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OPTION BASED ASSESSMENTS OF EXPECTED PRICE DIS'l['RIBU'I‘IOI\TS“r

by
Bruce J. Sherrick, Scott H. Irwin and D. Lynn Forster

Abstract

No-Arbitrage option pricing models are used to derive ex ante
expected price distributions. The performance of the method
is assessed in the context of the calibration of the derived
probability density functions, evaluated at the expiration date
prices. It is found that the soybean and S&P 500 option-based
probability assessments display some evidence of mis-
calibration very near to expiration and far from expiration.

A great deal of research on financial time series involves the forecasting or prediction
of future events. Predicted, or expected values of economic variables serve as the primary
inputs in business planning and decision making. Often, these variables are in the form of
a mean value with an interval of possible error. Decision makers, particularly in a risk
management context, behave as though they consider an entire probability weighted
distribution of future events. Hence, the applicability of mean forecasts should be
questioned. More useful would be a characterization of the entire expected distribution of
a future event.! The range of possible outcomes, along with their associated probabilities
would be highly valuable in a decision context to producers, processors, speculators, and
other market participants. Improvements in decision making methods and risk management
techniques would be facilitated with a means of accurately describing distributions of events
rather than simply providing point forecasts.

In deriving estimates of values of ex ante variables, ex post data are often used. If, in
fact, the distributions are non-stationary, use of ex post data may lead to seriously faulted
conclusions. More useful would be a set of ex ante distribution parameters, or an ex anie
description of the stochastic process governing the realizations of the random variables.
Unfortunately, direct elicitation of ex ante parameter expectations from market participants
is often difficult, if not impossible.

One particularly important uncertain variable is the price of a commodity or security
at some future time. The interaction of all participants in futures and options markets
results in a collective expression of their beliefs about future price distributions in current
prices. This seemingly innocuous observation provides an avenue toward the recovery of the
expected price distribution parameters without extensive surveys Or direct elicitation.

*presented at 1989 NCR-134 Conference on Applied Commodity Price Analysis,

Forecasting, and Market Risk Management '
““The authors are Assistant Professor, University of Illinois, Associate
Professor, respectively, in the Department of Agricultural Economics at The
Ohio State University, Columbus, Ohio.

The authors wish to thank Paul Fackler for generously providing computer

programs upon which much of our programming was based. The authors retain
responsibility for any errors oOr misconceptions that may remain. )

'1n the case of an expected utility maximization, wherein most financial
optimizations may easily be couched, & Taylor series expansion of the
utility function introduces all higher relevant moments in some number of
terms.
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Specifically, options written on uncertain assets display valuable properties that may facilitate
the examination of ex ante distributional parameters.

Options’ payoffs are contingent upon the possible outcomes of the underlying
security’s price. The option price (premium) therefore implicitly contains the assessments
and preferences of market participants over the distribution of the underlying security’s
outcomes. The parameters of those distributions are the variables of interest. The problem
proposed herein is to "invert" the process of valuing options and use observed premia to
recover implied or ex ante expected distributions. Necessarily, this requires ancillary
assumptions regarding the process of valuation and of market efficiency. This paper
demonstrates the application of one such technique which relies on a relatively weak set of
restrictions governing valuation and makes full use of the simplifying assumptions of market
efficiency.

Two specific issues regarding the "usefulness" of option premia data to assess
expected future price distributions need to be delineated. First, the statistical properties of
the estimates implied by option premia must be assessed to judge the appropriateness of
using premia in conjunction with the valuation procedures to derive a complete probabilistic
description of implied expected distributions. Fackler has drawn the necessary criteria
together to assess the accuracy, and reliability or calibration of the derived probability
functions. Secondly, and perhaps more importantly, an examination of the changes of the
parameters of expected distributions over time provides insights into the fundamental
economic forces that may be reflected in these markets. Presumably, market agents learn
and update their information sets with the resolution of time and uncertainty about future
events. If for no other reason than the passage of time, expected distributions will collapse
to the expiration date price. Therefore, the equilibrium implied expected distributions will
also potentially change as the agents’ information sets change. The investigation of the
equilibrium implied expected distributions would therefore be seriously suspect if, in addition
to examining the static properties of the implied distributions, the issue of non-stationarity,
or time-varying parameters, were not also considered.

There is a great deal of existing research, both theoretical and empirical, delving into
the workings of the options markets. The pricing of options written on stocks has received
the majority of the attention, but other derived assets are also well investigated. This study’s
primary focus is on puts and calls on futures instruments, specifically soybeans and the S&P
500 index. The reasons for choosing these instruments are for convenience of data and of
interest. Specifically, an option pricing method that is less restrictive than those used in the
past is employed to derive estimates of expected price distribution parameters. Then, the
calibration of the estimates is examined. The empirical nature of this study then lends itself
to extensions of the pricing techniques to other applications requiring a probabilistic
description of future prices. Much can be learned about the scope and direction of
adjustment that may be needed through examination of the calibration function through time.

The potential usefulness of deriving probabilistic descriptions of uncertain events
permeates the decision making environment. Also, investigations of the forces that impact -
these distributions and an examination of how they change through time, provide
fundamental insights into the workings of speculative markets.

