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FURTHER INFORMATION ON THE USEFULNESS AND FLEXIBILITY OF BAYESIAN AND
NONBAYESTAN VECTOR AUTOREGRESSIONS: FORECASTING MONTHLY U.S. CATTLE PRICES
Hector 0. Zapata and Philip Garcia*

In general, the use of multiple time series models to represent economic
behavior has not resulted in improved forecasting. Multivariate models permit
an appealing high degree of interaction among variables but seem susceptible
to overparameterization which often results in unacceptable predictions.
Recently, Litterman (1979,1985), and Bessler and Kling (1986) have addressed
this problem through the use of Bayesian procedures in a vector autoregressive
(VAR) framework.l The approach uses information (priors) on the
interrelationships among variables evaluated over a preforecast period to
generate out-of-sample predictions. The information based on the data or the
subjective knowledge of the researcher can lead to either symmetric or
asymmetric priors. Once established, the priors are maintained throughout the
out-of-sample forecast period. Results from their work suggest that this
methodology can provide lower out-of-sample forecast errors.

The application of the above methodology has been constrained to stationary
or stationarity induced series since the theory of VAR estimation is based on
this condition. However, issues have been raised in the literature regarding
the effect of differencing on the nature of multivariate interaction. Using
Hsiao's (1979) Canadian money and income data, Lutkepohl (1982) has analyzed
this problem concluding that "Differencing nonstationary univariate component
series of a multiple time series to induce stationarity prior to building an
AR model for the multivariate generation process is in general inadequate" (p.
238).

Here, we examine the accuracy of various multivariate (unrestricted VAR,
and Bayesian VAR) as well as univariate time series models for forecasting
monthly U.S. prices of slaughter steers ($/cwt), choice, 1100-1300 pounds,
Omaha, (cattle prices hereafter) giving specific consideration to the
stationary-nonstationary VAR problem and the implications for forecasting.
Further, we modify Litterman's procedure by systematically updating the prior
information imposed on the system throughout the out-of-sample forecast
period. This flexible procedure permits the evaluation of the optimal weights
in specifying the parameter distributions according to the most recent
experience and the impact this has on forecasting performance. The
performance of the models is assessed using the root mean square error (RMSE)
for various forecast horizons. Sources of forecast errors are evaluated by
the MSE decomposition and the quality of the forecast by the turning point
criterion. The results provide added insights into the usefulness and
flexibility of the Bayesian VAR methodology in forecasting agricultural
prices.

*The authors are, respectively, Assistant Professor in the Department of
Agricultural Economics and Agribusiness at Louisiana State University, and
Associate Professor in the Department of Agricultural Economics at the
University of Illinois at Urbana-Champaign.
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The remainder of the paper is organized as follows. First, a brief
presentation on the use of VARs and Bayesian VARs (BVARs) in forecasting is
provided. Subsequently, the specification of symmetric and asymmetric prior
information follows. Next, an unrestricted VAR, BVARs, and an univariate
ARIMA model are evaluated in terms of forecasting performance as applied to a
cattle model for the U.S. cattle industry. Finally, main implications of the
.study are stated. :

Vector Autoregressive Models (VAR)

Among the class of stationary vector stochastic processes, VAR models have
been of considerable interest for economic forecasting. The estimable form of
a k-dimensional VAR(p) process takes the form

(1) Y(£) = D(£) + ZjAj¥(t-3) + e(t)

where e(t)=(e1,...,ex)’ are vectors of k components and Ay, ..., ap are (kxk)
matrices of the unknown parameters, j=1,2,...,p, and L is the lag operator
such that LPY(t)=Y(t-p), and D(t) is the deterministic component. Several
approaches have been proposed in the time series literature to specify the
model in expression (1) [e.g., Akaike (1970), Granger and Newbold (1977),
Wallis (1977), Chan and Wallis (1978), Cooper and Wood (1982), Tiao and Box
(1981), and Lutkepohl (1985)]. The final prediction error (FPE) was used in
this study to select the VAR structure because of the predictive nature of the
criterion.“.

The estimation of VARs is carried out by applying linear least squares (LS)
separately to each equation. Since the i equation in expression (1) has the
same design matrix as any other equation, use of LS results in efficient
estimates. All estimation and forecasting is done on RATS.

