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A NOTE ON COMPOSITE FORECASTING TECHNIQUE:
The Case of Multiple-Step—Ahead

Donald J. Liu and Terry L. Roe*

It is quite typical that, precéeding an economié decision, several fore-
casts of a future event are available to the agent. The question arises as
to whether a single or some composite forecast is to be chosen. It has been
argued that since each alternative forecasté almost always contain a unique
component of information, it might be beneficial to incorporate different
forecasts into an overall combined one. Moreover, given the already available
single forecasts, the agent should alwayé be willing to formulate a composite
forecast with little additional cost.

Numerous studies have focused on this point. Bates and Granger's com—
bining method involves minimizing the mean squared forecasting error of the
resulting composite forecast. Nelson proposed a "regression technique” to
find the optimal weights assigned to individual forecasts. Bessler and Brandt
used the approach developed by Bates and Granger to combine forecasts from
expert's opinion, an econometric model, and a time series model, for selected
commodity prices. Their results favored composite forecasts and they recom
mend the use of a composite forecast whenever possible.

The above studies, However, only deal with methods of combining individ-
ual one-step—ahead forecasts. Since economic decisions; often time, are

based on the agent's subjective probability distribution of the event which is

*Donald Liu and Terry Roe are a graduate student and a professor, respec-—
tively, in the Department of Agricultural and Applied Economics at the
University of Minnesota. The authors wish to thank Maureen Lahiff and Paul
Fackler for their helpful comments and suggestions.
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ro occur in the more distant future, the study of multiple-step—ahead compsite
forecasting methods is potentially rewarding.

The purpose of this note is to present a method to combine different
aultiple-step—ahead forecasts derived from different forecasting models. To
provide motivations for the method to be proposed, Bates and Granger's minimum
mean squared forecasting érror (MMSFE) approach of combining individual one-=
step—ahead forecasts js first reviewed. Their method is shown to be identical
to Nelson's "regression technique" (RT) in section II. Then, the multiple-
step~ahead composite forecasting method is presented. The empirical results

of applying the proposed method to the monthly slaughter steer price and con-~

cluding remarks are presented in section III and IV, respectively.

1. THE MMSFE APPROACH

For ease of exposition, consider only two forecasting models. Let p, and
Py be the two unbiased one-step—ahead forecasts derived from the two models.
Denote the weights assigned to p, and p, as W, and Wy respectively. Then, the

composite of the above two individual forecasts can be expressed as

B Wyl F ek

To preserve the property of unbiasedness of the two individual forecasts,
Bates and Granger consider the case where the composite weights sum up to
one. Subject to a uﬁic total-weight constraint, they combine the two indi-
vidual forecasts in such a way that the mean squared forecasting error of the
resulting composite forecast is minimized. Let ey be the forecasting error
associated with the i-th.forecast (1 = 1,2). Then, subject to w; + Wy = 1, the

optimal weights can be found by minimizing

. 2
MSFE_ = Elwje) + we,) (1)

o 2 Pl L .
= W MSFE, + W MSFE, + zwlsz[elezl
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where MSFE. = E[ej]2 is the mean squared forecasting error of the j-~th fore-
cast (j = 1,2,c), and E is the expectation operator.

Differentiating (1) with respect to W, and using the unit total-weight
constraint, the optimal weight assigned to the first fdrecast is

w, = {MSFE, - Eleje,]} / {MSFE, + NSFE, - 2 Ele e,l} (2)

1
Bates and Granger showed that the mean squared forecasting error of the
composite forecast obtained in the above fashion can not be greater than those
of the individual forecasts. Hence, there is a potential for one to reduce the
mean squared forecasting error through the employment of their combining method.
Since (2) involves the covariance E[elezl between forecasting errors of

the two individual forecasts, it has no practical use in specifying the opti-
mal weights. To cope with this problem, Bates and Granger assumed that e and
e, are binormélly distributed and derived the maximum likelihood estimate of
the optimal weights as

