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ALTERNATIVE MEASURES OF RISK:
AN ANALYSIS OF SOW FARROWINGS IN THE UNITED STATES

Matt Holt and Giancarlo Moschinil

Introduction

Since Baron (1970) and Sandmo (1971), the analysis of Price risk effects
on producer behavior has continued to be an important area of research. The
potential role of risk is especially relevant to agricultural production, where
Prices are typically more wvolatile than in other sectors, and where the
competitive structure ensures that Producers take as exogenous the equilibrium
Price distribution. If producers are risk averse, their behavior may be
significantly affected by this price variability. Consequently, a considerable

and Holt, 1990).

Whether it is viable to introduce risk terms in econometric supply models,
however, is not a settled issue. The crucial point is that to identify risk
response within a commodity model, it is not sufficient that producers simply be
risk averse, but rather it is also necessary that the risk variable to which they
respond be time varying. Hence, an important issue in estimating risk response
in commodity models concerns the explicit modeling of the time-pattern of
(conditional) price variance. The estimation Problem posed here is similar to
that of financial économetric models with risk premia (French, Schwert, and
Stambaugh, 1987; Bollerslev, Engle, and Wooldridge, 1988; Pagan and Ullah, 1988;
Pagan and Schwert, 1990), and the possible solutions are similar. In particular,
leading parametric specifications of conditional variance dynamics include

Bollerslev (1986) Generalized ARCH (or GARCH) model. The latter has recently been
employed by Aradhyula and Holt (1989) in the context of a commodity model.
The purpose of this Paper is to investigate alternative methods for

on aggregate U.S. sow farrowing decisions, a setting where previous research
(e.g., Hurt and Garcia, 1982; Tronstad and McNeill, 1989) has found output price
risk to be important. The models of conditional variance considered here
represent recent developments in the eéconometrics literature for modeling risk
response. Specifically, we model conditional price variance in a multivariate
ARCH-M and GARCH-M framework using Bollerslev's (1990) estimation approach.
Additionally, we employ a nonparametirc model of conditional variance recently
suggested by Pagan and Schwert (1990).

The paper is organized as follows. First, an overview of the model is
Presented, followed by a discussion of alternative conditional variance
estimators. Empirical results, using U.S, aggregate quarterly data for the period
1958-1990, are then Presented. The paper concludes with a summary of results and
implications.
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The Model

The empirical model estimated, by necessity, is an approximation to the
true model. Consequently, little generality is lost by assuming a specific case
of risk averse behavior, Furthermore, useful insights may be gained for the
evaluation of empirical results. Specifically, assume Producers have a constant
absolute risk aversion (CARA) utility function,r and that price risk is
(conditionally) normal. It is well known that in this case utility maximization

is equivalent to maximizing a (linear) mean-variance criterion. The producers
problem can then be represented as:

(1) Max, [py - C(y,w) - % Ay%?]

where y is output, (p,v?) are mean and variance of the price distribution, Cly,w)
is the (indirect) cost function with ¥ representing input Prices, and A is the

constant coefficient of absolute risk aversion. The first order condition for
this problem is:

@R gw A i - )

Hence, production occurs at point where marginal cost Cy is lower than expected
price, the difference being the marginal risk Premium Ayv2. The solution to (2)
gives the optimal supply response y* = y(p,w,v?).

One interesting implication of the above model is that bounds can be placed
on producer response to Price risk as represented by the variance of price, v2,
Define the (mean) price supply elasticity as n, = (8y/3p)(p/y), and the supply

elasticity with respect to Price variance as n, = (8y/8v?) /(v?/y). Then, implicit
differentiation of the first order condition (2) yields:

P
(3) p =
¥Cyy + Ayv?
Ayv?
(4) Ty = -
¥Cyy + Ayv?

where Cyy denotes the slope of marginal costs. If marginal costs are

nondecreasing in output,? then -1 < v = 0 under risk aversion, More
importantly, one gets:

ne  Ayv?