Bayesian-VAR Analysis

Application of Bayesian methods to VARs was developed by Litterman (1979)
with regard to forecasting macroeconomic data. Litterman'’s solution to the
problem of filtering information useful for forecasting economic time series
is based on the assertions that, first, there is a very low signal-to-noise
ratio in aggregate economic data, i.e., univariate AR specifications capture
only a small part of the total variation of the predictable movement of the
variable in question, and second, that theory alone does not assure an
economic structure will result in good forecasting performance, i.e., the
researcher may be able to fit the structure adequately but without the same
correspondence as to forecasting accuracy.

Litterman’s basic idea3 is to use symmetrical and/or asymmetrical prior
information on all the specified variables in equation (1) to balance the
tradeoff between oversimplification and overparameterization. Two forecasts
samples are used in the evaluation: (1) a within sample period (preforecast
period) which is used to determine optimal weights, and (2) an out-of-sample
period over which forecasting accuracy is evaluated. The search process over
parameters that fine-tune the prior is undertaken over the preforecast period
using out-of-sample forecast errors during this period as indicators of

’



103

forecasting performance. The fine-tuned priors become the filters to extract
as much information from the data as possible. The prior distribution
Litterman proposed centers on a random walk process for each series in the VAR
specification. Since the prior does not advocate any specific economic
theory, it is viewed as "instrumental".

This methodology allows for specifying a non-informative (flat) prior
around a deterministic (intercept) component, the value of which is determined
entirely by the data. Litterman suggests an estimator which imposes the
information that a random walk around an unknown deterministic component is a
reasonable approximation for the behavior of an economic variable, so that the
it equation in (1) is

(2)  Yi() = di(t) + Yi(t-1) + ei(t).

Specifying the lagged values of Y (Yt-1) in a matrix X expression (1) can be
rewritten as:

(3) Y; + XAy + e

where Y; is (txl), X (txp), Aj (pxl), and e (txl). Expression (3) assumes a
constant mean and variance and allows the covariance between observations to
depend on the lag between them but not a particular time point. Writing the
prior information in the form of stochastic linear restrictions as,

4) RjAj =13 + v
where Rj; = diag (O.h,k/dlij) and Ry has dimension (pN+h) (pN+h), 0.y, contains

zeros corresponding to h deterministic components, A/s ij are the elements
corresponding to the ltp lag of variable j,

[ a/1d if i=]

A/Slij - A da . < s
| Awos/1 95 if i#j

ry; = [0p,10 ....... 01,

ro = [0h,01 0 ..... 01",

rp = [0y,0 ... ... 01]’.

31,33 are the standard deviations on innovations from univariate
autoregressions for equations i&j, 1=1,2,......... ,P lags i=1,2,......... , K
equations and j=1,2,......... ,N variables.

More specifically, Rj is a diagonal matrix with zeroes corresponding to the
deterministic components (h=1,2), and other elements, A/slij, corresponding to
lth lag of variable j in equation i; sli- is the standard deviation of the
prior distribution. rj is a column vector of zeros and a 1 corresponding to
the first lag of the dependent variable i.e., the mean of the A;’'s is zero
except for the first lag on the dependent variable in ith equation which is
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one. The distribution term in (4) is normally distributed with mean zero and
covariance matrix o2I; the A;'s are jointly normally distributed and
independent. A constant standard deviation on the first lag of the dependent
variable in the iy} equation is specified through A which decreases in a
geometric or harmonic manner according to a parameter d at further lags of
this variable. The tightness of A's on other variables in the system is
controlled by a parameter w. A flat prior is specified on the deterministic
component.

Equations (3) and 4) can be written together as

= | | A+ ||

(5) {Yii X | lel
l
lril IR | v

[l

which is in the form of the Goldberger-Theil mixed estimator. Expression (5)
is for the ith equation. The estimate is given by

(6) Ajp(51) = (X'X + kiR;i'Ry)"L(X'Y; + kiRi'rs)
where ki=821/A2.

Once the estimate in (6) is obtained, projections are generated using the
estimated coefficients according to the "Chin Rule of Forecasting" [e.g., Wold
(1962)]. Forecasts n-steps ahead are made based on information available up
to and including observation t. The forecasting procedure used for VARs is
also applicable to BVARs.® The quantitative evaluation is based on the root
mean square error (RMSE) criterion® which is consistent with squared loss
function; this function gives equal weights to over and under forecast, and
appears frequently in applied work. The decision rule is based on the
relative value of the RMSE; the model with minimum RMSE is selected as the
best forecasting model, on the average.

