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equivalent of a risky prospect to determine optimal marketing strategies for
wheat. However, Berg's work assumed that probability demsity functions for
prices in each decision period were known at the start of the storage season
Lambert and McCarl maximized expected utility within a discrete stochastic
programming framework to determine optimal marketing strategies for white
wheat. Comparisons between sequential and nonsequential formulations of the
model were made for various utility functions and income. Each accounted fg
the effect of risk aversion. Tronstad used stochastic dynamic programming tg
determine optimal wheat marketing decision rules involving cash and futures :
markets. His study incorporated many concerns facing farmers such as cash .
flow requirements, tax considerations, and government farm program proviSioné
However, Tronstad's study does not account for risk behavior, instead he q
assumes risk neutrality. In a similar study, Mjelde, Taylor, and Cramer
derived expected profit-maximizing decision rules for storing and marketing
wheat and corn by taking account of farm program provisions. Their study use
a price information vector within the model but made no explicit mention of i
-isk. Finally, a study by Yager, Greer, and Burt incorporated production and
future price expectations to derive cash market decision rules for cull beef
cows. This study used a joint probability distribution of price and weight
gain in determining marketing decisions within a stochastic dynamic program-
ming framework.

Model Specification

The grain marketing problem in this study can be described at any point
in time by two variables: the inventory level and current price. Inventory
in the next period will be determined with certainty by the current decisions.
Price in the next period is unknown and must be regarded as a random variable.
However, a conditional probability density function for next periods price is
formulated, based on the current price. To ascertain when and how much to
sell, the decision maker considers current values of both variables as well as
the conditional probability distribution for future values of price. This
procedure is repeated at specific intervals of time throughout the storage
season. In problems such as this, stochastic dynamic programming has proven
to be a computationally efficient method of finding the optimal solution.
However, to apply stochastic dynamic programming to a multi-period optimiza-
tion problem, it is essential to properly specify stages, state variables,
decision alternatives, and the relationship between states at different
stages.

Stages

The multi-period nature of the problem necessitates a division into time
intervals or stages. In this study decisions are made on a weekly basis
beginning September 1 and extending through March 31. September 1 was
selected as the initial stage since the majority of grain is harvested and
placed in storage by this date. A total of 31 stages are contained in the
model. When using the conventional backward recursion method of dynamic
programming, stage 31, the week of March 31, would be the first week consid-
ered and stage 1, the week of September 1, would be the last in the solution
sequence.
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State variables describe the decision environment at each stage of the

fdecision problem. In this study the state variables are inventory level and
| heat price. Within the model these variables are divided into discrete
| units. The assumption of a 1,000 acre farm with a 60 bushel per acre yield

esults in total production of 60,000 bushels of wheat to be marketed. An

additional assumption that total production is disposed of in 5,000 bushel
:inerements produces 13 possible inventory states which range from 0 to 12%.

Wheat price possibilities are approximated by assuming that only 102 values

. may be observed. These are the midpoints of 100 5-cent intervals between

L $1.50 per bushel and $6.50 per bushel, plus values of $1.475 per bushel and

| §6.525 per bushel. Probabilities are attached to these values by integrating
. appropriate normal densities over the relevant 5-cent ranges plus the two

| open-ended ranges for prices above $6.50 and below $§1.50. Therefore, a total
. of 1326 possible price/inventory states exist for each stage. Each of the

| 1326 states will have an optimal decision associated with it at each stage of
ﬁ the problem.

| Decision Alternatives

The decisions available at any given stage and state are, in part,

| dictated by prior decisions. Current decisions partly control the state of

| the process in the succeeding stage. The decisions in this study include only
E selling and holding of unhedged inventories. The selling decision can include
. any amount of the existing inventory, in discrete increments. Therefore, at

- each price/inventory state a decision is made regarding the disposal of the

inventory. For example, if the current price/inventory state is represented

; by $3.50 and 10 units, any one of 11 decisions may be made. Each involves

selling some or none of the 10 inventory units at $3.50 per bushel and storing
the remainder.