OPTION PRICING:
Black-Scholes Methodology:

In the well known Black-Scholes (B-S) stock option pricing model, and the Black
futures option pricing model, an option’s price depends on the underlying asset’s price, the
strike price, time to expiration, an assumed constant risk-free rate of interest, and the
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~ instantaneous volatility of the underlying asset’s return stream.” Of these variables, only the

risk free rate and volatility (0) are not easily observed. As a proxy for the risk-free rate, the
yield on a T-Bill that expires near the option is often used. One means of estimating 0 is to
search for the value of 0 that equates the particular model price to the observed option
price, with the resulting estimate being termed the implied volatility (IV). Many studies
then have related the IV to a broad range of economic variables and studied the properties
of this estimate.” Technically, if the variation in the IV is then explained with any accuracy
at all as a function of other variables, then the B-S formula is incomplete and the IV is not
a meaningful measure. While this theoretical defect is important to recognize, pragmatically,
the use of the B-S formula to yield instruments for ex ante variables appears to be quite
useful. Possibly a more confounding inadequacy of B-S type approaches arises due to its
near universal availability and (at times blind) application. The possibility of the circularity
of testing B-S models with data that are largely generated through the application of B-S type
models forces a recognition that the tests may be reduced to the point of actually testing only
how accurately the data were collected.

No-Arbitrage Pricing:

A widely accepted basis for asset pricing is based on the set of no-arbitrage
restrictions, first proposed by Ross. Absence of arbitrage is a necessary condition for market
equilibrium, so the assumption that assets trade at equilibrium assures that there is no
arbitrage. The widespread acceptance of no-arbitrage as a basis for asset pricing suggests
that it may serve as a useful basis for option pricing as it does not suffer from many of the
same restrictive features of the B-S formula.’

Ross and others (Breedon and Litzenberger, Banz and Miller, Cox and Ross) show
that no-arbitrage implies the existence of a "supporting pricing function" and that the
restrictions are also sufficient to insure market equilibrium. The pricing function may be
interpreted as a set of supporting state prices for a particular state-space which in turn
suggests a probability-like function for the outcomes in the state-space. Given reasonable
statistical performance of the probability measure, derived parameters may serve as inputs
for the next level of the investigation. That is, if parameter estimates are judged to be
"reasonably well behaved", they will then serve as the variables of interest with respect to
generating and investigating a complete probabilistic description of expected price
distributions.

A few constructed examples in the context of arbitrage theory will help solidify the
concepts and lead to the option pricing results. Consider a one period economy composed
of two assets with known prices and suppose the state-space matrix is also known.

"The details of these models may be found in numerous finance texts. The details are
omitted here for brevity.

*See for example, Schmalensee and Trippi, Beckers, Chiras and Manaster, Latane and
Rendleman, Park and Sears, Anderson, Jordan et al., Shastri and Tandon, and many
others. )

‘In fact, the implications of the Black-Scholes approach are sometimes in direct
conflict with the No-Arbitrage approach. For an interesting example, see Grinblatt and
Johnson.
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For example;

R —

[2 1][P] _[15]
[2 47[P] [ 2]
Z P Y

or, ZP = Y, where Z is the state-space matrix with rows referring to assets and columns
referring to states and entries giving the corresponding payouts for the assets given a
particular state. Y is the observed price vector and P is the "pricing function", in this case
a two element vector. The condition that ZP = Y implies a set of supporting prices P =
Z'Y or in this case P’ = [2/3 1/6]. For Z" to exist, the state-space matrix must be of full
rank implying a "complete market" or a "spanning" set of assets. The state prices may be
interpreted as the price per dollar claim of a particular state, or equivalently, the cost of
insuring against a particular state. The price of insuring against all states is therefore the
sum of the state prices, or 2p, and is identical to the current price of a risk-free bond that
pays one dollar regardless of which state occurs. Anticipating the introduction of the
common notation for a state that will be needed when we consider a continuum of states,
let 8 be a future state and let r(8) = rg be the return stream for an asset in state 6. A risk-
free bond, denoted b(T) or b; promises rg = [1 1] and hence Y = rgP implies, in this case,
that Y = Zp,. An identical result is obtained if combinations of asset 1 and 2 are held in
proportions that promise (replicate a risk free bond) to pay 1 in either state. Example:
Let w, be the fraction of asset i held, then Z'W = rg solves for W =[w,, w,] via rg(Z)" =
W and since the desired rg was [1, 1] we have W’ = [1/3 1/6]. The required outlay for a
portfolio composed of 1/3 unit asset 1 and 1/6 unit asset 2 is WY = (1/3)(3/2) + (1/6)2 =
5/6 = Zp..

If the number of independent assets is at least as great as the number of states, the
above results completely generalize. If we consider the more realistic case of a finite number
of assets and a continuum of possible states, bounds may be placed on the state pricing
function, which we will loosely call the state price density, and denote as Q(8) or Qg. If there
are multiple periods, a time argument may be added as well. If b(T) is a one dollar risk-
free bond, the analogy to b(T) =Zp, holds in that b(T) = fdQ(G)‘ Because the emphasis is
on the use of these results rather than of further exposition, the discussion is somewhat
limited. A rigorous set of proofs analogous to the above assertions for continuous states
across multiple time periods is given in Ingersoll.