The MSE can also be decomposed in three components which provided
additional information as to the sources of forecast errors; the bias
proportion, the regression proportion, and the disturbance proportion. The
bias and the regression components (systematic errors) measure deviations from
the optimal predictor, i.e., they are zero for the optimal predictor.7 The
disturbance component is a measure of deviations around the predicted line of
a regression of actual on predicted wvalues.

Granger and Newbold (1977, pp. 287-289) discuss some of the problems
associated with using these measures, specially when there is a low
correlation (r) between the forecast and actual series. For optimal
forecasts, r should be very close to 1 so there use seems appropriate.

The qualitative measure is based on the turning point (TP) criterion [e.g.,
Naik and Leuthold (1986), and Kaylin and J. A. Brandt (1988)] which relies on
a 4x4 contingency table to distinguish the peak TP from trough TP and upward
no TP from downward no TP. Two ratios of interest in the qualitative
evaluation are the accurate and worst forecast measures.
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Application to the Cattle Model

The VAR model specification for cattle prices is based on the econometric
model of Garcia, et al. (1988). The underlying principles used in
constructing the VAR model rely on Zellner and Palm (1974) who showed that it
is possible to derive multiple time series process from dynamic econometric
specifications by imposing appropriate restrictions. Price of cattle (PC),
average price of feeder steers (PFS), eight markets ($/cwt), and per capita
income (PCI), $§, comprise the trivariate VAR model (data sources provided in
the references). The multivariate interaction between these series can be
visualized as follows. Feeder steers is a main input in the production of
cattle slaughter; thus, its price directly affects production decisions.® The
relation of PFS and PC can be visualized as recursive through an underlying
supply equation. Demand forces affecting PC are reflected through PCI which
over the past decade has followed a steep upward trend.

Analysis of the autocorrelation functions for the raw data on PFS and PCI
revealed a nonstationary behavior similar to that of the PC series; filtering
through first differences, however, induced stationarity. As indicated
previously, Lutkepohl (1982) has proposed that, in general, it is not adequate
to difference the individual series in a multivariate framework. Since the
interest here is to forecast monthly prices of cattle, both raw and first
differenced data were used in the analysis with the intent of selecting the
structure that generated the most accurate predictions.

Application of the PFE resulted on a VAR of order two [VAR?] model, for
both raw and differenced data. RMSEs for one to six months ahead forecasts of
the PC equation, 1984-1985 period, with monthly updatings for these models on
raw data first differences are (2.47,2.27), (4.37,3.75), (5.84,4.71),
(6.72,4.62), (7.44,4.51), and (8.01,4.68). At every forecast horizon the VAR2
model on first differences has smaller RMSEs; based on these relative values,
one would normally eliminate the VAR2 on raw data and select the other model
for forecasting comparisons; it is surprising, however, what the results show
when the Bayesian methodology is applied to both models.

Implementation of symmetric priors (SP) was performed as follows: the
period from January 1982 to December 1982 (preforcast period) was used to
evaluate the out-of-sample forecasting ability of the VAR2 model and values of
(d,w,\) over the unit cube were searched at intervals of size 0.09 starting
with 0.01. These intervals were selected as an initial step in the search
process because it is impossible to know a priori the behavior of the contours
of the log-determinant of the out-of-sample (twelve steps ahead) forecast
error covariance (LNDFE). The three-dimensional symmetric search resulted in
the minimum value for LNDFE at (d=0.55, w=0.28, A=0410),10 under a geometric
lag decay specification applied to the raw data. The above symmetric VAR2
model (BVAR2GR) was used in generating out-of-sample forecasts (six steps
ahead with monthly updatings) from January 1984 to December 198511 which are
used in evaluating the various forecasting techniques.

It is impossible to determine a priori whether weighing the variables in a
BVAR equally will result in better forecasting performance than specifying
unequal weights. However, when it is reasonable to expect variables in a
multivariate framework to interact on an asymmetric manner, controlling the
degree of multivariate interaction may result in more accurate forecasts.



