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CONDITIONAL HETEROSCEDASTIC ERROR PROCESSES AND
THE TIME PATTERN OF OPTIMAL HEDGE RATIOS

Robert J. Myers#

I. Introduction

Hedging on futures markets provides commodity producers and traders with
the opportunity to manage risks and make additional profits (or losses).
However, futures markets alsoc complicate the decision process. As well as
taking out spot positions, hedgers must choose the proportion of spot
pesitions that are covered by opposite positions on the futures market. This
latter problem is known as choosing an optimal hedge ratio.

Under certain simplifying assumptions optimal hedge ratios can be
characterized by a simple rule -- set the hedge ratio equal to the ratio of
the covariance between spot and futures prices to the variance of the futures
price (Anderson and Danthine; Benninga, Eldor and Zilcha; Kahl). But to
operationalize this simple hedging rule the relevant moments must be estimated
using availlable data. The conventional approach to estimation is to run a
simple regression of spot price levels (or changes) on futures price levels
(or changes) and use the resulting slope parameter estimate as the recommended
hedge ratio. However, Myers and Thompson have shown that this only estimates
a ratio of the unconditional covariance between spot and futures prices (or
price changes) to the unconditional variance of the futures price (or futures
price changes). Since hedging decisions depend on information available at
the time the decision 1s made, a ratio of conditional moments is actually
required. As an alternative to simple regression, Myers and Thompson
suggested a time series approach which takes account of relevant conditioning
information.

4 weakness 1In both the simple regression and time series approaches to
optimal hedge ratio estimation is that the conditional covariance between spot
and futures prices and the conditional variance of the futures price are both
assumed to be constant over time. This necessarily restricts the optimal
hedge ratio to be constant as well.2 Yet commodity prices are clearly more
volatile (bigger conditicnal variance) in some periods than in others. An
example 1is the jump in volatility that occurred during the commodities boom of
1673 (Bosworth and Lawrence). Since the conditional variances and covariances
of spot and futures prices appear to change over time, optimal hedge ratios
also may change and estimation procedures should attempt to capture this
effect.

This paper outlines and applies three models for estimating time-varying
optimal hedge ratios. Each model features a conditionally heteroscedastic
error process (the conditional covariance matrix of spot and futures prices
changes over time). However, the models differ in terms of their generality,
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complexity, and ease of estimation. The first model requires calculating
moving sample variances and covariances of previous prediction errors. The
model 1is easy to apply but highly restrictive. The second model 1is the
autoregressive conditional heteroscedastic (ARCH) framework of Engle.
Efficient estimation of the ARCH model requires a nonlinear maximum likelihood
routine but ordinary least squares (OLS) is a simple alternative. Though not
efficient, OLS is consistent and also is straightforward to apply. The third
model is the generalized ARCH (GARCH) framework of Bollerslev; also see Engle
and Bollerslev; and Baillie and Bollerslev. Nonlinear maximum likelihood is
the only available estimation procedure. Both the ARCH and GARCH models have
sound foundations in distribution theory but the GARCH model is more general
since it provides a parsimonious parameterization of a very wide class of
conditional heteroscedastic error processes (Bollerslev).

The next section outlines a model of spot and futures prices with time-
varying optimal hedge ratios. Each of the three methods for estimating the
time pattern of the conditional covariance matrix is then discussed in the
context of this model. Next the methods are applied to estimating the time
path of optimal storage hedging for wheat in Michigan. Results vary depending
on which method is used but all three methods suggest substantial temporal
variation in the optimal hedge ratio.