The transition to calling Q(8) a density rather than a set of discrete state prices is
intuitively appealing and direct, but some related concepts should be discussed before
accepting this proposition blindly. First, there is no guarantee that Q(8) is unique given a
continuum of states. In the discrete case, if there were more states than assets, p(s) also
may not be unique and supporting state-price vectors may have been located that "implied"
negative prices. While negative prices in themselves offer arbitrage opportunities, they are
at least conceivable. It is, however, beyond conception to refer to a negative probability
density. Ross, and Cox and Ross demonstrate the equivalence between lack of arbitrage and
the existence of a strictly positive function, Q(8). In addition, linearity (across assets) and
the endogeneity of the risk-free bond price are also proved.

Given the system of asset prices, states of the asset economy, and distribution of
state prices, any one of the three categories may be solved for via knowledge of the other
two. The discussion above used observed prices and payoffs to determine a supporting price
function, but may have as easily determined the no-arbitrage consistent asset prices given
states and state prices. In the continuous framework, a return stream rg,, and a distribution
of state prices yields a current value consistent with no-arbitrage. It is this observation of the
equivalence of the approaches that allows the option pricing methods used herein to reveal
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a set of parameters about an expected price distribution. Note the fact that any replicable
asset in the economy may be priced via the relation:

o0

Vi= ] [rada®y,

A bond paying one dollar at time T is therefore worth (since no intermediate time effects
matter):

b(T) = Q 1 dQ(8).
Recall that Q(8) is strictly positive to prevent arbitrage and therefore,
0 < Q(8)/b(T) < L.

Q(8)/b(T) behaves like a cumulative density function and in fact will serve as the proxy for
the expected discounted distribution of the relevant state prices. Following Fackler’s
interpretation of Cox, Ross, Merton, Samuelson, and Harrison and Kreps, define
F(8)=Q(8)/b(T) as the artificial CDF or discounted implied pricing function. Thus F(8)
corresponds to a discounted expected cumulative density function that may be used to price
options in the no-arbitrage economy. If there are other forces beyond a discount factor that
affect the relation between Q(8) and F(8), then F(6) may be interpreted as a utility weighted
probability or as referenced in the Samuelson-Merton model, a "Util-Prob" distribution.
Using F(8), the basic valuation equation may be rewritten as:

V, = f ‘f b(T) r(6,t) dF(8,t).

This equation serves as the basic valuation equation for any asset in the no-arbitrage
economy. Fortunately, the application of the pricing function, F(8,t) is simple and direct
and has received previous attention. For example, in the case of calls, the Samuelson-
Merton Model is:

v, = exp(r*f(gggzps - $)dF(Z;7),

where V, is the call value; r is the risk-free interest rate; 7 is the time to maturity; S is the
strike price; P, is the stock price; Z is the random per dollar rate of return on the stock; and
dF(Z;7) is the risk-utility adjusted pdf of Z through 7. The impossibility of knowing the
economy’s dF(Z;7) limits the direct use of the formula. However, Gastineau and Madansky
have modified the model to operationalize as:

V. =al* T WQZPS-SdFZ;T; ;
al* exp(ax(r*7)) [ a(ZP. - S)AF(Z:T;a)

where a,,...,a; are empirical adjustment factors to take account of market frictions and F(Z;7)
is taken as an empirical distribution function, and other terms are as defined before. The
models are presented here to indicate the framework in which our estimates are derived and
point out that the approach has a well founded base in the literature.

: The small percentage of options that are exercised early will be taken as sufficient
evidence that the difference in value between European and the American options
considered in this study is negligible. The significance of this assumed equivalence is that
it allows futures options to be priced via F(8,T) alone with no need to consider intermediate
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“time effects. Calls and puts written on futures have clear return functions. For calls, the
return at time T is simply max{Y;x, 0} where x is the exercise price and Y is the random
futures price at time T. For puts, the function is max{x-Yr, 0}. The value of these contracts
may be written in terms of the basic valuation equation as:

1l

C = b(T) | max{Ysx, 0} dF(Yy) and
P = b(T) | max{x- Y, 0} dF(Yy).

By noting that for Y: > x, P = 0; and for Y.<x, C=0, we can rewrite the above two
equations as:

C = b(T) | {Yrx} dF(Yy) and

d
i

b(T) [ {x-Ya} dF(Yy).

A key distinction between this and the typical option pricing approach is that no assumptions
have been made about the price dynamics or in fact about anything in the interval prior to
expiration. The only assumptions thus far made are that there are no arbitrage
opportunities, thus guaranteeing the existence of F(8). Even if F(Yr) were imposed (like
most approaches, i.e. lognormal) the interpretation of the parameters differs from the B-S
case where they describe the aspects of the price dynamics.

ESTIMATION OF EXPECTED DISTRIBUTION PARAMETERS:

For obvious reasons, we wish to choose distributions to consider for F that are as
unrestrictive as possible. To be practical, a distribution is needed that does not allow
negative prices (simple arbitrage), has relatively few parameters, and allows a fairly wide
range of shapes to emerge for the CDF. Many studies suggest the lognormal distribution is
not very descriptive of reality.” Studies find empirical distributions that are more leptokurtic
and more or less skewed than that implied by a lognormal distribution of prices.