Since there is no certainty that a set of subjectively specified weights will
result on more accurate forecasts, asymmetric behavior is evaluated as a
combination of purely instrumental (data search) and subjective (expected
economic relationships and correlation between variables in the VAR model)
decisions. The application to the raw data was as follows: (a) steps a and b
of the SP case and the optimal values (X=0.10,d=0.55), the overall tightness
and decay parameters respectively, were used; (b) asymmetric tightness
parameters for w(i,j) were specified as follows. Firs, if i=j then w took a
value of 1.0; second, for the PCI variable the asymmetric weights w(i,j) were
searched over the interval 0.001 w(i,j) 1.0 for the other two variables in
an equation. These intervals are selected to control the way variables
interact in the VAR framework. For instance, it is reasonable to expect
income to affect the level of cattle prices as income 1s an important
determinant of consumer demand, but it is questionable to expect cattle prices
to affect the level of income to the same degree; the effect of per capita
income is tightened towards zero using Bessler and Kling's maximum tightness
(0.001). Similarly, price of feeder steers affect price of cattle from the
production side, and therefore, a high degree of interaction is expected
between these two series (the two variables are highly correlated). Again, it
does not seem reasonable to expect PFS to have much impact in terms of
determining income levels.

The minimum RMSE was used as decision rule to select the optimal weights,
the main reason for using the RMSE is that forecasts for PC (rather than all
the variables in the system) are of interest. The results from this
evaluation are presented in Table 1 and labeled ABVAR2GR. The PC and PFS
equations carry half weight of their own effect when they appear on the other
equation, PCI having almost no influence on these variables.lt? For the PCI
equation, tight priors around PC an PFS result in better forecasting
performance.

The Bayesian application to the first differenced data on the VARZ model
followed the same procedure applied to the raw data. The three dimensional
symmetric search resulted in the minimum value for LNFE at
(d=1.0,w=1.0,1=0.10) under a geometric lag decay specification (BVAR2GD) which
was used to generate out-of-sample forecasts (six steps ahead with monthly
updatings) from January 1984 to December 1985. The asymmetric evaluation
based on the minimum RMSE resulted on optimal weights as shown in Table 1 for
the ABVAR2GD model.

The out-of-sample forecast evaluation for PC is provided in table 2 which
contains RMSEs at forecast horizons of one through six month beginning with
January 1984 to December 1985. The forecasting models of the previous
sections are the unrestricted VARs of order two on raw and differenced data
[VAR2R,VAR2D], the symmetric Bayesian VARZs [BVAR2GR,BVAR2GD], and the
asymmetric BVAR2s [ABVAR2G, ABVAR2GD]. As indicated previously, simple time
series models are used as benchmark in the evaluation process.

The univariate time series model used to forecast monthly prices of cattle
(PC) followed the traditional methodology of Box and Jenkins (1976); this
model provides a basis to decide whether more complex processes such as
vector autoregressions increase the amount of signal that can be extracted
about prices of cattle. First differences of monthly PC, January 1975 to
December 1983, were used to identify and estimate alternative structures



because the autocorrelations of the raw data indicated nonstationary behavior
(autocorelations of the raw data were close to one at initial lags and decayed
very slowly as lag length increased). An ARIMA(2,1,2) was selected as the
appropriate structure based on analysis of autocorrelations and partial
autocorelations of the firs differences. The estimated equation is given by

(6) (1 - 1.529B + 0.846B2) (1 - B)Pcy = 0.241 + (1 - 1.276B + 0.549B2)z,
(-14.88) (8.23) (1.15) (-8.20)  (3.53)

Q= (4.74, 12.44, 17.61, 19.40)

where the values in parenthesis are t-ratios and Q represents the Q-statistic
(Ljung and Box (1978)) at lags 1, 7, 13, and 19, respectively. One to six
months ahead forecasts were generated from this equation for the 1984-1985
period with monthly updatings from January 1984 to DEcember 1985.

Generally, the results in Table 2 indicate that in terms of the RMSEs that
the ARIMA(2,1,2) provides accurate forecasts for shorter forecast horizons,
and in particular for the first, but that its accuracy decreases for longer
horizons. For longer forecast horizons the VARZ on firs differences (VAR2D)
the Bayesian VAR2D and VARZR models performed better, with the VAR2D and the
asymmetric Bayesian model on raw data [ABVAR2GR] having the best performance.
Notice that the unrestricted VAR2R performed the worst of all, but that its
asymmetric (general) counterpart performed almost as good as the best model,
i.e., the VAR2D.

