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OPTIMAL HEDGE RATIO ESTIMATION
Robert J. Myers and Stanley R. Thompson%*

A ‘major problem faced by participants in spot and futures markets is
to choose the proportion of spot positions that are covered by dpposite
positions on the futures market. This is the problem of optimal hedge
ratio estimation (Johnson, Stein, Heifner). A commonly proposed solution
is for individuals who are long in the spot market to choose a hedge ratio
equal to the ratio of the covariance between spot and futures prices to the
variance of the futures price (Benninga, Eldor, and Zilcha; Kahl, 1983).
The optimal hedge ratio is then estimated as the slope coefficient in a
simple regression of spot price on futures price (Ederington), or from a
simple regression of spot price changes on futures price changes (Brown,
1985; Carter and Loyns). The question of whether price levels or price
changes should be used has become a controversial issue (Brown, 1986; Kahl,

1986; Hill and Schneeweis; Bond, Thompsen, and Lee).

In this paper we examine whether prices should enter the simple
regression model in the form of levels or changes when estimating optimal

hedge ratios. It is found that the debate so far has been too narrowly
focused in . that a simple regression model of any form is usually
inadequate. A more general time series approach is required for optimal
hedge ratio estimation. A model selection strategy for the time series

approach 1is provided and a set of statistical tests for evaluating the
adequacy of the simple regression approach is developed. In an example of
optimal hedge ratio estimation for soybean and corn storage, it is shown
that both simple regression approaches may lead to errors in the estimation
of optimal hedge ratios. ~ ‘

Derivation of the Optimal Hedging Rule

In this section, the optimal hedging rule is derived using the mean-
variance framework of Kahl (1983). The derivation is for a storage hedge,
but the extension to a production hedge is straight forward when the
production process is linear. :

The "profit from an individual's spot and futures transactions is

-denoted

o PpmPegep dagy r (Fy-Tbe

where m is profit, p is the spot price, ¢ is the (linear) cost of Storage,
g is quantity stored, f is the futures price, b is the quantity of futures
contracts sold (purchased if negative), and the subscripts ‘indicate time.
Individuals choose spot and futures positions in period t-1 to maximize a
linear function of the mean and variance of profits in period t:
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. : /0 _q) - aVar(m /e )
t-17"t-1
where E is'ﬁhe expectations operator, ¢t“1'is an information set available
at F—1, a i§ d measure of the individual's risk aversion and Var 1s the
variance operator. Notice that the mean and variance of profit are

conditional moments that depend on information available at time t-1.

Kahl and others have shown that the optimal hedge ratic Forbthis case

is
(1) .',Ft,1 . iftzé,k_uptopg

‘ , ftpf uptcf‘
where v = ‘bt_w/qt;] is the hedge ratio, up = E(f /8 ) - I, is the
’expected return from holding futures, ppt = E(pt/Qt-l) = Pgo1 = St is
the expected return from holding the commodity, o% = Var(ft/mt_1) is the
conditional variance of the futures price, 0; = Var(pt/wt_]) is‘ the
conditional variance of the spot price, and Opp * Cov(pt,ft/ét_1) is the

conditional covariance between spot and futures prices. Although this was
not made explicit by Kahl, all of the moments are conditional on
information available at time t-1, and conditional variances and
covariances (but not conditional means) are assumed constant through time.

- To determine the optimal hedge ratio, the first two conditional
moments of spot and futures prices must be estimated and substituted into
(1), Before discussing how this might be done, however, consider the
following well known proposition: :

Proposition 1 If the expected return from holding a futures contract
is zero, then the optimal hedging rule reduces to:
o]
(2) o "6%2
£
Proofl Set Mep equal to zero in equation (1.
This proposition is crucial to optimal hedge ratio estimation. . It

shows that if futures market returns satisfy the martingale difference
property ' (futures markets are wefficient™) then the simplified hedging
rule, (2), can be used. :

If the hedge ratio is chosen to minimize the conditional variance of
profit rather than to maximize a linear function of mean and variance, then
the expected returns from holding futures would be irrelevant. Thus 'a
corollary to Proposition 1 is: ,

Corollary If the objective is to minimize the variance of profits
: then equation (2) is the optimal hedge ratio,
irrespective of whether futures prices

satisfy Mpp © 0.

I~
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The minimum variance objective is convenient because it leads to the
simple hedging rule (2) without requiring the assumption that futures
market returns satisfy the martingale difference property . However,
variance minimization is not consistent with expected utility maximization
(except at extremely high levels of risk aversion) and so the corollary is
of.Iimited usefulness. In practice, we need to test for the martingale
difference property in futures market returns before equation (2) can be
used to estimate optimal hedge ratios.