An important, albeit untestable point, is that there are no directly measurable or
observable utility weighted expectations which are the true variables that influence current
prices. It may be that market participants actually have consistently biased or inaccurate
expectations and the empirical or implied distributions are in fact irrelevant to pricing. If
market participants have consistently "inaccurate" expectations, the function F(Yr) may not
accurately reflect those expectations. Empirical studies must make assumptions that facilitate
a solution and in this case it is assumed that the mathematical sense of expectation and the
normative sense of a utility weighted expectation are indistinguishable.

Based on preliminary work by Fackler, et al., this study will use the lognormal and
Burr-12 ‘or Singh-Maddala distributions as the primary candidates for F(Yy). Again, a
beneficial bonus is the attention the statistics and insurance literatures have given these
distributions. Both have a zero (non-negative) support and the Burr-12 may take on a wide

See Gordon or Hall, Brorsen, and Irwin and the references therein.
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range of skewness and kurtosis. To operationalize, a form of the pricing function needs to
be derived in which F(Y;) may be isolated. Then, an estimation criterion must be applied
to the data. The typical identification problem and other feasibility and regularity conditions
are, of course, assumed to be met.

The put formula may be written as: -

P = b(T){ | xdF(Yy) - | YdF(Yr)).

Integrating the second term by parts:

b(T)XF() -XFGO) - | F(Y2)dYal)

i

b(T) | F(Yx) Y.

In this form, it may be seen that P and b(T) are sufficient to recover F(Y;). The
expression:

min 3 (P, - [ F®)AY2} + £ (G- [RB)Y))
B ' ! X;

(Fackler, pg 29), where n is the number of observed put prices and m is the number of call
prices, may be solved for B, the vector of parameters of F. If only one type of option is used,
then either n or m may be zero.

As mentioned, the preferred forms for F(8) to be investigated are the Singh-Maddala
(SM) and lognormal distributions. The SM CDF is: ‘

SM(y;a,b,q) = 1-(1+(y/b)*)*® fory > 0, abyg >0,
=0 else.

Hence, at least three data points per contract are required to recover the three parameters
of the distribution. The CDF of the lognormal distribution is given by:

N(In((y)-#)/0)
where N(e) is the cumulative normal density function. Details of the ancillary distributions
that require evaluation may be found in Fackler.

The dispersion parameter in this approach has a different interpretation than the B-
S implied volatility (IV). A comparison of the two distributions is made to lift up possible
improvements in moving to a three parameter distribution. There is no guarantee that the
parameters of F(B) will conform to an ex post price distribution. Indeed, it is a simple
mathematical construct with probability-like properties. Before using the derived parameters
in an investigation of the economic forces reflected in the markets, an investigation of the
properties of the parameters must be conducted. Only if they are judged to perform well will

they become admissible candidates for decision making inputs. This evaluation is the topic
of the next section.
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EVALUATION OF ESTIMATED PARAMETERS:

Calibration, or reliability, refers to the correspondence between a predicted and an
actual event. In terms of distributions, calibration describes how close the predicted and
 resulting functions are. If there were a reason for the market’s aggregation of individual
expectations to yield parameters that required a particular adjustment to correspond to the
"true" variables, then this adjustment is the calibration function. Specifically, if the ex ante
parameters of a distribution are truly ¢(x) and the estimates are F(x), then K(F(x)) = ¢(x)
implicitly defines a transformation K(e) of F to generate estimates K(F(x)) that are well
calibrated or reliable. The function K(e) is called the calibration function. Equivalently,
given a subjective or implied p.d.f, the process generating the subjective or implied p.d.f. is
said to be well calibrated if the proportion of times the realized value lies below the ™
fractile of the implied p.d.f. is equal to r (Curtis, et al.). Notice that the calibration accounts
for more than a simple bias in that it corrects all moments of an estimated distribution. The
result of calibration is to make the long run probabilities (density) of K(F(x)) = @(x) for any
level of x. The notion of accuracy is akin to the variability about this conformity. That is,
a constant forecast for F(x) equal to the long run mean, regardless of the level of x is well
calibrated in the mean but not very useful in a decision context. Instead, we want a F(x)
which is accurate across the entire range of x. If F(x) is already well calibrated, then K(e)
will be simply a uniform density. If, for example, F(x) places too much weight in the lower
tail, K(e) will be lower than a uniform density at low values of x and highier at high values
reflecting the re-weighting of F that is necessary to force a correspondence to #(x). K(e)
therefore re-weights F(s) and is itself a probability measure. The test for calibration then,
is equivalent to testing the uniformity of K, for if F(e) is calibrated, K is simply a one-to-
one mapping whose CDF is a straight line. In this context, an independent sample of various
F,(8) evaluated at their realizations, Yr, s0 that F(Yr) = x, gives a means of modeling a
calibration function. A sample of the x; are collected and a calibration function is fitted to
the sample x. The calibration function is then tested for its departure from uniformity. If
there is no evidence that the calibration function is not uniform, then the process generating
the F(Y7) is well calibrated. If there is significant departure from uniformity, the shape of
the calibration function may be examined to infer the location and dispersion biases that may
exist. For the purposes of this study, the calibration function is based on the beta function
with density

Kx) = x'(1x)""/B(p,q),

where B(p,q) is the beta function with parameters p and . F ackler outlines a means of
using maximum likelihood estimates of the parameters of the beta distribution to explicitly
model the calibration function. With the above procedure, market specific effects (non-
stationarities in the process driving Y due to, say, drought, etc.) are empirically
indistinguishable from non-calibrated estimates. Furthermore, a process describing the
evolution of the parameters of F(Yr) via other variables would be more general than a point
by point correction via a calibration function. Unfortunately, the options markets and
applications of this technique to the options markets are too young to establish definitively
whether a stable calibration function will emerge that could be used to improve estimates of
price distributions.