I1. Time-Varying Optimal Hedge Ratios

Realizations of spot and futures prices for a commodity at time t are
comprised of two components -- an expectation conditioned on information
avallable at time t-1 and a random shock that is unpredictable. Formally,
this can be expressed

(M p. = Elp o, ) + u,
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where: Pt is spot price at t;
fy is futures price gquoted at t for delivery at a future date;
up is the prediction error for spot pricej
Ve is the prediction error for the futures price; and

Qt 1 is a set of information available at t-1.
The prediction errors are assumed to be serially uncorrelated with expected
value zero (conditional on the information set). If futures markets are

unbiased and there is no gutput uncertainty, it is well known that the optimal
hedge ratio, r, satisfies
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The conventional approach to estimating optimal hedge ratios is to assume
that the covariance matrix of the prediction errors, H, is constant over time:
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Next, some simple model is chosen for the conditional means in (1) and (2).
For example, it might be assumed that '

E(pgla,_y) = py_y; and
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Glvern this model for the conditional means, it is now possible to observe the
prediction errors which are just equal to the period to period price changes:
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Assuming the prediction errors are normally distributed, the maximum
likelihood estimator of H given a sample of T observations is
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Thus, the estimated optimal hedge ratio is
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This estimate can be obtained as the slope coefficient from a simple
regression of spot price changes on futures price changes. For more general
models of the conditional means in (1) and (2) a time series approach to
estimation is required (see Myers and Thompson).

Now suppose that the covariance matrix of the prediction errors actually
changes over time. Such fluctuations in market volatility might result from
changing fundamentals, speculative bubbles, and/or seasonal effects. In this
case, the covariance matrix of the prediction errors as defined in (4) must be
time subscripted to indicate time variation:

E( y = H

1
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Furthermore, since the covariance matrix changes over time, so wWill the
optimal hedge ratio defined by (3). At any t, the value of the optimal hedge
ratio gives the proportion of spot market positions held between t and t+]

that should be covered on the futures market.

To operationalize the time-varying optimal hedging rule, the covariance
matrix of the prediction errors must be estimated at every t. This requires a
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mode. of how the variances and covariances evolve through time. Three such
models are now considered.

ITI. Moving Sample Variances and Covariances

Suppose the covariance matrix of the prediction errors at t depends on
magrnitudes of the past n realized prediction errors according to

n
(7) H, = e, .¢g!

i=1

Then given (5) and (6), the covariance matrix at every t can be estimated by
moving sample variances and covariances of the past n realized prediction
errors (price changes). Once the moving sample variances and covariances have
been computed, the optimal hedge ratio can be estimated using (3).

Equation (7) 1is very easy to implement since it contains no unknown
parameters to be estimated. All one has to do is compute the past prediction
errors using (5) and (6), choose n, and use the formula in (7). However, this
approach 1s restrictive, It assumes that the weights on past sguared and
cross-multiplied prediction errors are constant through lags n and zero
thereafter. The ARCH model provides a more flexible mechanism for accounting
for heteroscedastic error processes.

Iv. The ARCH Model

Consider the following generalization of (7):

n
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where: Ay is a (2x2) symmetric matrix of parameters; and
A; are n (2x2) matrices of parameters for i=1,2,...,n.

Equation (8) 1is a multivariate %ositive definite parameterization of the
ARCH{n) model introduced by Engle. This model is clearly more general than
the moving variances and covariances modeled in (7) because the weights on
different lags are flexible and each equation contains a larger set of
explanatory variables. However, the unknown parameters in (8) must now be
estimated econometrically.

Maximum likelihood is the recommended procedure for estimating (8). Let

© = {all parameters in A ,...,An}.

0’
Assuming the prediction errors are normally distributed, then the conditional
log 1likelihood function for a sample of T observations on the prediction
errors 1s

1
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where: H_(0) is equation (8); and
€y is defined by (5) and (6).

Maximizing the log likelihood function with respect to 0 is a nonlinear
optimization problem that must be solved with numerical methods. The
algorithm used in this paper is based on Berndt, Hall, Hall and Hausman.

Equation (8) can also be estimated with OLS. Since the covariance matrix
is symmetric, a trivariate vector autoregression is suggested

n
1 - * * 3 i
(10) Vech(etst) = AO + i§1Ai Vecn(et_qet_q)
where: A¥ is a (3x1) vector of parameters;
A% are (3x3) matrices of parameters for i=1,2,...,n; and

Véch 1s the column stacking operator that stacks the lower triangular
portion of a symmetric matrix.