A Time Series Approach to Estimation

The model in the previous section focuses on the behavior of an

~individual hedger. Thus, it says 'nothing about how -to estimate the
conditional moments and implement the optimal hedging rule. To estimate
these conditional moments, an equilibrium model of the spot and futures
markets 1is required. A general specification of such a model in its

structural form might be

Byt = AO + A(L)yt_1 U
where y_ is a (kx1) vector of endogenous variables, B is a (kxk) matrix of
structural parameters, A is a (kx1) vector of constant terms, A(L) is
(kxk) matrix of finite order polynomials in the lag operator L, and u, is a
(kx1) vector of serially uncorrelated error terms with E(ug) = % and
Z) o= 1 .
E(utut) 2 for a l.t

In this structure, all variables are specified endogenous but th?
possibility that some variables are exogenous is not ruled out.
Candidates for the components of ¥y, include futures prices, spot prices,
quantities produced, quantities in Q%orage, the interest rate, the exchange
rate and -any other variable that affects market equilibrium in the
commodity under investigation. :

The reduced form of this structural model is

(3) Ve = CO + L(L)yt—T Ve
wnere € =B™'n_, c(L)=B"'A(L), and vt:B—1ut. Notice that E(v.)=0 and
E(vtv't):B_1QB-] . This covariance matrix for Vi is denoted T.

Knowledge of the structural form is not necessary for optimal
hedge ratio estimation because the conditional moments of spot and futures
prices can be estimated straight from the reduced form. Thus, the
reduced form provides all the information necessary to implement the
optimal hedging rule. More formally, suppose the information set available

,1 Defining some variables to be exogenous 1is equivalent to imposing a set
of restrictions on B and A(L).
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to hedgers is ¢ _, = {Yt_S:SZ7}. Then E(yy/¢y_y) = CoClL)y, _,
=T

and pov(yt/¢t 30 that. ordinary least. squares (OLS) estimates of C

ol
~and the parameters in _C(L) provide estimates of the first and second
conditional moments of Ve 2 Substituting the relevant conditional moments
~in equation (1) gives an estimate of the optimal hedge ratio. - If the
conditions of Proposition 1 or its corollary are mét then the simplified
equation (2) can be used. -

This reduced form approach requires that the optimal hedge ratio be
estimated indirectly by first estimating the conditional moments of spot
and futures prices and then using equation (1) or (2). An alternative is
to first determine whether the conditions of Proposition 1 or its corollary
are met. If so, then equation (2) is the optimal hedging rule. Equation
(2) can then be estimated directly by augmenting the reduced form equation
for spot price through the addition of the current futures price, ft’ as an
additional regressor. The OLS estimate of the coefficient on f, in the
augmented reduced form equation is then exactly equal to the estimated
ratio of the conditional covariance between spot and futures prices to the
conditional variance of the futures price, as would be obtained through rhe
reduced form- approach. Thus, the OLS estimate of the coefficient on
the augmented reduced form equation gives a direct estimate of equailon
(2). This is shown in the following proposltlon

Proposition 2: Let two reduced form equations from the model be:
Vig = Cio * CilbIye g+ Vi
~and
Vyp = Cyo * C5tbIVe g+ Ve

where the i and j subscripts indicate the ith and jth row of a
vector or matrix. Furthermore, define the augmented reduced form
equation

(4) = C. + 8y,

Yit io Jjt i
where Wy, = Vig=8Y .- Then the OLS estimate of § is equal to the

Ci(L)ytA * W

ratio of Cov(yit’yjt /0 ) to Var(yjt/wt_1).

£-1

2 An estimate of the requxred covariance matrix is obtained by cross
multlplylng vectors of OLS residuals from the estimated reduced form.
In principle, a seemingly unrelated regression (SURE) approach that
allows for contemporaneous correlation among the reduced form residuals
should be used. But since thé reduced form equations all have the same
regressors, SURE reduces to ‘OLS and using the OLS residuals provides a
fully efficient estimate of the required covariance matrix.
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Proof: See the appendix.

It is important to note that the augmented reduced form (4) has no
Structural interpretation. Its estimation is merely a mechanism for direct
estimation of a ratio of conditional covariance to conditional variance.
Thus, simultaneous equations bias from including the endogenous yJt as a

regressor in the augmented reduced form equation is not an issue. Nor are
any of' the other "estimation problems'" stemming from the properties of the

error  term in the augmented reduced form equation. Inclusion of
the yjt variable is just a simple way of estimating the required

conditional covariance to conditional variance ratio. Examination of two
Special cases will illustrate the approach.