This result is surprising because unrestricted VARs have traditionally
performed worse than most available forecasting techniques. Intriguing,
however, 1s the fact that application of Bayesian procedures to the raw
(undifferenced) data tremendously improved forecasting performance when
asymmetric behavior is allowed (the nonstationarity issue is evaluated closer
to the implications section below). The VAR2D model reduces the RMSE (over
the ARiMA model) by 6.97, 9.86, 11.80, 19.65, 27.65 and 31.78 percent for one
to six months ahead, respectively.

The MSE decomposition reveals that the ARIMA(2,1,2) model becomes
increasingly biased as the forecast horizon lengthened. For the VAR2D and the
best Bayesian VAR model (ABVAR2GR), however, the bias component was close to
zero for one to three months ahead forecasts. For longer forecast horizons
the ABVAR2GR model had about 1/3 of the ARIMA(2,1,2) bias. This suggest that
there is a significant bias reduction by allowing asymmetric behavior,
particularly by tightening the distribution of the income coefficient.

The turning point evaluation (evaluation for one-month ahead shown in Table
4) generally indicated that the VAR2D and the ABVAR2GR models followed the
actual movements more closely, with the latter being the best. For the one-
month ahead forecasts, the ratio of accurate forecasts to the total was
(0.58, 0.50, 0.63, 0.38, 0.63, 0.67, 0.63) for all models in Table 3,
respectively; with all models not having worst forecasts for this step ahead.
However, the accuracy of all models significantly deteriorated as the forecast
horizon increased (the ratio of worst forecasts tot total for the six-month
ahead forecasts was (0.11, 0.28, 0.28, 0.33, 0.17, 0.28, 0.06) for all models
as in Table 3, respectively. Observe that imposing the random walk hypothesis
through Bayesian procedures on unfiltered data tremendously improved the



accuracy of the forecasts as measured by the TP for one to six months ahead.

Further Results and Implicatiomns

The application of VAR methodologies to both raw and differenced data
merits additional consideration. Stationarity of a trivariate VAR2 model
requires that the solution to the characteristic polynomial {112 - A1l - Apl =
0 must have characteristic values (CV) which are less than one in absolute
value for all elements in Aj and Aj, where A] and Ap are 3x3 matrices of
parameters associated with the first and second lag, respectively, of the VAR2
model. Table 4 provides a summary of the real and imaginary components of the
CV for the characteristic polynomial associated with selected raw and
differenced models. As expected, application of least squares to
nonstationary data results in unstable parameter estimates since there are CV
which are greater than one. Bayesian procedures in this application, however,
almost eliminate the instability in parameter estimates (all CV are less than
or equal to one). This is useful because from a practical perspective it
eliminates the need for filtering (and therefore transformation of forecasts),
it avoids possible distortion of multivariate interaction, and it may permit
improved forecasting performance with parameters estimates that are fairly
stable.

The previous results showed that asymmetric priors in a VAR context
improved forecasting performance. Would new information which is incorporated
to update asymmetric weights result in better forecasts? Three sample periods
containing six observations each [(1984,1-1984,6),(1984,7-1984,12), and
(1985,1-1985,6)] were used in a RMSE evaluation to analyze whether changes on
the neighborhood of the weights for the ABVAR2GR model would affect
forecasting performance. In general, the results indicate the following.
First, loosening the effect of per capita income on the other equations, the
PC equation in particular, worsens the RMSEs in relation to the base period
(the base period refers to the results on table 1); and second, loosening the
effect of PC and PFS on each other does not improve forecasting accuracy, in
fact, RMSEs are not very sensitive to upward changes in asymmetric weights.
This second result may be related to the high correlation between PC and PFS
(0.93 for the 1975-1983 period). Generally, it can be concluded that
updating asymmetric weights may not improve forecasting accuracy, and that
considering the computational expense involved in analyzing the sensitivity of
these weights, researchers should consider updating only when they have strong
beliefs that economic patterns have appreciably changed (in the spirit of a
true Bayesian framework).

For an individual decision maker whose profits are negatively related to
forecast errors, these results imply that he can be better off by using
forecasts from VAR and BVAR models rather than simpler ARIMA models. The VAR2
model on first differences resulted in best forecasting performance; however
examination of Bayesian VARs with asymmetric priors also generate highly
accurate forecasts. This approach has the advantage of maintaining
multivariate interaction of the original data and avoids possible distortions
caused by differencing of the data. Further, evaluating in terms of bias, the
Bayesian asymmetric VAR results in forecasts with higher average precision at
every forecast horizon.