Cash flow and tax considerations influencing the timing of sales are not
included. The government loan program was excluded as a marketing alterna-
tive, as were futures markets. None of the harvest is committed to the
government loan program. The aforementioned attributes of the actual farmers
decision problem were not included in the formulation of this model so as to
maintain a computationally manageable model. This analysis may be expanded to
include these attributes at a later time.

Price Transition Probabilities
A one period autoregressive equation was estimated in order to forecast
the probability density functions for future prices. For week t the price

prediction equation can be written as:

(1) P, = a + bP,, + u, o [ DAL 7 98

2given the mechanics of the dynamic programming algorithm, the
solution actually provides optimal decision rules for marketing any
initial inventory up to 60,000 bushels, provided that sales are in 5,000
bushel increments.
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where t=1 corresponds to September 1. The disturbance term u, was assumed to-
be normally distributed with mean zero and variance ¢*. The price data used
to estimate this family of probability density functions were for number one
soft white wheat at the Portland terminal market. These prices were collected
on a weekly basis using the Wednesday reported price for the crop years
1974/75 through 1988/89.

The estimated price prediction equation for soft white wheat was:

(2) PW, = 0.05533 + 0.98625 PW,,
(2.255)  (156.42)

Standard error of regression = 0.08447, R* = 0.98182

where PW, is the weekly price of white wheat. The t-ratios appear in paren-
theses. A t-test of the price coefficient leads to the conclusion that it is
significantly less than one, -indicating a dynamically stable equation.. By
successive substitutions, this linear difference equation could be used to
predict a sequence of prices for all future times, given any initial price.
The sequence would monotonically approach an asymptotic value of $4.0238 per
bushel. Thus, higher prices are predicted each week when initial PW is below
$4.0238 and lower predictions follow when initial PW is above this value. The
price equation was kept simple in order to avoid the dynamic programming curse
of dimensionality; this ensures a computationally feasible model for a
personal computer.

Probability density functions are integrated as described above to
create a matrix of Markovian transition probabilities which give the probabil-
ity of being in price state j next week given price state i this week. The
calculation of these finite state transition probabilities is integrated into
the dynamic programming algorithm. This is done to facilitate possible use of
a price forecasting equation reflecting seasonality. In such a case, differ-
ent transition probability matrices would be computed for each week. To date,
our estimation efforts have uncovered no convincing evidence of a credible
seasonal pattern in price movements.

Utility Functional Form

In order to decide on the best action, the decision maker needs some way
of ordering his/her choices under conditions of uncertainty. Daniel Bernoulli
recognized that expected monetary payoffs do not always reveal the decision
makers preferences when evaluating risk choices; consequentially he formulated
the expected utility principle. The principle states that people assign a
value (expected utility), invariant with respect to a transformation of origin
and unit of scale, to each risky outcome and choose that risky prospect which
maximizes their expected utility. In this context a risky prospect has a
probability distribution of outcomes associated with it.

For this study all returns to the decision maker are in the form of
income earned through the sale of wheat. To determine the expected utility of
outcomes, the decision maker is actually evaluating the expected utility of
income streams. The decision maker's attitude toward risk is reflected in the
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;%f the utility function. A utility function used by Freund and several
in similar studies is the negative exponential:

(y) =1l-e"%, where y = income and a > 0.

1 r

function assumes a risk averse decision maker. The positive constant 'a

t’s absolute risk aversion coefficient. The larger ‘'a’ becomes, the
risk averse (conservative) the decision maker. By assuming income to be
11y distributed, it can be shown that the expected value of (3) is

ed by choosing 'y’ so that the expression in (4) is maximized.

L v E(y) - (a/D)0

Equation (4) is the objective function for the dynamic programming

The equation is specified recursively in solving a multi-period
m with the dynamic programming technique. Under the backward solution
d, only values associated with optimal solutions for the succeeding stage
@bnsidered while determining the current solution. This process, based on
Iman’'s Principle of Optimality, guarantees that the overall solution is
imal. Bellman's Principle states that for an optimal policy, whatever the
F:21 state and decision, all remaining decisions must constitute an optimal
y with respect to the state resulting from the initial decision. In this
[dy an optimal policy takes the form of a selling/holding decision rule
fined in terms of the price/inventory state for each stage.