Simple Regbession Models as a Special Case

The standard approach to optimal hedge ratio estimation is to regress
Spot price levels or changes on futures price levels or changes and
interpret the resulting slope coefficient as the optimal hedge ratio,
presumably under the assumption that the conditions of Proposition 1 or its
corollary are satisfied. In this section, it is shown that this is just a
Special case of the general time series approach described above,

First, consider the simple regression using price levels:

(5) Pp = ¢y + 8F + W

where the OLS estimate of § is taken as the optimal hedge ratio., This is
araugmented reduced form equation for Spot price from the simple reduced
form system:

= C, o+ Vv,
pt i it

,ft = Cj + Vjt.
1r Pi and ft are equal to a constant plus a serially uncorrelated

error then OLS estimation of & in (5) will give an estimate of the ratio
of Cov(pt,'Ft/¢t_1) to Var(ft/¢t_1). This is obviously a very restrictive

assumption- that is unlikely to be satisfied in most circumstances.3 And
even if spot and futures prices do satisfy this property, then the returns
on the futures market cannot satisfy the martingale difference property so
Proposition 1 cannot be applied. Thus, while OLS estimation of & would
give an estimate of the relevant covariance to variance ratio, this
covariance to variance ratio is not the optimal hedge ratio, unless the
objective is variance minimization (see the corollary). Therefore, the

3 The assumption implies that high (low) prices are likely to be followed
by - lower (higher) ones thus creating significant arbitrage
opportunities,
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simple regression of spot price levels on futures price levels is generally
an incorrect approach to optimal hedge ratio estimation.

Second, consider the simple regression using price changes:

(6) p’t ~kpt_1 = Cc. +8(F = f ) + W

i t ‘t—]k t

where again the OLS estimate of § is taken as the optimal hedge ratio.
This is an augmented reduced form equation for spot price from the reduced
form system : : :

Po = Peoy =05+ Vi
ft - ft—] = CJ + Vjt’
If spot and futures price changes are equal to a constant. plus a

serially uncorrelated error, then OLS estimation of & in‘(%) Wwill give an
-estimate of the ratio of COV(pt’ft/®t~1) to Var(ft/®t_1). Notice that

futures price changes may satisfy the ‘martingale difference property in
this case, provided the hypothesis that Cj equals zero is accepted. This

reduced form is also more consistent with knowledge of the time series
properties of spot and futures prices than the reduced form implicit in the
price levels equation. Thus, the use of price changes has some distinct
advantages over the use of price levels if one is going to use a simple
regression approach. Nevertheless, the simple regression using price
changes is still a very special case. In terms of equation (4), the
restriction is that all of the parameters of Ci(L) are zero (no available

information is helpful in predicting price changes).

A Strategy for Model Selection

The reduced form equations (4) are a system of stochastic difference
equations. Thus, a strategy for estimation is to begin with a general
model . that is deliberately overfitted and then test down to a more specific
model. This approach has two distinct advantages. First, it allows for
testing (rather than simply assuming as in previous studies of optimal .
hedge ratio estimation) the critical hypothesis that futures market returns
satisfy the Martingale difference property. Second, it allows for testing
the adequacy of the simple regression approaches to optimal hedge ratio
‘estimation versus the more general time series approach.

The general model would be characterized by a Yy vector of high
dimension and a C(L) matrix of high order polynomials. The decisions on
exactly which variables to include and what lag lengths to use will be

! . - ) o : '
A Since py_, and fy_y are known when the hedging decision is made, the
conditional variances and covariance of price changes are equal to the

conditional variances and covariance of the price levels themselves.
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determined  in part by economic theory and in part by the length of
available data series.

After deciding which variables to include in the model, it is
important . to determine whether thesée variables . are ~.stationary or
nonstationary. Dickey and Fuller (1979, 1981) bhave developed tests for
unit roots which involve estimating models of the form

+ d(L) (Y - Y ) +

Yig = ¥ it-1 it-2

it C; + BY

it-1 7 ¥ it-1 it
and testing whether 8=0. If g=0 then {Yit} is nonstationary and

if g<o then,{Yit} is stationary.

1f evidence of unit roots is found, the usual procedure would be to
specify the model in first difference form (or higher order differences if
necessary) . ‘However, the theory of co-integration has highlighted some
difficulties with this approach (Engle and Granger). In particular, if the
variables in Y are co-integrated of order (1,1) no finite order
autoregressive representation exists for the {Y | process modeled in first
difference form. A simple test for co-integration 1s provided by the
Durbin-Watson statistic from the OLS regression

Yit = 80 -+ B’th + eit

where Y, and th are two variables hypothesized to be co-integrated.