E
v - T : G e ) } (3)
T el,r ez,r el,tEZ,r
where e ¢ is period T in—sample forecasting error from model i; i = 1,2,
]

II. THE RT APPROACH
Given the two individual forecasting models, Nelson proposed to obtain
two sets of in-sample forecasts against which the observed series can be

regressed. The estimated coefficients associated with the two regressors are

then assigned as the composite weights for the corresponding individual fore-

casts of the future event. That is, the composite weights are obtained by

applying ordinary least squares to the following

Pr = WPy ¢ ¥ (mwpipy o+ oy (4)
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where pi,r is defined as the one-step—ahead in-sample forecast of Prs
obtained from model i; i = 1,24

The advantage of Nelson's approach of combining different one-step—ahead
forecasts is its ease of implementation and, hence, it facilitates generali-
zation to the case of multiple-step—ahead. Before generalizing his method to
admit the case of multiple steps, a justification of his method is provided
in the following. In particular, it will be shown that the RT approach is
equivalent to the MMSFE approach of Bates and Granger. Hence, the optimality
of the former is demonstrated.

To see this, note that (4) is equivalent to:
(pr =Py ) =¥ Piia T Pz,r) *ou
Now, since
Pr 7 Pz,r ¥ EZ,T sond

= @, -
2.7 el,t’

the regression in (4) is equivalent to regressing e, _ on (e2 "9 T), which
] ’ ]

pl,r - pZ,t

yields the optimal weights proposed by Bates and Granger (1.e. (3)).

Furthermore, since p. 1is identically equal to wl*pl’T *: (1 = wl)*pz’T %
(wl*el,r + (1- wl)*e2,r)' the error te?m of equation (4) has the interpretation
of being a linear combination of the two in-sample forecasting errors. Hence,
what Nelson amounts suggests is that one chooses the optimal composite welghts
to be assigned to individual forecasts of the future event in such a way that
the linear combination, using the weights, of the individual in-sample fore-—
casts best explains the historical series.

This provides insights into a possible method of combining forecasts with
a lead-time more than one-step. In particular, suppose one is interested in
the optimal composite weights for two individual h-step-ahead forecasts. Then,

two sets of h-step—ahead in-sample forecasts could be simulated from the two
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individual forecasting models, where the optimal composite weights can be deter-
mined by regressing the observed series on the two sets of in—-sample forecasts

obtained. That is, the regression equation of the following can be employed:

h h

P W
* s (l-wl)pZ,t ke (3)

where pg,T denotes the h-step—ahead in-sample forecast of Pos obtained from
model 1i.

This is essentially the procedure developed and applied in this paper.

The optimality of the procedure can be demonstrated by a direct generalization
of the argument made previously. The problem of autocorrelation, however, is

a possible complication of the above "modified RT" method. This problem

arises in the stage of parameter estimation of the individual forecasting models,
because the current statistical methods 6nly minimize some "distance” of the
in-sample one-step—ahead forecasting errors (i.e. observed residuals). Conse-
quently, the in-smple multiple-step—ahead forecasting errors from the individual
forecasting models will not necessarily possess white noise properties. Hence,
it cannot be guaranteed that the resulting linear combination of these fore-
casting errors (ie. u. of (5)) will behave like a white noise process.

If autocorrelation poses a problem, it is proposed that one adds a time
series model (ARIMA) for the error structure of (5). This not only has the
function of coping with the problem of autocorrelation, it also serves as a
way to ease the bias of the current statistical estimation techniques against
multiple-step—ahead forecasts. Then, in obtaining composite forecast of the
future event, the following equation can be employed: |
Pg = Wlplf,f hh "1)Pk21,f g (5%)
where f refers the period of the future event to be forecasted and ﬁf is the

forecast of u_,

]
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III. AN APPLICATION

Both econometric (reduced-form) and time series analyses are used to
obtain forecasting models for the monthly price (measured in dollars per
hundred weight) of slaughter steers at Omaha (Choice Grade, 900-1,100 pounds).
The time series extends the period from the first month of 1970 (70,1) through
the twelfth month of 1983 (83,12).