B

Dynamic Programming Algorithm

. At every stage and for every state the dynamic programming algorithm
boses optimal decisions according to equation (5).

Max V(d'|S!,P}) = Max (CR'(d'|Sg,P) + rE[DR'(d'| Sy, P ]
d' d'
- kr?Var[DR'(d'|S,,P) 1)

his expression, V(dﬂs;,PD is expected income in stage t when inventory is

;fprice is P!, and when decision & (sell d units of inventory at price P))

‘taken. Thus, d' represents any feasible decision. CR'(‘) is current return
tage t. It reflects current sales revenue, shrinkage of inventory, and 1
's storage cost on retained inventory. From the perspective of stage t,

s non-stochastic. DR!(-) is the delayed return from later marketing of
retained inventory under d'. It is a random variable from the perspective
stage t. Its expected value, discounted to stage t, when added to CR'(‘),
fines expected income in stage t, discounted to stage t. Since only DR'(-)
andom, its variance is the variance of total income from the perspective

Bf stage t. This variance, multiplied by the risk aversion coefficient k
one-half the Pratt coefficient), and the square of the discount factor (r?),
S 'subtracted from expected income to arrive at a risk-adjusted expected

come associated with decision d'. A value of & that maximizes this expres-
on maximizes expected utility under a negative exponential utility function.

Recursion is introduced by defining E[DR'(:)] and Var[DR'(-)] in terms of
aracteristics of optimal solutions for states in stage t+l that are reached

a result of taking decision d', equationms (6), (7) and (8).
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- E[DR'(d‘|S.,P})] = -’,3 Prob (B;"'|B/) (CR*'(D*|S!-d*,P}")
+ E[DR*!/(D*!|S,-d*,P/") ])

(7)  var[DRY(d'[S!,B})] = E[DR'(d'|S,,B{)]* - (E[DR'(d'|S},B)])?

E[DR'(d'|S;,P)]* = ¥ Prob(B;"|P}) (E[DR*! (D" Se-d', B ]2
i
(8) + [CR"I(DMlS;-d",Pj‘”) ¥ E[DR:ol(DuIIS‘:_d;'P;H)]]3
- [E[DR*![s;-d',B*']]?)

The term D' represents the decision in stage t+l that is optimal for the
price/inventory state associated with the term in which it appears. Thus,
equation (6) defines expected delayed returns as a probability-weighted sum of
optimal expected total returns for states in stage t+l that are reached as a
result of taking decision d'. The probability weights relate to the probabil-
ities of price changes between the 2 stages. : =

Equation (7) defines the variance of delayed returns as the second
moment about zero for delayed returns, minus the square of the first moment.
The second moment, in turn, is defined in terms of the second moment of
optimal delayed returns for stage t+l states that are reached via d', adjusted
by 2 terms. These have the effect of allowing for the fact that though

CR“‘(D"’,S;—d',Pf') is non-random from the perspective of stage t+l, it is
random from the perspective of stage t. This is shown in equation (8).

Optimality is defined in terms of maximizing the expected utility of
income from these sequential decisions. In this context, both the expectation
and variance of uncertain incomes affect decision selection. Because of the
variance of delayed returns, it may be optimal to market portions of the
inventory at different times as a strategy for adapting to risk. The risk
aversion coefficients used in this study are those elicited from previous
studies of farms with comparable total net revenue. These risk values are
unique to each individual and they can vary with time,

The dynamic programming algorithm was coded in the programming language,
CAUSS. The central feature of GAUSS is that its basic data element is a
matrix rather than a scalar. An extensive array of operators with matrices as
their arguments is available, and they execute very efficiently. Solutions
were calculated on a 25 Mhz 386-based micro computer in about 3 minutes each.

Marketing Results Under Optimal Decisions

In addition to optimal decision rules, the algorithm provides directly 2
values that are of central interest: the expected income and variance of
income associated with optimal decisions for each initial price/inventory
state. Of course, their validity is conditional on the validity of the price
forecasting model and other input variables as is the case with any approach
of this kind. Beyond these, the set of optimal decisions and the price
transition probability matrices can be used to calculate the probability of
being in any state at any stage, expected cumulative sales through each week
of the storage season, and the average length of storage that results from
applying the optimal rules.