Once the degree of differencing has been determined, a number of
hypothesis tests can be undertaken. One important hypothesis is whether
futures market returns satisfy the martingale difference property. 1If this
hypothesis 1is rejected, then conditional means are important and equation
(1) must be used to estimate the optimal hedge ratio. In this case, the
optimal hedge ratio will vary over time as conditional means change. 1f
the martingale hypothesis is accepted, then the simplified equation (2) can
be used. - In this case, the optimal hedge ratio can be estimated as the
coefficient on f,_ in the augmented reduced form equation for p,_. But even
in  this .case, %here is still the question of whether lagged values
of y, belong in the reduced form equation. By estimating the general model
and Eesting whether the parameters in Ci(L) are zero, it can be determined

whether (5) or (6) dre misspecified by the exclusion of  relevant
L regressors. :

"An Example of Storage lledging in Michigan

We estimated optimal hedge ratios for corn and soybean storage in
Michigan to illustrate the "time series method. - Taking the simplest
possible approach, we assumed that Ve for each commodity contains only spot
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gnd fthres prices for that commodity.5 Data were collected, relevant
ypothesls te;ts were undertaken, and optimal hedge ratios were estimated
using three different approaches. :

Weekly observations on - spot prices were taken as the mid-week
(Wednesday) closing price in Sagiraw. The appropriate futures price series
depends on the hedging strategy. Many previous studies have used data on a
nearby futures contract and rolled forward to the next as that contract
approached maturity., This is appropriate for hedgers who follow a similar
§trategy of hedging in nearby contracts and then rolling the hedge forward
if the spot position is not liquidated before the contract matures. An
alternative which would save transaction costs is to hedge in a more
distant contract (but not the new crop future) and sjmplykiiqUiddte the
futures kposition at whatever time (prior to the next harvest) the spot
position is liquidated. For this strategy, the approprlate price data run
from the beginning of the crop year until the beginning of the month in
which the chosen futures contract matures.

The second alternative was applied in this study using ‘the July
futures contract for both corn and soybeans. Weekly prices were taken as
daily closing July futures price on the Wednesday of that week at the
Chicago Board of Trade. Notice that this approach leads to a set of time
series data with missing observations between each July and the beginning

of the next crop year. Futures price data were collected for the crop
years 1978 through 1984 from various issues of the Statistical Annual,
Chicago Board of Trade. For the identical mid-week point, corresponding

spot price quotes in Saginaw were obtained from Mid-States Terminals,
Toledo, Ohio.

Tests for nonstationarity provided t statistics of -0.22 for corn spot
prices, =0.U44 for corn Ffutures prices, -0.65 for soybean spot prices, and
-2.20 for soybean futures prices. From table 8§.5.2 in Fuller, the null
hypothesis of nonstationarity can only be rejected at high significance
levels (greater than 10%). Similar tests on the first difference model
revealed it to be stationary. The co-integrating regression provided a
Durbin-Watson statistic of 0.14 for corn and 0.2 for soybeans both of which
indicate that spot and futures prices are not co-integrated. Thus, the
time series model was specified in first difference form.

, A bivariate vector autoregression (VAR) on price changes, with one
through fifteen week lags, was specified as the general model. We then
tested four special cases using the likelihood ratio statistic and chi-
square distribution. The first hypothesis was the simple price change
model in which spot and futures price changes are equal to a constant plus
a serially uncorrelated error, This implies that C(L) = 0 and OLS
estimation of the augmented reduced form (6) would give the correct

e information contained in
sources of information, th
ratio .

,5 Thus we show that even if one restricts attention to th
past spot and futures prices, without including other
time series method remains a more general approach to optimal hedge

estimation.
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conditional covariance to variance ratio. The second hypothesis was that
spot and futures price changes have zero expectation. This is the joint
martingale model and implies that C(L) = 0 and ¢ = 0 so that OLS

estimation of (6), excluding the constant ternﬁ~_Wou?d give the correct
optimal hedge ratio estimate. The third and fourth hypotheses are separate
tests of the martingale difference property for spot price changes and
futures price changes, respectively. The martingale test for futures price
changes Is crucial to whether the simplified equation (2) can be used to
estimate the optimal hedge ratio. , =

Significance levels for each of these tests are given in Table 1.
There are strong grounds for rejecting all of the null hypotheses except
the martingale difference property for corn and soybean futures price
‘changes. Thus the simple price change model (6) will give an incorrect
optimal hedge ratio estimate. Furthermore, since price levels are
nonstationary and past price information clearly helps predict future
- (spot) .price -changes, the simple price level model, (5), 1is also
inappropriate.