DATA DESCRIPTION:

A strength of this study lies in its use of a fairly long time series of contemporaneous
futures and option data. The data consist of all time stamped transactions of the S&P 500
futures and options and soybean futures and options from the inception of these markets on
1/28/83 and 10/31/84 respectively and ending 9/30/88. The data are provided on tape
from the Chicago Mercantile Exchange and the Chicago Board of Trade and are thought to
be highly accurate and free of errors. These two instruments provide some interesting
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comparisons and enjoy high volume and widespread acceptance as investment instruments.
In addition to all trades at which a price change occurs, the data set contains bids that
exceed, and asks that fall below, the previous transactions. Volume data per se are not
available, but an examination of the mean trading price-change time interval was examined
as a flag for possible liquidity strains. Lack of volume does not appear to be a problem per
se, but the absence of data on days that the soybean futures "hit a limit" does filter out

several days that would have been interesting to examine. Also, the S&P data suffered some
distortions on October 19 and 20, 1987, that cause those two days to largely be dismissed.

Some exclusion criteria were considered to alleviate some induced biases. Trades
that occurred more than one year prior to expiration were also excluded. Also, deep in- or
out-of-the-money options were scrutinized carefully although there is no theoretical reason
for exclusion. Next, the time interval between trades of matched prices should be as short
as possible. Two earlier studies (Whaley, and Ogden and Tucker) require that the futures
price precede the option price. Jordan et al. simply require that the put, call, and futures
prices each occur within a common thirty-second interval. Since there is little reason (other
than volume) to expect that one price necessarily leads or causes the cther, no a priori
imposition of order was made. Also, based on Bookstaber’s arguments, it was felt that
synchronous futures and option prices were necessary to avoid possible distortions found in
closing or settlement prices. And, in order to minimize the day-to-day effects, the point in
time during the day should be during a relatively stable trading interval and away from the
opening and closing periods when price swings may be exaggerated. Hence, to generate the
sample of trades used, a point in time near the center of the trade day (11:00) was chosen
and one trade per strike price traded that day was chosen based on its proximity to 11:00.
Then, the futures price nearest in time to each option was selected as the "matched" futures
price. Soybeans were required to have a matched futures observation within 90 seconds of
the option price and S&P options were screened at a 60 second limit. Days with less than
three option trades in our time window were deleted. A description of the resulting sample
is given in table 1.

To solve for the parameters of the expected price distributions, a risk-free rate was
needed. The rate used is based on the daily discount-basis yield of three month T-Bills as
provided by the Federal Reserve Bank of Cleveland.

METHODOLOGY:

The expression

min 3 {(P, - fF(ﬁ)dYT)Z} + T {(C- [ FB)dYx)}
g ' ! X;

was solved for a set of implied distribution parameters, B, using the daily sample combination
-of puts and calls. In the case of the SM, B is a three component vector, and in the case of
the lognormal, it is a two parameter vector. As many strike prices were used for each option
each day as possible (subject to the exclusion criteria discussed earlier). This expression was
minimized daily for the two distributions suggested to yield the time series of implied
parameters to be investigated. Specific market and contract effects dictate that each contract
be treated essentially as a unique instrument, however, which limits the degree to which
pooling across contracts may take place in an attempt to improve statistical power. '

The literature provides clear evidence that there is an interest in explaining time
varying parameters of ex ante distributions. However, the lack of convincing existing
evidence based on IV type estimates of volatility forces a reconsideration of the techniques.
Many tests encountered involved regressing IV on a time-to-maturity variable. It is suggested
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here that there may be a confounding of the month, year, contract month, and other time
effects that renders simple univariate time-to-maturity tests weak.

An average futures price was calculated for each day as the simple average of the
synchronous futures prices for the options used in the estimation. Since the futures prices
do not enter into the estimation of the distributions, comparison of the first moment of the
implied distribution with the average futures price gives an indication of the expected
direction of futures price movements. For example, if the average futures price is
consistently lower (higher) than the mean of the "pricing" distribution, it indicates that the
futures price is expected to increase (decrease) at expiration. If there is a general agreement
across contracts, support may be given to-the hypothesis that the current futures price is, in
fact, equal to the expected price at expiration. Table 2 summarizes the mean difference
between average futures price and E(Yr) as reflected in the implied distributions. Note
particularly the increased mean deviation over the August and September contracts in the
soybean market reflecting possibly the increased uncertainties surrounding harvest. Also
note that in both markets, the BR-12 method yielded estimates that were closer than the
lognormal. If the connection in current futures prices to option prices is maintained through
practices such as. conversion-reversal, this improved fit may simply reflect the increased
flexibility of the three parameter distribution rather than of specific contract effects.