() c—-

&Xpected output Price, price variance,

% This is not required under risk aversion because the second order
condition of problem (1) only requires Coy + Ao > 0,
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modeling sow farrowings, assume y" represents the desired level of production,
and that actual production can differ from the desired level in the short-rup
because of adjustment costs [Nerlove (1958) stock adjustment model]. Letting ¢t
index time periods, then actual supply y, is related to desired supply y: by:

(6) Yo = Ye-1 + 8 (¥} - ypoy)

where § is the coefficient of adjustment satisfying 0 < 4 < 1. Hence, the supply
equation is dynamic, and can be written as Yo = (1-6) yeuy + 8 y(py,v2,4,). To
apply this framework we need to specify how expectations of the moments p, and
v are formed.

Expectations that drive supply decisions are conditional on information
available when supply decisions are made. To specify the information set
properly, it is important to understand the technological lags governing
Production. Because the application that follows uses quarterly data, we take
period as meaning a quarter. Given the required gestation period, and allowing
for some time to implement production decisions, the number of sows farrowing at
time t, say Sy, is the result of decisions made in period (t-2). Moreover, sow
farrowings are of interest because they are an indicator of future hog supplies

To simplify notation, define y, = S¢-2, i.e. (planned) output for time t
equals the number of sow farrowings at (t-2), and this output was planned at (t-
4). For the purpose of specifying the supply equation, we have:

(7) Pe = E[pe|I,.] and v} = E[(p, - Py)?|I,.,]

Price equation can be represented by an autoregressive process of order q:

where e,|I,., ~ N(0, ¢%). That is, we explicitly assume the innovation in (8) is
conditionally heteroskedastic. Given this price equation, the relevant
conditional price éxpectation is expressed in terms of the following equations:
(9.1) E[pe|Te-s] = by + by E[Pe-1|I-y] + b, E[pe-2|Iy-4] + by E[pe-3]|Iy-4)

* By Pe-s + bs pyos + by pyog
(9.2) E[Pe-1[Te-s] = by + b, E[pe-2|Ie-s] + b, E[pe-3|Te-s] + by py.y

+ by Pys + bs pyg + bg Pt-7
(9.3) E[Pe-2|Tt-i] = by + b, E[Pe-3[Te-4] + by pyy + b3 pi-s

* by Peg + bs ppoy + by Pt-g

(9.4) E[pe-3|I;-4]

by + by py., + bz Pt-s + b, Pt-s + by pg-y + by Pt-g + bg p-g




E((p, - St,)leb-él = E[E€|It-;,] +b% E[e%-llIt—ﬁ;’ + (b% + by)? E{e%-zllt-a]

+ (b3 + 2bib, + by)2 Ele?;|1,.,]

Finally, for the Purpose of estimation the Supply equation is specified in
linear form:

Ye = ag + a; Dys + 4, Q; + a; Q; + a8, Q + a5 Q,D;s + 25 Q3D;5 + a; Q,D,;
+ a3 py + ay vi + 811 Ye-1 + u

(i=2,3,4) denote seasonal dummy variables, D;s is a dummy variable
ue 0 up to the last quarter of 1974 and value 1 thereafter, a,
( --»11) are parameters to be estimated, and U is the error term. The
seasonal dummies are warranted by the use of quarterly data, and the use of the
D;s is Suggested by the apparent change in the Structure of Seasonality
sample period. Moreover, if Producers use (8) when determining
onditional price and variance €Xpectations, then the Parameters in the AR(q)
model, along with those associated with the Process generating the conditional
fariance of €t, will be shared by the supply equation (6). The implication is
that there may be gains in estimation efficiency associated with modeling the
Bupply equations and the price equation simultaneously. In the next section we
View alternative methods for modeling conditional variances.

ditional Variance Models

To implement the supply model with conditional eéxpectations of the first
Second moments of Price, it is necessary to specify the process generating
time-varying conditional variances, o2, Previous research into the effects
'L risk on commodity supply response has largely used ad hoc procedures to
easure conditional variances. Specifically, time-varying conditional variance
rms typically constructed as a weighted moving average of squared

between Past expected and realized prices. That is, P and o? are
Benerated according to:

2 m = 2 — m .
gt -1§1ai (Pg-y - Pt-i) and p, ‘_El By Pi-i

a0d where the weights a; and 8, sum to one.?