TABLE 1

Significance Levels for Test Statistiecs -

Simple Price Joint - Spot Price Futures Price
Change Martingale Martingale =~ Martingale
Model? Model Model Model
Corn 0.0000 0.0000 - 0.0020 0.0211
Soybeans 0.0000 0.0000 0.0065 0.0200
a The null hypothesis is that spot and futures price changes are both

equal to a constant plus a serially uncorrelated error.

If one accepts the hypothesis that corn and soybean futures price
changes satisfy the martingale difference property, then the correct
optimal hedge ratio estimate can be obtained from the OLS estimate of an’
augmented reduced form equation (U4). The equation should include lagged
~(in this case one through fifteen weeks) values of spot and futures price
changes as well as the current futures price change. '

We have discussed three approaches to optimal hedge ratio estimation
using augmented reduced forms: the simple regression using price levels;
the simple regression using price changes; and the more general time
series  approach. Hypothesis .tests showed that the simple models are
inconsistent with the data so that a general time series approach is
required. Results from optimal hedge ratio estimation using the three
approaches are provided in Table 2. Results from the simple price level
regression are very different from the general time series approach but
the simple price change regression gives results that are somewhat
consistent with the time series .method. Nevertheless, the general time
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series approach does lead to slightly different estimates and its use is
supported by the test results in Table 1. ' '

TABLE 2

Estimated Optimal lledge Ratios

Simple Price ‘Level Simple Price Change General Time Series
Regression Regression Regression
Corn 0.93 0.88 o 0.806

Soybeans 0.86 1.02 1.00

Conclusion

In this paper we investigate alternative hedge ratio estimation
procedures. ‘Estimation of a time series model 1s shown to be the
preferred procedure and simple regression models are special cases of the
time series approach under restrictions on the spot and futures market
equilibria.

A set of statistical tests for determining the adequacy of the simple
regression approach are provided. For the case of storage hedging of corn
and soybeans in Michigan, the tests rejected ‘the simple regression
approach in favor of the more general time series approach. Nevertheless,
the optimal hedge ratio estimates for the simple regression model using
price changes are reasonably close to those obtained using the time series
method.

Optimal hedge ratio estimation depends on the time series properties
of spot and futures prices. Whether futures price changes satisfy the
martingale difference property, and whether available information can be
used to improve optimal hedge ratio estimation, are empirical questions
that must be answered on a case by case basis through estimation of’
general reduced forms and testing of nested models. This paper provides a
framework that allows these procedures to be carried out.
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APPENDIX

Proof of Proposition 2

A minor  .change in notation will Fa@ilitate the proof.

Let y. . : g
Yis yJ, vl, and vJ be (Tx1) vectors of realizations on y,, Yyer Vig

and v Furthermore et X be a (Tx(lk+1)) matrix of observations on the

Jtr
constant and one through 1 period lags of all k variables in y_. Then the
two reduced form equations in the statement of Proposition '2 can be
Written

i = KBy o+ vy

1t

(A1)

i

. XB. + v,

J J J

where B and 8. are vectors of reduced form parameters. We begin with a
lemma afid thenjprove the proposition.

y

Lemma Let eQuations (A.1) represent two reduced form equations
o from the model. Then the estimated conditional (on X)
covariance between Yi and y. is:
y. "My J
e S |
T

where M=1-X(X'X)™'X".

Proof: The maximum likelihood estimate of the conditional
covariance between y. and yj is

- ' -
(y; - %8;) (yj XB})
T

A o
where B = (X'X)° and B, = (X'X) X'y. are the OLS estimates of the
reduced form parameéerg J Substituting” the expressions for the OLS
estlmators into the conditional covarlance equation gives

y."M'My
T S|
T

But M 1s an idempotent matrix so M'MzM. This completes the proof.

Proof of Proposition 2: By the lemma, the ratio of the conditional
" covariance between Vi and y. to the CODdlLlOHal

variance of yJ is

VMy

|M .
yJ yJ

Now redefine equation (4) as
yi = 2y + vy

where Z:[yj x| and y=[s 83]'. The OLS estimate of y is
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~

-1
y = (2'2) 2y

i

: y -1
Using the definition of 2 and computing (Z'Z)

» by partitioned inverse
(see Theil, p. 17), the first row of y is ‘

_1
~ -y TX(XX X'y,
. ly, -y xen T x y,
T "My,
. : yJ J
or, using the definition of M
M
-~ y. Myi
Ty "My,
yJ yJ

This shows that the OLS estimate of § gives the

required ratio and
therefore completes the proof.