T -
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Suppose the decision maker has q units of initial storage. We seek
irst a set of matrices PS' such that the element in row i, column j is the
robability that storage will be in state i and price will be in state j at

he beginning of stage t. Let D' be a matrix having elements D, which are the
wpclmal selling decisions in stage t when price is in state j and storage is
in state s. Then for t=2, PS? will have columns which are unit vectors with

%he "one" for column j being in row q-D,. That is, every probability will be
.lther Zero or one.

L Let P' be a matrix whose i,j-th element is the probability that price is
n state j in stage t+l, given that price is in state i in stage 1. It is
culated as in equation (9);

where P, is a matrix of probabilities that price transits from state i to

te j between stages t and t+l. From this and matrix D', a set of lower-
angular gqxq matrices PQ" can be found. Each has (r,s) elements giving the
bability that storage will be in state s in stage t+l given that storage
in state r in stage t, and that price was in state i in stage 1. These
found as in equation (10);

LD

ere, ©_ is the set of j indices for which r-D,=S. This set indexes those
babilities associated with stage t prices such that when those prices occur
ether with storage in state r, the optimal decision will be to move to

rage state s in stage t+l.

For t>2, PS' may be determined recursively. Column i is computed in

rms of a particular matrix PQ* and column i of PS*!, equation (11).

) PSY' = (PQ")'PS} ,i=1,2,...,q

The set of PS' matrices provides a vehicle for computing expected
fimulative sales in each stage, given an initial price. Column i of PS' gives
ie probabilities of being in each storage state in stage t, given price in
te i at stage 1. Thus, expected cumulative sales through week t, given
”tial Price in state i, is calculated as in equation (12).

-,

1 .
fé) ECS, =} (q-r)PS;

=0

Finally, the fraction of sales in week t, given initial price in state i
e found as in equation (13).

£, ECS,/q; t=1
(ECS,-ECS ;) /q; t=2,3, ,n
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These fractions may be used to calculate the expected time that a unit of
inventory remains in storage before it is sold, given initial price in state
i. This is shown in equation (14).

(14) £ =3 fo(t-1)

t=]

Model Results

Prior to discussing the empirical results, an exposition of results in
the simple cases can be explored. If we consider the situation with a unity
discount factor, no storage costs, and risk neutrality, the price prediction
equation becomes the driving force of the solution. Under these circumstances
the model should indicate a delay in sales in the early stages when prices are
low since the price equation predicts higher values in the future. The
situation is reversed at higher price levels where the model predicts lower
values for the next period and thus necessitates a sell now decision. In both
instances the sell or hold decision is for the entire inventory level since
the variance associated with the decision is neglected.

Typical values for the risk aversion coefficient, storage costs, and
discount factor are used in the initial model formulation. It is instructive
to consider the effects of varying each parameter separately, while holding
the other two constant.

If storage costs are allowed to vary there should be an inverse rela-
tionship to the time of sale. If the Predicted increase in prices is suffi-
cient to cover storage costs a hold-for-later sale decision will be made.

When storage costs are equal to zero the gap between the predicted price
increase and storage costs is at its maximum and the decision to sell should
be delayed. However, if Storage costs exceed the predicted increase in prices
then a sell-now decision will follow. The decisions made at the upper price
levels will be unchanged by the value of storage costs. All inventory will be
sold immediately.

Similar effects should occur when a discount factor reflecting the time
value of money is varied. Because the weekly discount factor is small, its
influence on optimal decisions may be small. Nevertheless, its impact on the
hold versus sell decision should replicate the outcomes as described above.
As the interest rate is increased, the opportunity cost of holding into the
future increases necessitating an earlier sell decision. The holding period
on inventory will be extended when the interest rate is decreased.

