is positively skewed but with a kurtosis

greater than predicted by the lognormal distribution.

A simple average of monthly prices misstates season average price
if both the quantity and price of each cutting are different.
Provided the intra-seasonal price trend and proportions éold
after each cutting are relatively constant across years, the

resulting bias will affect mean price only.

This assumption is not strictly true, as growers often cannot
anticipate the amount of pesticide, for example, they will require.
But input use uncertainty probably does not have great cost impact

in most situations and it would be difficult to model accurately.

An exact confidence level cannot be established for this
conclusion. Because underlying distributions may not be normal,
ratios of means to standard errors of means are not necessarily

t-distributed.

Revenue deviation series (3) is not identical to what one would
obtain by simply multiplying whitened price and yield series.
However, equation (3) arises from the product of price and yield in

the sense that these variables enter (3) multiplicatively.
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