Unrestricted estimation of (10) 1is straightforward using OLS on each
equation. However, while OLS remains a consistent estimator for this case it
is not efficient.

V. The GARCH Model

The GARCH model 1is a generalization of ARCH that was suggested by
Bollerslev. Formally, consider the following GARCH (n,m) model for the
conditional covariance matrix of the prediction errors:

n m
- A 1 1 N 1
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where; Bj are m (2x2) matrices of parameters for j=1,2,...,m.

Compared to the ARCH model, the additional terms involve lagged values of the
conditional covariance matrix. Notice that there 1s an analogy between
modeling conditional means with autoregressive moving average (ARMA) processes
and modeling conditional variances and covariances with GARCH processes. In

the GARCH model, terms involving past values of the conditional moments are
like autoregressive components in ARMA models while terms involving past
squared prediction errors are like moving average components. Hence, the
GARCH model 1is a parsimonious parameterization of a wide class of
heteroscedastic error processes in much the same way that ARMA models provide
a parsimonious parameterization of a wide class of stationary stochastic
processes.

Equation (11) can be estimated using maximum likelihood methods. The log
likelihood function is still defined by (9) but the parameter vector, 0, now
contzins

A and B, ,B. B}

© = {all parameters in AO’Ai"" n 180 B



Furtnermore, (11) is now used as the model for the conditional covariance

matrix. The maximization problem is highly nonlinear so numerical methods
must be used. Again, the algorithm is based on Berndt, Hall, Hall and
Hausman.

VI. An Application

The three approaches to estimating time-varying conditional covariance
matrices were applied to weekly observations on wheat spot and futures
prices. Having obtained the estimated conditional covariance matrix at each
t, the conditional covariance between spot and futures and the conditional
variance of futures were substituted into (3) to get a time path of optimal
hedge ratios. The resulting hedge ratios are relevant for a storage hedge on
wheat being held during the week from t to t+1.

Data are the mid-week (Wednesday) closing price on the relevant market.
Spot prices are for the Saginaw market in Michigan and were obtained from Mid-
States Terminals, Toledo, Ohio. Futures prices are for the May contract on
the Chicago Board of Trade and were obtained from various issues of the
Chicago Board of Trade Statistical Annual. The observation period runs from
June 1977 to June 1985, a total of 410 observations.

As indicated earlier, a model must be chosen for the conditional means as
well as for the conditional covariance matrixz of spot and futures prices
before optimal hedge ratios can be estimated. The model used here for the
conditional means is simply that they equal the current realization of the
respective prices. Thus, equations (5) and (6) are satisfied and the model
for the conditional covariance matrix is estimated using price change data.
Evidence supporting this simple model for the conditional means of weekly spot
and futures prices for wheat can be found in Myers and Thompson.

There are no parameters to estimate in the simple moving sample variances
and covariances model. After experimenting with different alternatives, a lag
length of ten weeks was chosen for computing the moving sample variances and
covariances. With the ARCH and GARCH models, however, parameters in the
equation for the conditional covariance matrix had to be estimated
econometrically. After some experimentation, ARCH(2) and GARCH(1,1) models
were fitted to the data.

Results from OLS estimation of the ARCH (2) model are shown in table 1.
Parameter estimates, their t-values and the Durbin-Watson statistic are all
provided. Also provided is the Lagrange multiplier statistic (T times the
unad justed coefficient of determination from the OLS regression) for testing
the null hypothesis that the relevant conditional variance or covariance is
constant (Engel). The probability values for the Lagrange multiplier test
strongly support the existence of conditional heteroscedastic prediction
errors.