To examine the usefulness of this approach to generate reliable descriptions of future
distributions, the issue of calibration is examined. The 26 time series generated from various
soybean contracts and the 12 series generated form the S&P contracts are used to generate
independent samples of F,(Yr) at several fixed intervals prior to expiration, evaluated at their
respective expiration date prices. In other words, at fixed non-overlapping intervals prior to
expiration, the F(8,) from each contract are evaluated at their expiration date futures prices.
If the F(8,) are well calibrated, the distribution of the realizations F((Yr) will correspond to
the probabilities assigned to that F(Yy). The five non-parametric tests outlined in Stephens
and implemented in Fackler were used to test the resulting empirical distributions of the
F(Y:) departures from uniformity. In addition, the fitted beta distribution was examined as
an indication of the shape of the calibration function. Note that the Beta(p,q) distribution
with p=q=1 corresponds to a uniform density and hence, examination of the fitted p,q values
of the beta distribution reveals information about the types of biases present. Table 3 give
a summary of the results of the fitted beta calibration functions. The five non-parametric’
tests were in general agreement with the beta test. Specific results of the non-parametric
tests are available upon request.

The interpretation of the calibration function is that it serves to re-weight the
estimated CDF to arrive at one that would have allowed the realizations to occur with
highest probability. If the calibration functions estimated were constant, they could be used
as one of the "modular” adjustments that was suggested might be needed to result in an
easily used decision input. ~ The likelihood ratio statistic is also calculated and the
corresponding p-value for the null of uniformity is given. In each of the 4 cases, there is
some evidence that the market’s assessments were not well calibrated one week prior to
expiration. The general shape of the Beta distribution for that time interval suggests that
the option based assessments were overdispersed and shifted to the left, or equivalently, that
the expiration futures prices were drawn from a distribution that was less dispersed and
located at a higher level than that implied. Figure 1 shows a representative Beta calibration
function and the corresponding F(Yy) and calibrated K(F(Yr)) for the sample calibration
function shown in the top panel. The specific contracts are the June 1988 S&P with the
estimated calibration function for sixty days out, and the May 1988 Soybean contract at
thirty-five days out along with a shorter-term calibration function. Note the general shifting
upward of the S&P distribution and the tightening and shifting of the soybean distribution
required for calibration.
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Over the range from 10-40 days prior to expiration, there is little firm evidence in
either the soybean or S&P 500 market of miscalibration. In the soybean market, the August
contract was dropped from the sample from 40 days and- beyond in order to avoid
overlapping of intervals from which the calibration functions were estimated. Other
differences in sample sizes arise due to limit days or other days on which lack of data
precluded the calculations of estimated parameters at a particular interval prior to expiration.
From 80 to 100 days in the soybean market and at 100 days in the S&P market, the samples
are not strictly independent, so the results must be interpreted with caution. However, the
portion of the interval that overlaps the adjacent interval is approximately 10% so the
distortions on this account may not be large. With this condition in mind, there still seems
to be some evidence of miscalibration at long intervals prior to expiration. Specific time
period effects, such as a prolonged, unanticipated growth or a sudden drop could easily
account for these effects in the S&P case. Unanticipated shocks in the soybean market, too,
could cause estimates that appear to indicate miscalibration at long intervals. If the
hypothesis holds that the current futures price is the "best guess" of the futures price at
expiration, then non-stationarities in the futures price could manifest themselves as non-

calibrated estimates of the expiration date price distribution.

Figure 2 shows a sample of the other calibration functions. They may be interpreted
as follows. Since the PDF is given by the derivative of the CDF, the slope of the calibration
function indicates the reweighting of the implied distribution needed to recover a calibrated
distribution. A form of location bias is determined by examining the value of the calibration
function at K(.5). If K(.5) is greater (less) than .5, then the implied distribution is located
too far to the right (left). These various shapes are given as a "menu" against which to

compare the p and q values given in table 3 to ascertain the approximate shape of the
various calibration functions.

Although the lack of significance of the p-values for many of the intervals tested
reduces the strength of the findings, a general shape that may arise for the calibration
function indicates that the implied distribution is somewhat over dispersed and located to
the left of a calibrated one. This could arise for example, due to a general tendency for
futures prices to rise at expiration (for any number of reasons) coupled with less volatility
than presumed. :

To generate calibrated estimates, a calibration function may be used to transform
any particular F(Yr) into a reliable estimate. The problem then arises in determining the
appropriate calibration function. As implemented here, there does not seem to be enough
agreement among the fitted beta calibration functions to suggest a single best one to use.
Nor do we have a large enough sample to determine if the calibration function changes
systematically as the time period to expiration varies. All that may be hoped is that repeated
application of these techniques will confirm these preliminary results and shed further light

on the calibration of the estimates of future price distributions.

CONCLUDING COMMENTS:

The improved data and parameter estimation techniques of this study provide an
interesting backdrop for empirical study. Business risk management techniques rely on
accurate descriptions of uncertainty. This study demonstrates one such -technique for
describing an uncertain price distribution. The tests of calibration fail to reject the notion
that the method is well calibrated over intermediate time ranges in these two markets. The
usefulness in this context is therefore immediate and direct although specific implementations
will only slowly emerge as these techniques begin to replace the more familiar B-S
procedures.
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A direct application of these techniques would also be to generate a benchmark for
event studies. Simple Chow tests for the stability of the estimates would indicate whether the
markets actually underwent significant change at points specified as events. This appeal of
taking this approach is that instruments for variables affected by "significant events" are
summarized in a convenient and simple form -- the expected distribution of prices. Rather
than presume to know events, and impose a structure for testing, use of ex ante benchmarks
would conserve degrees of freedom and in some sense endogenize the switch points. Related
work by the authors indicates there are substantial structural shifts in these two markets and
care should therefore be used in describing the process generating the observed prices.