Table 1. Optimal Weights for the Asymmetric Prior, Bayesian VAR of
Order 2 (ABVAR2GR, ASBVAR2GD), First Estimation Period to
1982, Forecast Evaluation Over 1983, Raw and First
Differenced Data.

ABVAR2GR* ABVAR2GD™
Equation Variables
PC PFS PCI PC PFS PCI
PC 1.000 -0.500 0.001 1.000 0.001 1.000
PFS 0.500 1.000 0.001 0.500 1.000 0.010
PCI 0.001 0.001 1.000 0.001 0.001 1.000

*The symmetric weights for ABVAR2GR and ABVAR2GD models are (d=0.55,
w=0.28,1=0.10) and (d=1.0,w=1.0,3=0.10), respectively.
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Table 2. Root Mean Squared Errors (RMSE) and MSE decomposition for One
through Six Month Ahead Forecasts, Cattle Prices ($/cwt), 1975-
1983. Initial Estimation Period, with Monthly Updatings to
November 1985.

Months Ahead RMSE / MSE Decomposition

MODEL = seemer e eesmmmmeeceoo e -es-ossooossseooscseoeo o
1 2 3 C 4 5 6

ARIMA(2,1,2) 2.448 4.16 5.34 5.75 6.22 6.86

3.98 7.15 12.37 28.68 46.16 55.12

5.90 14.02 19.06 11.48 4.07 2.26

90.12 78.82 68.56 59.83 49.77 42.61

VARZR 2.47 4.37 5.84 6.72 7.44 8.01

10.77 18.95 26.57 41.77 53.99 60.81

3.49 8.28 12.55 9.61 6.37 4.65

85.74 72.78 60.87 48.62 39.63 34.54

VAR2D 2.27 3.75 4.71 4.62 4.50 4.68

0.09 0.35 1.07 7.07 20.70 34.33

9.00 17.40 23.07 16.78 7.34 1.89

90.91 82.25 75.86 76.14 71.95 63.78

BVAR2GR 2.56 4.33 5.61 6.16 6.76 7.54

3.42 7.15 12.88 28.19 45.38 55.90

5.66 16.42 23.92 18.42 10.72 7.03

90.92 76.43 63.20 53.39 43.90 37.07

BVAR2GD 2.41 4.38 5.86 6.11 6.17 6.38

0.56 0.74 0.99 6.62 20.81 37.70

17.53 31.88 42.41 41.38 30.93 19.64

81.90 67.39 56.59 52.00 48.26 42 .46

ABVAR2GR 2.46 3.95 4.83 4.88 4.95 5.22

0.03 0.08 0.79 4.97 12.29 17.78

2.54 10.14 16.39 12.69 7.91 6.15

97.43 89.78 82.83 82.34 79.81 76.07

ABVAR2GD 2.40 4,30 5.68 5.84 5.78 5.89

0.44 " 0.54 0.65 5.12 17 .34 33.61

18.67 32.69 41.95 40.87 30.84 18.55
80.89 66.77 57.40 54 .01 51.81 47.85

8 In every column-block of four numbers, the first is the RMSE, and the
other three correspond to the bias, regression and disturbance components,
respectively.



111

Table 3. Turning Point Evaluation of the One-Month Ahead Forecasts from
Selected Models for Cattle Prices.

TURNING POINT MODEL
ELEMENT A \ B B A A
R A A v \ B B
I R R A A v v
M 2 2 R 'R A A
A R D 2 2 R R
2 G G 2 2
1 R D G G
2 R D
F1l1 1 0 0 0 0 3 0
F12- 0 0 0 0 0 0 0
F13 3 4 4 4 4 1 4
Fl4 0 0 0 0 0 0 0
F21 0 0 0 0 0 0 0
F22 3 2 0 4 0 1 0
F23 0 0 0 0 0 0 0
F24 1 2 4 0 4 3 4
F31 0 0 0 0 0 0 0
F32 0 0 0 0 0 0 0
F33 5 5 5 5 5 5 5
F34 0 0 0 0 0 0 0
F41 0 0 0 0 0 0 0
F42 6 6 1 11 1 4 1
F43 0 0 0 0 0 0 0
F44 5 5 10 0 10 7 10
RAF 0.58 0.50 0.62 0.38 0.63 0.67 0.63
RWF 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NOTE: RAF is a ratio of the accurate forecasts to the total and RWF is a
ratio of the worst forecasts to he total.