Results from maximum likelihood estimation of the ARCH(2) and GARCH(1,1)
models are shown in table 2. The chi-square statistics and corresponding
probability values are from a likelihood ratio test of the hypothesis that the
conditional covariance matrix of spot and futures prices 1in constant over
time. The null is soundly rejected in both models. Of course, the likelihood
ratio tests are based on the asymptotic distribution of the estimators.
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How much influence does the time variation in the conditional covariance
matrix of spot and futures prices have on the time path of optimal hedge
ratios? To answer this question, optimal hedge ratios were calculated for
every week of the sample period assuming: (a) the conditional covariance
matrix is constant; (b) moving sample variances and covariances; (c¢) ARCH(2)
estimated by OLS; (d) ARCH(2) estimated by maximum likelihood; and (e)
GARCH(1,1) estimated by maximum likelihood. The time patterns of optimal
hedge ratios over the sample period were then compgred across models. Summary
statistics that facilitate such a comparison are provided in table 3. The
mean, standard deviation and extreme values of the weekly hedge ratios over
the sample period were computed. The means are fairly consistent across
models, indicating a hedge ratio of about 90%. However, each of the time-
varying models indicate substantial fluctuations in the optimal hedge ratio -
fluctuations that would be ignored if one took the conventional approach to
optimal hedge ratio estimation. The method that provided the most volatile
time pattern for optimal hedge ratios over the sample period was moving sample
variances and covariances.

Given the fact that the GARCH model 1is the most general of those
considered, and the very high t-values on two of the GARCH parameters, the
GARCH(1,1) might be thought of as the best available model. A typical weekly
deviation from the mean in the optimal hedge ratio under the GARCH(1,1) model
is 11% and the high and low values for the hedge ratio over the sample period
were 120% and 55% respectively. This indicates that substantial errors may be
made 1if a constant optimal hedge ratio is recommended when prediction errors
are actually conditionally heteroscedastic.

Since the GARCH model is the most difficult and costly to estimate, it is
natural to ask whether the simpler models can provide a reasonable

apprcximation to the GARCH hedge ratios. To answer this guestion the root
mean squared deviation from the GARCH model was computed for each of the other
models over the sample period. Results are shown in table 4. Perhaps

surprisingly, the constant conditional covariance matrix model provides the
minimum mean squared deviation away from the GARCH(1,') hedge ratios, while
the moving sample variances and covarilances perform the worst. Provided the
GARCH(1,1) 1is the right model, this indicates that (in this particular
application) assuming the optimal hedge ratio to be constant may be a
reasonable second best if you are not going to estimate the GARCH model.
Nevertheless, there remains a substantial divergence between the constant
hedge ratio estimate and the time pattern of hedge ratios from the GARCH
model.

Finally, a comment on seasonality in optimal hedge ratios 1s in order.
Various specifications of seasonal dummy variables were incorporated into the
models for the conditional covariance matrix but none were found to be

significant. This is surprising since one might expect price volatility to
increase at times when the crop is most vulnerable to changing weather
conditions. Nevertheless, statistical tests and an estimation of optimal

hedge ratio plots over a number of years provided no evidencg of seasonality
in optimal hedge ratios estimated with the GARCH(1,1) model. Optimal hedge
ratio plots for 1983/84 and 1984/85 are shown in figure 1.
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VII. Conclusions

Optimal hedge ratios are not constant over time - as the volatilities of
spot and futures prices fluctuate, so the optimal hedge ratio changes. It is
therefore important to model the heteroscedasticity in the conditional
covariance matrix of spot and futures prices, thereby estimating a time
pattern of optimal hedge ratios. Moving sample variances and covariances are
one method for doing this but ARCH and GARCH models provide a much more
flexible and general approach. The difficulty with the latter models is that
they must be estimated using nonlinear maximum likelihood methods.

An application to storage hedging of wheat in Michigan indicated
substantial errors would be made by assuming optimal hedge ratios are constant
over time. There was strong evidence of heteroscedasticity in the conditional
covariance matrix of weekly spot and futures data for wheat prices, and the
GARCH(1,1) model seemed the most appropriate of alternatives considered.
Substantial weekly changes in optimal hedge ratios estimated with the
GARCH(1,1) model were common with a typical deviation from the mean having an
order of magnitude of 11 percentage points. Thus, the typical practice of
assuming a constant optimal hedging rule may lead to errors in the recommended
hedge ratio.
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ENDNOTES

This optimal hedging rule relies on the assumptions that futures markets
are unbiased and that output is nonstochastic, but little need be assumed
about the hedger's utility function (Benninga, Eldor and Zilcha).