A possible extension of this research involves pricing and trading strategies. If low
cost estimates of future price distributions are available and reliable, they may be easily
incorporated in forecasted outcomes of various trading strategies. Or, if "better" descriptions
of future uncertainties are available, pricing models may be developed that accurately reflect
the inner workings of the particular market.

The literature is sparse in terms of ag-futures options studies. So too does it lack a
good set of guidelines on pricing via no-arbitrage restrictions. The recent appearance of
these topics as well as some relatively new and novel techniques will begin to fill a gap in
the existing literature. Along the same vein, suggestions for new technique applications to
existing problems is always a fruitful topic. The evolution of new thought and the
displacement of existing mindsets is a slow and uncertain process. Hopefully the empirics
herein will add fuel to the debate over the proper paths to pursue and highlight one
alternative means to recovering probability distributions.

The intent of this analysis is more modest though, than to propose a solution to the
range of the above problems. Instead, we simply document the features of these markets
and demonstrate a technique that is in principle more appropriate than many past ones. It
is thought that in the spirit of the Gastineau "modular adjustment" model, this technique
could spawn a set of investigations of the adjustments necessary to be used in a wide variety
of risk management situations.
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- Table 1.
Descriptive Statistics of Options Samples:
SOYBEANS

Total %

Contract | Days | Obs. | Difll | DifFO | Calls |
Jan-85 | 28 | 192 | 11.6 | 14.2 | 50.5 |
Mar-85 | 57 | 400 | 16.4 | 18.1 | 61.3 i
May-85 | 72 | 482 | 16.6 | 21.2 | 64.7 l
Jul-85 | 93 | 684 | 17.2 | 21.8 | 65.8 |
Aug-85 | 32 | 213 | 21.0 | 28.5 | 65.8 1
Sep-85 | 22 | 169 | 22.4 | 33.2 | 71.0 |
Nov-85 | 138 | 1310 | 16.9 | 18.2 | 63.3 |
Jan-86 | 58 | 432 | 16.1 | 21.8 | 58.3 |
Mar-86 | 79 | 619 | 14.8 | 19.3 | 64.8 |
May-86 | 86 | 569 | 18.8 | 24.5 | 65.9 |
Jul-86 | 120 | 870 | 18.8 | 25.3- | 71.3 l
Aug-86 | 11 | 157 | 23.9 | 35.1 | 70.7 |
Sep-86 | 20 | 184 | 23.8 | 39.5 | 66.1 |
Nov-86 | 74 | 1338 | 17.2 | 19.7 | 60.4 I
Jan-87 | 44 | 326 | 19.0 | 26.5 | 61.3 &
Mar-87 | 32 | 310 | 19.9 | 28.9 | 62.0 |
May-87 | 20 | 242 | 21.9 | 33.4 | 67.4 |
Jul-87 | 87 | 687 | 18.1 | 25.2 | 68.1 |
Aug-87 | 49 | 420 | 18.6 | 33.0 | 67.2 |
Sep-87 | 42 | 335 | 19.4 | 35.5 | 58.5 |
Nov-87 | 121 | 1365 | 14.1 | 13.7 | 64.0 l
Jan-88 | 81 | 653 | 14.2 | 20.5 | 64.0 |
Mar-88 | 106 | 953 | 14.5 | 16.8 | 67.2 |
May-88 | 92 | 787 | 15.2 | 17.3 | 62.9 |
Jul-88 | 128 | 1058 | 17.6 | 19.1 | 68.5 |
Aug-88 | 23 | 265 | 23.3 | 28.3 | 66.8 |
DayS....con- Total number of trade days for which option premia were

sufficient to recover parameters of implied distributions.
Total Obs...Total number of observations that remained in the contract
after the deletion/estimation criteria.

Difll....... Mean absolute difference in minutes of all strike prices
used from 11:00 a.m. :
DifFO....... Mean absolute difference in seconds between the option and

futures prices.
% Calls..... Percent of the sample represented by calls.
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Table 1. (Continued)

S&P 500

Total %
Contract | Days | Obs. | Difll | DiffF0 | Calls {
Mar-85 | 70 | 536 | 9.3 | 9.4 | 56.9 |
Jun-85 | 79 | 539 | 9.9 | 11.7 | 59.2 |
Dec-85 | 78 | 651 | 10.1 | 11.5 | 56.5 |
Mar-86 | 87 | 8% | 8.7 | 9.7 | 52.3 |
Jun-86 | 93 | 977 | 8.8 | 9.4 | 53.5 |
Sep-86 | 93 | 1034 | 8.9 | 9.9 | 51.5 |
Dec-86 | 94 | 1075 | 7.8 | 9.6 | 56.2 |
Mar-87 | 91 | 1176 | 8.2 | 8.4 | 48.2 |
Jun-87 | 88 | 1365 | 8.8 | 8.0 | 51.2 |
Sep-87 | 99 | 1352 | 9.2 | 9.0 | 50.4 |
Dec-87 | 77 | 1513 | 11.3 | 8.1 | 53.3 |
Mar-88 | 71 | 888 | 12.2 | 8.4 | 47.7 |
Jun-88 | 72 | 804 | 12.1 | 8.2 | 39.1
Days........ Total number of trade days for which option premia were

sufficient to recover parameters of implied distributions.
Total Obs...Total number of observations that remained in the contract
after the deletion/estimation criteria.