Only forecasts up to three-steps—ahead are considered. The forecast com-
mences with the twelfth month of 1981, Using the sample data ranges from 70,1
to 81,12, all the first three-steps—ahead forecasts are obtained from the
econometric and from the time series models (i.e. forecasts are obtained from
both models for the periods of 82,1, 82,2, 82,3). Then, the forecast is
advanced one period to the subsequent month. With the newly realized data of
82,1 on the relevant variables being incorporated into the forecasting models
(i.e. values of parameter updated), the forecasts of the next three months
(82,2, 82,3, 82,4) are obtained. This procedure is iterated until data up
to the eleventh month of 1983 is incorporated into the two forecasting models

and forecasts of the subsequent month are obtained.

Econometric Model: Estimation

The econometric reduced-form involves explanatory variables of number of
cattle on feed (CANOF), pig crop (PCRUP), both in thousands of head, personal
disposable income (DPI) in billions of 1972 dollars, the ratio of the price
of cull cow to price of milk received by farmers (RATIO); both measured in
dollars per hundred weight, and a dummy variable (with a dividing point of
79,1) to capture the effect of recent high inflation and interest rates.
Since the estimated coefficients and relevant statistics appear to be stable
over the evaluation periods (i.e. 81,12 to 83,11), only those obtained at

81,12 are reported here.
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PS, = 15.15 + 23,27 DUMMY - 0.0009624 CANOF _, (8)
(3.1) (18.4) (1.9)
- 0.000770 PCROP, _, + 5.689 RATIO _; + 0.01895 DPI,
(2.0) (6.0) (6.4)
+ 0.6746 e + 0.1745 e - 0.2920 e
- - -13
G5y . TGy TR agy T

where RBARZ = 0.95, SEE = 2.6, D.W. = 1.74, and Q(27) = 16.5.

The above fitted model indicates that all the estimated coefficients are
3 2
significant and their signs remain intact. The adjusted R  increases slightly

over that of (6), and the problem of autocorrelation corrected.

Time Series Model: Estimation

Since the time plot of the prices indicates nonstationarity of the
series, first-difference is taken. Through Box and Jenkins's three-step
procedure, the following ARIMA model was obtained:

(1-B) PS. = 0.2013 + (1 + 0.2279 B + 0.1600 B'%) a

t 9)
{1,2) (3.5) (2.6)

t

where SEE = 2.74, D.W. = 1.90, Q(27) = 19.06, a_ is a white—noise disturbance,

t
and B is the lag operator.

Again, the Durbin-Watson and Q statistics indicate the appropriateness
of the model. Furthermore, the coefficients associated with the two moving-
average terms suggest invertibility of the process. The reported standard
error estimated is rather high for the first-differenced series. Some seasonal-
differenced (i.e. twelve months) models also are tried and the resulting esti-

mated standard errors decrease drastically. These models, however, poses the

problems of either noninvertibility or nonstationarity.
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Individual Model Forecasts

After the estimations of (8) and (9), forecasts of the future prices can
be obtained. Ideally, one needs to obtain forecasting models and make rele-
vant forecasts of regressors in order to make use of (). To limit the scope
of the study, naive forecasts of no change are employed for the regressors of
(8). However, forecasts of e, _;, €,y and e, _3 of (8) are obtained from (7).
All the three steps forecasts with forecasting origin ranging from 81,12 to

83,11 are presented in Table 1.

Composite Forecasts

From (8) and (9), in—-sample forecasts with different lead time are -
obtained for the most recent seventy sample points. From these, the "modi-
fied RT" method of (5) is used to find the optimal composite weights. All
the weights assigned to the econometric forecasts are reported in Table 2,

Not surprisingly, the econometrié forecast receives a heavier weight as the
step of forecast increases. This is due to the fact that time series analysis
is an extrapolation and, hence, there is a component of cumulative error

associated with its multiple-step—ahead forecasts.