The estimated hedge ratio may change if the data set is updated as more
data becomes available. However, this just reflects a reduction in the
sample variance of the estimator. The underlying population variances and
covariances generally are assumed fixed.

A futures market 1s unbiased if the futures price expected to hold at t+1
(given information available at t) is equal to the realized futures price
at time t.

The positive definite parameterization restricts the conditional covariance
matrix to be symmetric and positive definite at every t.

The experimentation involved looking at the autocorrelations of squared
price changes and fitting a range of alternative models. The final models
chosen gave the most consistent and sensible results.

This 1is consistent with the weak seasonality found by Fackler in a
univariate GARCH model of corn prices.
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Table 1

OLS Estimation of the ARCH(2) Model

Dependent Variable

2 2
ut utvt Vt
Explanatory Parameter Estimate
Variables (t-statistic)
Constant 0.011 0.009 0.010
(6.518) (6.265) (6.690)
ui : 0.279 0.109 0.115
- (2.371) (1.071) (1.071)
U4V -0.244 -0.094 -0.273
(-0.841) (-0.375) (=1.037)
vi , 0.219 0. 187 0.335
- (1.076) (1.066) (1.814)
oS, ~0.103 ~0.038 ~0.053
(-0.879) (-0.375) (-0.501)
u v 0.349 0.167 0.216
t-27e-2 (1.205) (0.666) (0.819)
vi , ~0.211 0. 146 -0.169
- (-1.040) (-0.833) (-0.915)
Durbin-Watson 2.00 1.99 1.99
TR® 26.96 17.93 W74
Probability Value 0.000 0.006 0.022
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Table 2

Maximum Likelihood Estimation of the ARCH and GARCH Models

ARCH(2) GARCH(1,1)

Parameter Parameter Estimate
(t-statistic)

Ag(1,1)
Ag(2,1)

8o(2,2)

Ay(1,1)
A,(1,2)
ay(2,1)

A1(2,2)

ay(1,1)
85(1,2)
As(2,1)

A5(2,2)

By(1,1)
B,(1,2)
B4(2,1)

B,(2,2)

Log Likelihood

“ (8)

Probability Value

0.060
(0.206)

0.090
(0.456)

0.053
(0.181)

0.222
(1.837)

-0.146
(-1.126)

0.115
(1.04)

0.451
(3.439)

-0.159
(-0.829)

-0.035
(-0.169)

-0.201
(-1.002)

0.057
(0.261)

1265. U6
61.78

0.000

0.026
(1.875)

0.009
(0.223)

0.018
(1.394)

0.153
(1.530)

-0.112
(-1.098)

0.219
(2.285)

0.369
(3.998)

0.922
(16.248)

0.021
(0.397)

-0.012
(-0.200)

0.926
(17.520)

1266.01
62.88

0.000
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Table 3

Summary Statistics for Time-Varying Optimal Hedge Ratios
Between June 1977 and June 1985

Model Mean Standard High Low
Deviation

Constant Conditional
Covariance Matrix 0.91 0 0.91 0.91

Moving Sample Variances
and Covariances 0.92 0.23 1.73 0.26

ARCH(2) Estimated
by OLS 0.91 0.08 1.32 0.56

ARCH(2) Estimated by
Maximum Likelihood 0.92 0.07 1.12 0.46

GARCH(1,1) 0.89 0.1 1.20 0.55
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Table 4

Root Mean Squared Deviations From the GARCH(1,1) Model
Between June 1977 and June 1985

Model Root Mean Sguared Deviation

Constant Conditional Covariance

Matrix 0.1
Moving Sample Variances and

Covariances 0.20
ARCH(2) Estimated by OLS 0.12

ARCH(2) Estimated by Maximum
Likelihood 0.12
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