Increasing the risk aversion coefficient, while holding other model
parameters constant, allows the variance of income to have a larger impact on
the optimal decision. Lower values, associated with decreasingly risk averse
decision makers, result in a decreasing portion of income variance for each
decision being subtracted from expected income. With all else equal, low risk
penalties will extend the holding period and raise expected income, and high
penalties will shorten inventory holding periods and lower expected income,
provided that not all inventory is sold immediately.
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When storage costs, discount factor, and risk coefficient are varied
multaneously, it becomes difficult to predict the total effect on the
timal solution. :

Before examining the initial model solution, hereafter referred to as
base model solution, three prices of interest will be defined. The
rginal hold-all price is defined as the highest initial price at which all
ventory is held for at least one week. Analogously, the marginal sell-all
jce is defined as the lowest initial price at which all inventory is sold in
he first stage. For all prices within these limits the model returns mixed
elling strategies for the first week. For comparisons between model formula-
ons a mid-price defined as the price midway between the marginal hold-all
nd sell-all prices has been calculated. The expected cumulative sales for
hese three price levels are graphed. In addition, results are presented for
e lowest and highest price levels that were considered.

The initial model solution is based on a risk aversion coefficient of
.0002, storage costs of $.022 per month, and an interest rate of 6 percent
_per year. The storage costs and interest rate are values presently charged
 for commercial storage and the current rate of return on a money market fund,
espectively. The risk aversion coefficient is within the range of Pratt risk
aversion coefficients commonly reported in other studies for farms having
similar total revenue.

Results for the base model solution are reported in Table 1 and the
corresponding graph appears in Figure 1. The wheat price range for which
mixed selling strategies occur is between $1.58 and $3.03 per bushel with a
mid-price of $2.33. The expected returns’ columns of Table 1 indicate the
amount anticipated by the producer on a total and per bushel basis. These
figures represent the expected returns from selling and holding throughout the
storage season, assuming that the same decision criterion is applied in each
week and that weekly price forecasts are made with the model discussed
earlier. Associated with expected returns are the standard deviations of
those returns. It becomes quite evident that at higher prices more inventory
will be sold earlier in the storage season. This can be seen by the decrease
in the mean length of storage at higher prices, thus reflecting a higher
probability of returns coming from early sell decisions. Therefore, the
standard deviation of returns decreases at higher prices.

Figure 1 depicts the expected cumulative sales, revealing that two-
thirds of the inventory is sold in the first 8 weeks for the marginal hold-all
price. The figure also illustrates ten units of inventory will be sold in the
first week of the storage season for the mid-price.

When the risk aversion coefficient used in the model was decreased, the
earlier hypothesized impact was realized. The marginal hold-all and sell-all
prices increased, necessitating an increase in the mid-price. The mean length
of storage given in Table 2 and the graph in Figure 2 indicate the grain was
held a longer time based on the probability of achieving a higher price in the
future. Not until the eleventh week was two-thirds of the inventory sold at
the marginal hold-all price. The expected returns generated from this
strategy were higher as were their corresponding standard deviations. In fact
the standard deviations were the second highest of all models examined. This
result was expected since holding for a longer period is associated with
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increased uncertainty, higher expected prices, and delayed returns. High
risk aversion coefficients had the opposite effect of decreasing mean sto
lengths and the expected returns from those decisions.

Sensitivity of the model with respect to storage costs is reflected
Figures 3 and 4 and their respective tables. Again the hypothesized rela
ship was observed. As storage costs were reduced to one half and zero of
original value specified in the base model, the mean length of storage
increased. The marginal prices all increased in value indicating a willip
ness to delay sale in anticipation of higher prices in the future. The ran
of prices in which mixed strategies occur also increased as storage costs y,
reduced. This was undoubtedly due to a widening gap between the predicted
increase in price and storage costs as storage costs were reduced. The L
results illustrated in Tables 3 and 4 indicate that expected returns and the.
standard deviations of returns increase with the decision to hold longer. T

uncertainty of higher prices in the future accounted for the increase in th
standard deviation of returns.