Performance Evaluation

The criterion used to evaluate the performance of forecasts is the root
mean squared forecasting error (RMSFE). The evaluation for the naive forecasts
of no change is presented in column 2 of Table 3 and it is there to serve as
a benchmark of the performance of other models (see Theil U statistics).
Coiumns 3 and 4 report the performance of econometric and time series models,
respectively. Three types of composite forecasts are evaluated. The first
two are the one with the "modified RT" composite weighting scheme and the

one with equal weights. Their performance are presented in columns 4 and 5,




72

respectively. The last column reports the third composite method which assigns
-he optimal one-step composite weights to forecasts with a lead time more than
yne-step. Lts purpose is to provide insights into whether the trouble of
‘inding the optimal composite weights for multiple-step—ahead forecasts is
1seful relative to just arbitrarily using those weights associated with one-
itep—ahead forecasts.

As indicated by all the U statistics' reported in Table 3, the naive
orecasting method clearly is not desirable. Between the econometric and
ime series forecasting models, the former outperforms the latter. Further-
ore, as the lead time of the forecast increases, the superiority of the
.conometric model to the time series one increases. Respectively, for fore-
asts with a lead time ranges from one step to three steps, the RMSFE of
he former is 7 percent, 11 percent, and 15 percent less than that of the
atter. As mentioned earlier, this result is not surprising because of the
xtrapolative nature of the time series forecasting model.

The "modified RT" method of combining different forecasts does not seem
o perform well in the analysis; its RMSFE is 3 percent, 2 percent and 4 per-—
ent more than those associated with the econometric forecasts. Recall that,
n deriving the composite weights by "modified RT" method, the in-sample
orecasts of the most recent seventy periods are chosen arbitrarily. A pos-
ible explanation of the unsatisfactory result of the RT method is that the
2lative performance of the two individual forecasting methods is not
tationary over time. This suggests that an application of a weight system
1at can adapt fairly quickly through time to the in-sample forecasts when (5)
3 used to obtain the composite weights is in order (see Granger and Newbold).

The use of equal weighting scheme to combine different forecasts appears

> be satisfactory for one-step—ahead forecast; its RMSFE is slightly less
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than that associated with econometric forecast. For forecasts with a lead
time more than one-step—ahead, however, it is outperformed by the econométric
method.

Finally, in comparing the fifth and the seventh columns of Table 3, one
finds that it is not desirable to just assign the optimal one-step—ahead

composite weights to forecasts with a lead time more than one.

IV. CONCLUSIONS

The note extends previous studies on combining different one-step—ahead
forecasts derived from different models to the problem of multiple;;tep—ahead.
The "regression” method of combining different forecasts is shown to have its
justitication and ease of implementation. To demonstrate the feasibility of
the method, multiple-step-ahead forecasts of slaughter steer price are obtained.
The composite forecasts are found to be slightly outperformed by the best of
the individual forecasts, which suggests a possible nonstationary relative
performance of the individual forecasting models considered. Since the addi-

tional cost of formulating composite forecasts is relatively low, however,

the employment of the method may prove to be rewarding in other applications.
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Table 1. Steer Price Forecasts from Individual Models

one-step-ahead two-step—ahead three-step~ahead
actual econo~ time econo- time econo—~  time
period price metric series metric series metric series

i 60.75 60,0899 59.1990

2 63.54 60.8514 61,0333 60.4920 59.1112
3 65.80 63.4880 64,4223 60,8653 61.3160 60.6263 5Y.3760
4 069.11 67.1258 66.9703 6 .6112 65.2540 62,4667 62,1478