o As Pagan and Ullah (1988) indicate, the specification in (12) may give
fﬁleading results. Also, by definition the unconditional variance of Pt implied
' (12) is not defined, a condition which is at best an empirical Proposition.
Estly, Specification of the weights a;, and By is often entirely arbitrary, with
! cally estimate and/or test them for statistical significance.

i For examples of applications of the moving average approach to commodity
Ode] s See, among others, Behrman (1968), Anderson and Garcia (1989), Tronstad
(1989), and Chavas and Holt (1990) .
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facilitate the économetric investigation of risk. Engle (1982) and Bbllerslev
(1986) proposed a new class of time-series models referred to, respectively ..
ARCH and GARCH processes. As with the weighted moving average model (12), the
ARCH model specifies that the conditional variance today, o, is a functiop of
past squared innovations of Pt- That is,

2
(13) U‘E = Wy + Ql e%-l + ... + Q'p et‘.'p

wg >0, ay, R

is an ARCH(p) model where e, , are the innovations of the equation of motion of
Prices [in our case, the AR(q) model in (8)]. The important difference between
(13) and (12) is that the "weights" associated with (13) are not arbitrarily
imposed and that, under suitable conditions, the unconditional variance, o2, g
well defined.*

The GARCH model Proposed by Bollerslev generalizes the ARCH model in €13}
by allowing past values 'f the conditional variance to affect the current leve]
of the conditional vari.ace, Specifically, the GARCH(q,p) model is given by:

2
(14) 0% = wp + a e, + ... top et + B 02 + . + Bq 0%y
W0>0, a,, ...,apzo, and ﬂl' ...,ﬂqzo

Of interest in the Present case is the GARCH(1,1) model where P=q=1. For gq=0,
the specification in (14) reduces to the ARCH(p) model in (I3). In addition, if
@ * ..o ta+ B+ L., o+ By < 1, then the unconditional variance of Py is
defined and is given by w,/(1 - @ - e cay - By - L, - By) . In either the
ARCH or GARCH specifications, if e ~ N(O, o) then the parameters of the
conditional variance model can be estimated using maximum likelihood.

B Numerous extensions to the basic ARCH and GARCH models have been
it considered. Of interest here is the ARCH-M (ARCH-in-mean) model, proposed
originally by Engle, Lilien and Robins (1987) (ELR). The ARCH-M (GARCH-M) model
i allows the conditional variance to affect the level of the conditional mean, P:.,
f or, alternatively, the realization of Pt. Specifically, in the context of the
i AR(q) model in (8), we would have:

il (15) Pt = by +1§1b1 Pe-y + 60 + ey

i where o is specified using either (13) or (14). Here § measures the response
- of p, to risk, i.e., the risk premium, However, this is not the motive of
interest here. What we wish to measure is the effect of Price risk on supply
decisions, and this calls for a multivariate approach.
CH-M) model has been extended to a multivariate
ARCH-M (GARCH-M) setup by Bollerslev, Engle, and Wooldridge (1988); Engle, Ng,
and Rothschild (1990); Bollerslev (1990); and others. In this context, we can
think of generalizing the univariate process in (15) to a vector-valued process
with conditional variance-covariance matrix Hy, and where the conditional means
could, in Principle, be a function of all conditional variance and covariance
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E terms. Letting Y, be an N-dimensional vector and H, a positive definite
ﬁ conditional covariance matrix, the multivariate GARCH-M model is

fi

f ‘ Specifically, o2 - wo/(l = a; = ... = %) 1is the unconditional variance
i) implied by the ARCH(p) model if @+ ... +a, <1, If the restriction o, + ..

{ *+ o, <1 is violated, then the unconditional variance of p. is not defined (as
| in the weighted moving average model).