Varying the interest rate meant that the discount factor in the
model was altered. Two cases were investigated: a zero interest rate
indicating a unity discount factor and a higher interest rate of 9 percent.
The end result of these changes was consistent with economic theory. Increas
ing the interest rate increased the opportunity cost of holding grain for
extended periods. Table 6 and Figure 6 reveal that grain was held for a
shorter period of time and the expected returns from such a decision reflecte
the lower prices received with such a strategy. However, following a strateg
of selling earlier reduced the standard deviation of expected returns. The
opposite effect was achieved with no discounting (zero interest rate). In
this case the range of prices in which mixed strategies were obtained was
slightly larger than in the base solution. The mean length of storage
increased since the time value of money was assumed to be zero. The expected
returns increased since it was now worthwhile to wait for expected higher
prices. However, as in all delayed returns the standard deviation associated

with them increased, since higher prices were now used in the calculation of
expected returns.

The final two variations on the base model allowed two of the parameters
to vary simultaneously. Discounting and storage costs were eliminated from
the analysis; the results are reported in Table 7 and appear graphically in
Figure 7. This scenario produced the widest range of prices in which mixed
strategies occurred. It also produced the highest marginal sell-all price.
This was anticipated given that storage and discounting costs were eliminated.
Expected returns were the second highest of all the models examined and the
standard deviations of these returns were higher than most solutions. Again
this was due to relatively long mean storage lengths when compared to other
solutions and the uncertainty associated with higher expected prices.

The last scenario coupled low risk aversion with zero storage costs. An
examination of Table 8 reveals that the longest mean storage lengths were
achieved in this model. 1In fact, Figure 8 shows that this combination
produced the most even selling strategy throughout the storage season and thus
reinforces the results of Table 8. For most prices this model produced the
largest expected returns generated by all models. The large storage length
values were associated with large standard deviations of returns, reflecting
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n ‘1:  Expected Returns and Storage Length, Base Model Solution

i

Expected Returns

SRR

. Std. Dev, Mean Length
Price Level Price Value Total Per Bushel of Returns of Storage
() $) &) &) (Weeks)
/ Price 1.48 79,399 1.32 5,184 8.60
ginal Hold
Il Price 1.58 80,894 1.35 5,142 7.38
I-Price 2.33 113,731 1.90 2,038 1.72
arginal Sell
All Price 3.03 153,728 2.56 0 0
gh Price 6.53 362,678 6.04 0 0
(ABLE 2:  Expected Returns and Storage, Decreased Risk Aversion
Expected Returns
Std. Dev. Mean Length
Price Level Price Value Total Per Bushel of Returns of Storage
: ® ®) ®) ® (Weeks)
Low Price 1.48 86,376 1.4 8,634 13.46
3
‘Marginal Hold
- All Price 1.78 93,320 1.56 7,989 9.66
 Mid-Price 2.48 123,345 2.06 3,43 2.66
 Marginal Sell
~ All Price 3.18 162,683 2.71 0 0
_High Price 6.53 362,678 6.04 0 0

il
.
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Figure 3. Expected Cumulative Sales
Base Model Without Storage Costs

i Cumulative Sales
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Figure 4. Expected Cumulative Sales
Storage Costs Halved
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TABLE 3:  Expected Returns and Storage Length, Base Model Without Storage Costs
Expected Returns
Std. Dev. Mean Length
Price Level Price Value Total Per Bushel of Returns of Storage
%) $) ($) %) (Weeks)

Low Price 1.48 87,144 1.45 6,189 11.19
Marginal Hold

All Price 1.68 90,446 1.51 6,009 8.84
Mid-Price 2.53 126,682 2.11 2,556 2.53
Marginal Sell

All Price 3.38 174,623 291 0 0
High Price 6.53 362,678 6.04 0 0
TABLE 4:  Expected Returns and Storage Length, Storage Costs Halved

Returns
Std. Dev. Mean Length
Price Level Price Value Total Per Bushel of Returns of Storage
3 () ($) 3 (Weeks)

Low Price 1.48 83,028 1.38 5,674 9.87
Marginal Hold

All Price 1.63 85,435 1.42 5,591 8.09
Mid-Price 243 120,085 2.00 2,213 2.06
Marginal Sell

All Price 3 165,668 2.76 0 0
High Price 6.53 362,678 6.04 0 0
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TABLE 5: Expected Retur2 .~