82, 5 72,10  68.4140 69.9660 66.7593 67.3066 64,6913 65.5758
] 70,18 71.1622 73,0780 67.8940 70,3982 66,4278 67.7052
7 b6.18  67.5106 69.5643 68.9896 73.1713 66.4178 70.4665
8 65.14  65.0830 65.3404 66,3938 69,5958 67.5343 73,2369
Y 61.25 64.8129 65.3137 65.1771 65.5654 66,0479 69.8553

82,10 58.78  61.3140 59.7868 64.6992 64,9067 65.0144 65.1264

82,11 58.91  59.8389 58.6520 62.8651 59.9112 65.4575 65.0739

82,12 38.92 59.9189 59.0651 61.7346 58.7398 64,2365 60,0158

83; 1 59.33  59.6239 59.3438 61.0887 59,5267 62,7205 59.1997
83, 2 61.20 = 61.3230 59.9469 60,7916 59.9640 62,0617 60,1479
43, 3 64.03 62,5375 61.9499 61.2881 60,3663 60,7270 60.3832
83, 4 67.70 64,9998 65.1531 63,2749 62,5197 61.9896 60.9176
83, 5 67.51  67.4864 69.0158 65.3250 65.7728 63,7810 63.1118
83, o6 65,90  66.0482 66.8452 66.3225 68,7346 64.5918 65,4855
83, 7 62,22 63.2050 65.2962 64,0353 66,4984 64,1441 68,3943
83, & 61.27 62.6502 61,6088 63.6296 65,4992 64,2719 66,7107
83, 9 59.19  60.8087 60.5736 62.3817 61,0026 63,1579 64,9731

83,10 59.58  60.6943 58.8573 62.3296 60.6017 63.6540 61,0343
83,11 3Y.41  61.1057 59.9884 62,0041 59,0755 63.4564 60,8340
83,12 62.85 59,9075 59.4165 61,4361 60,1471 63.1887 59,2292
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Table 2. Composite Weights Assigned to Econometric Forecasts

period one—-step—ahead

two—step—ahead three-step—ahead

g2, 1 0.2096044

42, 2 0.2095381 0.4521422

82, 3 0.2101498 0.,4397176 0.5679715
82, 4 0.2079955 U.4418042 0.5524254
82.-3 0.1588654 0.4416731 0.5539182
82, 6 0.1456151 U.4258887 05591999
82, 7 0.1586575 0.4053025 0.5428721
852, 8 0.1535861 0.4078091 0.5121775
82,9 0.1540877 V4176141 0.5147772
82,10 U.1554655 0.4254993 0.5197411
82,11 U. 1434905 0.4308922 0.5334644
82,12 0.1420869 0.4266716 0.5514723
83, 1 0.1392764 0.4243005 005440822
83, 2 U. 1400958 0.4244024 0.5457541
83, 3 0.1403157 U.4245012 0,4229179
83, 4 0.1412271 0.4253902 0.5430313
&3, -5 0.1349672 0.4292292 0.5428363
83, 6 0.1362963 0.4177608 0.5398930
83 .7 0.1345732 0.4204099 0.5279173
83, 8 0.1303911 0.4207001 0.5288744
83, 9 0. 1306409 0.4212860 0.5257015
83,10 0.1260006 0.4296717 0.,5332190
83,11 0.1234597 0.4222939 0.5394271
83,12 0.1160999 0.4212961 0.5409675




Table 3. Forecasting Performance Evaluations

Individual Forecasts

Composite Forecasts

modified Bates &

evalu- econo- time RT equal Granger's
ations naive metric series method weight weight
one—step—ahead

RMSFE 2,38 1.86 2,01 1.92 1.84

A 0.78 0.85 0.80 0.77
two—-step—ahead

RMSFE 4,19 3.24 3.64 3.31 3.29 3.51

U 0.77 0.87 V79 0.78 0.84
three—step—ahead

RMSFE 5.74 4,33 5.11 4,50 4,54 4,91

U 0.75 0.89 0.78 0.79 0.86

(1): Theil U is the ratio of the RMSFE of the forecasting method in question

to the RMSFE of the naive forecast of no change.