Table 4. Characteristic Roots of the Characteristic Polynomial
Associated with the nonBayesian and Bayesian VARZ Models on
Raw Data and the VAR2 Model on First Differences, Estimation
Period 197-1983.

VARZR ABVARZHR VAR2D
Root = =eemsmc-s-----ces | mee-mem-me--o----  mm-ssessssco----
Real Imaginary Real Imaginary Real Imaginary
1 1.97 0.00 1.00 0.00 0.39 0.18
2 1.04 0.41 0.94 0.13 0.39 -0.18
3 1.04 -0.41 0.94 -0.13 0.32 0.00
4 -0.07 0.11 0.10 0.00 -0.39 0.00
5 -0.07 -0.11 0.03 0.00 -0.13 0.13

6 0.11 0.00 0.02 0.00 -0.13 -0.13



FOOTNOTES

1. As Pagan (1987) notes, this approach is "Bayesian in spirit".

2. Lutkepohl (1985) compared various selection criteria for

estimating the order of a VAR process in a simulation study, where
performance of the various criteria under different sample sizes was
evaluated. The results indicated that for the processes studied,
Schwarz's BIC (SBIC) criterion chose the correct autoregressive order
most often and resulted in smallest mean squared forecasting error.

The SBIC tends to provide a parsimonious multivariate specification; in
a practical sense, its effect on the accuracy of forecasts in a
~specific situation is uncertain.

3. Additional details are can be found in Bessler and Kling (1986).

4. Such specification admits nonstationary behavior, the limiting
case being the one for which the data behaves as pure random walk.

5. Using the estimated values of Ap in expression (6) and using
information available up to, and including, time t, the predicted
values of Y(t+n) are given by the formula:

Y(t+n) = Dy + EklﬁkY(t+n-k) + ZkzﬁkY(t+n-k)

where kl=1,....,n-1 and k2=n,....,K. Note that this procedure is
. recursive because a new value is obtained using previously generated
forecasts.

6. This criterion is calculated by RMSE = [N'l(ﬁf - yf)z]l/z.

7. The equations for these measures are: Bias Proportion = (P -
Am)z/MSE, Regression Proportion = (S, - rSa)z/MSE, and Disturbance
Proportion = (1 - r2)Sa2/MSE, where gm is the mean of the predicted
values, Ap is the mean of the actual values, S, is the standard error
of the predicted values, S; is the standard error of the actual values,
and r is the correlation coefficient between actual and predicted
values.

8. Corn is the main component of cattle feed in cattle feeding
systems; furthermore, it is reasonable to expect the price of corn to
appear in the VAR model. However, its multivariate interaction is not
significant as indicated by correlation coefficients and a transfer
function analysis. In the past few years, price of corn has been so
low that it may not be an important decision variable.

9. Goodness-of-fit measures showed that the raw data VAR]l model was
much more significant than the first differenced model. For instance,
the VARl model on first differences had only one significant
coefficient, the first lag on the PCI equation; additionally, the R-
square for the PC equation on raw data was 0.96 in relation to 0.04 for
the first differences over 1975-1983. RMSEs from this VAR1 model for
one to six ahead forecasts of the PC equation, 1984-1985 period with
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monthly updatings, were 2.78, 4.69, 6.14, 6.89, 7.67 and 8.67. These
values are larger than those for the VAR2 models at every forecast
horizon.

10. The symmetric prior case for the BVAR2GR model saw also examined
under a Harmonic lag decay; this, however, did not improve forecasting
performance

over the Geometric model. For both models the values for LNFE revealed
a very flat structure; therefore, searching about the neighborhood of
the optimal weights reported here was considered unnecessary.

11. This comprises all data available while the research was
conducted.

12. This result is consistent with an analysis of the variance
decomposition of forecast errors during 1983 for the three series
(PC,PFS,PCI). The variance decomposition revealed that PG is
exogeneous, particularly for shorter horizons, PFS becoming more
influential as the forecast horizon increased. Throughout, PCI had
effects of less than one percent.
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