Expected Returns

Std. Dev. Mean Length
. . Value Total Per Bushel of Returns of Storage
Price Level L' ®) ®) ®) (Weeks)
_— 1.48 81,505 1.36 5,536 9.35
Low Price
Marginal Hold 1.58 82,989 1.38 5,525 8.21
AL 240 120,039 2.00 2,237 2.05
Mid-Price
Marginal Sell 323 165,668 2.76 0 0
s 6.53 362,678 6.04 0 0
High Price _/
— and Storage Length, Interest Increased to 9 Percent
TABLE 6: Expected R _——
= = Expected Returns
Std. Dev. Mean Length
. . Value Total Per Bushel of Returns of Storage
Price Level P"“(,, ) ® ® (Weeks)
—— 1.48 78,259 1.30 4,984 8.16
Low Price ’
Marginal Hold 1.58 79,866 133 5,003 6.98
o 228 110,629 1.84 1,975 1.62
Mid-Price ’
Marginal Sell 2.93 147,758 2.46 0 0
All Pri ;
= 53 362,678 6.04 0 0
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Figure 7. Expected Cumulative Sales
No Discounting nor Storage Costs
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TABLE 7:  Expected Returns and Storage Length, No Discounting nor Storage Costs

Expected Returns

Std. Dev.
Price Level Price Value Total Per Bushel of Returns
($) (5) (3) (3)

Low Price 1.48 89,785 150 6,570
Marginal Hold

All Price 1.73 94,138 157 6,298
Mid-Price 2.68 135,881 2.26 2,703
Marginal Sell

All Price 3.63 189,548 3.16 0
High Price 653 362,678 6.04 0
TABLE 8:  Expected Returns and Storage Length, Low Risk Aversion & No Storage Costs

Expected Returns
Std. Dev. Mean Length
Price Level Price Value Total Per Bushel of Returns of Storage
($) (%) %) %) (Weeks)

Low Price 148 95,447 159 10,099 16.74
Marginal Hold

All Price 1.98 107,985 1.80 8,815 11.15
Mid-Price 2.78 141,858 236 3,784 3.24
Marginal Sell

All Price 353 183,578 3.06 0 0

High Price 653 362,678 6.04 0 0
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their accompanying high degrees of price uncertainty. This model also had the
;1ghest marginal hold-all price, indicating the propensity to accept the risks
;f achieving a higher price in a future perlod

Conclusion

A model for marketing soft white wheat during the storage season, while
—klng account of future price uncertainty, was developed in this study
farketing strategies which maximize the expected utility of income generated
‘hroughout the storage season were obtained. The impact on the optimal
marketing strategies of varying the level of three primary parameters was
vestigated; the parameters were the risk aversion coefficient, storage
eosts, and a discount factor.

_ General results indicate that specific directional changes in one
barameter or two parameters in combination will impact expected returns and

an length of storage. Reductions in the risk aversion coefficient, storage
sts, and discount factor, whether separately or in combination, will

crease expected returns and the length of storage. Increases in these
rameters likewise have the opposite effect. Storage costs and risk aversion
efficients tended to have the greatest impact on the optimal marketing

B The potential usefulness of directly solving sequential decision
problems under the premise of expected utility maximization should not be
inderestimated. Many rules of thumb and postulates exist about how and when
roducers should sell their grain. These rules are many times a seat of the
ints recommendation based on tradition, time of year, perceived price trends,
tc. The sell versus hold decision depends on many factors such as the

ision makers attitude toward risk, potential storage costs, discounting of
eturns, and the beliefs of what will happen to prices in the future. The
ipproach used here demonstrates how several of these factors can be taken into
ount within a formal optimizing framework. The optimal decision rules

ived from the model often include selling portions of the inventory at
#ifferent times during the storage season as a risk management strategy. This
orresponds to the actual behavior of many producers. Clearly, there are
dther grain marketing options that have not been considered here, and oths=-
tors that drive farmers' marketing decisions. However, improved precision
d consistency in accounting for the influence of the many factors that
ermine optimal selling decisions can only improve the business performance
grain farmers and the welfare of farm operators. Given recent changes in
ernment farm programs which place more of the burden of obtaining a favor-
€ price on the wheat producer, any possible increase in returns, commensu-
€ with the attendant risk, is of interest to the producer.
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