Difll....... Mean absolute difference in minutes of all strike prices
used from 11:00 a.m. ,

DifFO....... Mean absolute difference in seconds between the option and
futures prices.

% Calls..... Percent of the sample represented by calls.

"The Sep-85 contract data was unusable on the tape.
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Table 2.
Mean differences between the implied mean futures price and the daily
average futures price: (Average Price - Implied Mean)

Soybeans:  Method :
Contract Lognormal BR-12
Jan-85 | 0.16553 | 0.11962 |
Mar-85 I 0.07138 | 0.13666 |
May-85 } -0.06940 | -0.07597 \
Jul-85 | -0.30083 | -0.14493 |
Aug-85 1 -1.25887 | -0.73811
Sep-85 i 1.43952 | -5.03158 |
Nov-85 1 -0.69442 | -0.36421 |
Jan-86 I 0.02143 | -0.01777 I
Mar-86 | 0.35562 | 0.25085 l
May-86 t -0.07690 | 0.02720 |
Jul-86 | 0.22326 | -0.53157 |
Aug-86 l 6.79759 | 1.43855 |
Sep-86 | -1.12006 | 0.20227 l
Nov-86 | 6.11633 | 2.04194 |
Jan-87 1 -0.10032 | -0.07273 l
Mar-87 l -0.00735 | -2.58517 1
May-87 \ -0.02387 | -0.09380 l
Jul-87 | 1.16975 | 0.00814 I
Aug-87 | 2.83306 | 1.66205 |
Sep-87 I 0.09538 | -0.36359
Nov-87 | 0.33831 l 0.26755 |
Jan-88 | -0.06963 | -0.08886 |
Mar-88 { 0.54526 | 0.36211 [
May-88 l 0.52561 | 1.31769 |
Jul-88 | 2.08270 | 0.79288 l
Aug-88 i -0.91181 ! 0.08815 !
Summary:

Mean absolute

Difference: 1.05439 0.72399

Mean Difference: 0.69797 -0.05356
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Table 2. (Continued)

Mean differences between the implied mean futures price and the daily
average futures price: (Average Price - Implied Mean)

S&P 500: Method

Lognormal BR-12
Contract
Mar-85 | 0.02620 ] 0.02283 ]
Jun-85 | 0.02144 ] 0.03087 !
Dec-85 | -0.00545 | -0.02034 1
Mar-86 l 0.04073 | 0.00495
Jun-86 | 0.03168 | 0.07488 [
Sep-86 | 0.00032 [ -0.00572 |
Dec-86 i 0.01278 [ 0.06784 |
Mar-87 | 0.01146 ( 0.06847 l
-Jun-87 1 0.08278 | 0.04790 I
Sep-87 l 0.03311 l 0.00447 l
Dec-87 l 0.49501 } -0.42667 l
Mar-88 l 0.22052 | -0.01997 l
Jun-88 | 0.62538 | -0.55524 [
Summary:
Mean absolute
Difference: 0.12360 0.10385

Mean Difference: 0.12277 -0.05428
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Table 3.
Calibration Statistics:

- Lognormal S&P 500:
Parameters of Beta

Days to  Number of Calibration Function LR prob >
Maturity Observations p q Statistic LR

7 12 3.246 2.294 6.285 0.043
10 12 1.010 0.851 0.354 0.838
20 12 0.813 0.770 0.558 0.757
40 12 1.758 0.969 3.455 0.178
60 12 2.116 0.795 8.335 0.015
80 12 0.639 0.429 7.613 0.022

100 12 1.032 0.641 2.997 0.223
Burr-12 S&P 500 _

7 12 3.042 2.153 5.726 0.057
10 12 0.977 0.819 0.445 0.801
20 12 0.857 0.786 0.451 0.798
40 12 1.761 1.062 2.775 0.250
60 12 2.188 0.862 7.594 0.022
80 12 0.757 0.480 5.870 0.053

100 12 1.011 0.580 4.388 0.111
Lognormal Soybeans:

7 22 5.274 3.660 19.978 0.000
10 24 1.455 1.117 - 2.067 0.356
20 25 1.331 1.228 1.070 0.586
40 21 1.184 0.724 4.480 0.106
60 20 1.288 0.791 3.854 0.146
80 19 0.898 0.538 7.544 0.023

100 19 0.894 0.506 9.444 0.009
Burr-12 Soybeans:

7 22 4.678 2.901 17.713 0.000
10 24 1.428 1.091 1.982 0.371
20 25 1.359 1.261 1.234 0.540
40 21 1.410 0.930 2.975 0.226
60 21 1.463 1.031 2.410 0.300
80 19 1.259 0.845 2.438 0.295

100 19 1.442 0.895 3.451 0.178
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Figure 1.
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Figure 1. (cont'd)
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Figure 2.
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