Y. = F(X,) + $H, + g,
is

e vech(H,) = Wy + 'El a;vech(g,.;e}.;) + 1531 ineCh(Ht-i) )
i= -

>f
&y ~ N(gs Ht,):
where F(X,) is a vector-valued function (typically a linear function) which
models the mean response as a function of a set of variables Xy, including lagged
alues of Yy, vech(.) denotes the column stacking operator of the lower portion
a symmetric matrix, e, is an Nxl1 innovation vector, w; is a 0.5N(N+l)
:: rameter matrix, and g, i-1,...,q, and g, i=1,...,p, are 0.5N(N+1)x0.SN(NiL)
ly parameter matrices,
ie B In the context of the sow farrowings model, vector Y, represents
ealizations of hog price and supply (sow farrowings in t-2). Both conditional
3) ice expectations and conditional price risk could then be specified to
sl condition current sow_farrqwings, and the vector § would reduce to a scalar. As
. Engle and Bollerslev (1986) note the setup in (16), in the context of a commodity
:?upply model, is similar to the structural rational expectations models
considered by Wallis (1980), except that rational expectations are now taken with
espect to the first two conditional moments of price.
Several approaches have been advanced for estimating the parameters of a
ultivariate GARCH-M (ARCH-M) model. A computationally convenient method was
0 resented recently by Bollerslev (1990). The parameterization considered by
i% ollerslev (1990) allows for time-varying conditional variances and covariances,
fa ut assumes constant conditional correlations. Let Oi4¢ denote the ij*® element
e f H.. Then the conditional correlation, evaluated at time t-1, between the ith

d j*" element of Y, is defined in the usual way by py;. = 0y5,/(0202)1/2 where -1
Pise S 1 for all ¢t. Although p,;;, can in general be time-varying, it may be
eful to assume Pije = pyy for all t, i.e., the conditional correlations are

en
o nstant. It follows then that Oy5¢ = pu(afuaiﬁ)L”, J=1,...,N; i=j+1,...,N.
lel As Bollerslev (1990) indicates, an appealing feature of the multivariate

CH (GARCH) model with constant conditional correlations is the simplifications

;:é troduced into the estimation. Specifically, the conditional correlation matrix
n be partitioned as Hy = D ¥D, where D, denotes a NxN stochastic diagonal matrix
/ith elements P1ts--+,05 and ¥ is an NxN time-invariant positive definite matrix

ith typical element Pij-

The above assumptions greatly reduce the computational complexities
1se jAssociated with obtaining maximum likelihood estimates of the model. By direct
aE Substitution, the likelihood function, apart form a constant term, is:
sly T ) s

7 H® = -(1/2)logl¥| - 2 log|D,| - 0.5 2 5} v g,
ite -
ig, ere g, = (D;! €ey) is a Nx1 vector of standardized residuals and © is a parameter
-an éctor. Although the likelihood function in (17) is still highly nonlinear in
288 ithe parameters note that only one NxN matrix inversion is called for during each
ans = maximization process. Moreover, note that log|D,| = = log Oi¢.
A elow we use the Broyden’s algorithm along with numerical first derivatives in
ite € maximization of (17) when estimating bivariate ARCH-M and GARCH-M models of
110g price and sow farrowings.
b An alternative approach to modeling conditional variance, based on
onparametric methods, was suggested by Pagan and Ullah (1988). Several
floNparametric specifications are possible (Pagan and Schwert, 1990). Here we
Consider the nonparametric kernel method, which offers an appealing density
nch ction estimation procedure that can be applied to the estimation of
(;5 ; £onditional moments (Ullah, 1988). 1In particular, given as sample of T

alizations (e?,z,), where the conditioning variable(s) z may be lagged value(s)
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of 32'5, the conditional expectation E[e?|z,] can be estimated by:

A T A
(18) Eletlze) = 2 ef ri(z)

Thus, the estimator E(e?|z,) is a weighted average of the sample’s e's, where
the weights r;(z,)'s depend on the evaluation point z, via a "kernel®" function
and assign the heaviest weight to the observations closest to the evaluation
point. To implement this nonparametric estimator, one must choose a kerne]
function and the window width. The latter is the most important choice because
the window width controls the amount of smoothing imposed on the data. Here we
follow a common practice and use the normal density for the kernel function, ang
use the window width specification adopted, among others, by Pagan and Schwert,
1990; Pagan and Hong, 1988; and Moschini, 1990,

When the data is sparse and the sample is small, the local averaging of the
kernel estimator may give undue weight to the observation being predicted,
thereby overstating the (within sample) predictability of the model. A pPossible
way out is to use the leave-one-out estimator, defined as:

Ele2 5 a2

with the weights r,’s also properly adjusted by leaving out the tth observation,

Estimation Results

The above methods are used to estimate risk-responsive aggregate models of
sow farrowing decisions in the U.S. Quarterly time-series data for the period
1958-90 are used. Specifically, sow farrowings, y_, denotes the total number of
sows that have farrowed (in one hundred thousandé3 in the U.S. within a given
quarter. The hog price variable, Pt (in dollars per cwt.) is taken to be the
seven-market price of barrows and gilts, and the corn price variable is the
average price paid (in dollars Per bu.) by farmers for no. 2 corn. The sow
farrowings data were obtained from various issues of Hogs and Pigs; slaughter
prices for barrows and gilts were obtained from various issues of Livestock and
Meat Statistics; and corn Prices were collected from various issues of
Agricultural Prices. Additionally, all prices were deflated by the wholesale
Price index.

The estimation results are presented in Tables 1 and 2. Table 1 contains
estimation results for the autoregressive models of slaughter price for barrows
and gilts. Table 2 contains parameter estimates for the risk-responsive sow
farrowings equations for alternative specifications of the conditional variance
process. Preliminary estimates revealed that an AR(6) specification of the price

A different Picture arises, however, when we consider the McLeod and Li Q
test using the squared innovations from the estimated OLS pPrice equation. The
resulting Q? test statistic at ten degrees of freedom is 37.36, a value which is
well above the critical value of 18.31 from the asymptotic x* distribution at the
5 percent level with 10 degrees of freedom. As Bollerslev (1986) suggests, the
absence of serial correlation in the conditional first moment of hog prices
coupled with the presence of serial correlation in the squared residuals is one
of the implications of conditional autoregressive heteroskedasticity,
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In what follows, we use the fitted values and the residuals from the OLS
mates of the AR(6) price model in Table 1 to generate several measures of
pected price and. price risk for inclusion in the sow farrowings supply model.
pecifically, we follow Pagan and Schwert (1990) in using the squared residuals
fom the OLS AR(6) equation to estimate a conditional variance equation of the

]
el = wy + o, W, with W, -Elwi ot

ere the parameters w; and a; are estimated using OLS with the weights w; set
ual to (10/26, 6/26, 4/26, 3/26, 2/26, 1/26). Using the predictions generated
irom equation (20), along with the predictions of the conditional mean from the
R(6) model, we estimate the parameters of the sow farrowings equation. We refer
y this approach as the two-step method, and the associated parameter estimates
e reported in Table 2 under the column headed Single Equation ARCH. Another
two-step approach that we consider utilizes the kernel estimator of the
Sonditional variance. The results reported in Table 2 utilize the leave-one-out
timator given in (19), with z, = W,_,.
Overall, the 2-step models fit the data well as indicated by the reasonable
Moreover, the signs of the estimated coefficients agree with a priori
expectations in that sow farrowings show a positive response to expected price
ind a negative response to the conditional price variance and the lagged price
s corn. All coefficients associated with economic variables are also
tatistically significant at conventional levels for the ARCH model, but the risk
rm is not significant in the kernel model.
: Table 2 also reports the results of the price and supply equations
stimated as a system of (restricted) multivariate ARCH-M and GARCH-M models. The
ults of these two models are strikingly similar to those of the two-step ARCH
odel reported in the first column of Table 2.

Because the supply equation estimates producers’ response to the expected
rice and the conditional variance, it is worth asking how well these predictions
erform. Table 3 reports the predictive power of the estimated expected price and
onditional variance. The results in Table 3 pertain to linear regressions of
served prices on estimated expected prices, and of observed squared deviations
Irom (estimated) expected prices on estimated conditional variance. Because of
'the nature of the information set discussed earlier, we are interest in the
edictive power for & periods ahead. However, for comparison, we report also the

= e e

W

e

@ M 5 @ @ D MM

lling from about 0.8 to about 0.3, although the estimator remains unbiased.
Not surprisingly, predicting the conditional variance is much more
fficult. For ARCH and GARCH models, the l-period ahead prediction have an R?
about 0.10. The kernel method does better, but when the (more reliable) leave-
€-out method is used the kernel method does considerably worse than the ARCH
d GARCH models. At 4 periods ahead, the predictive power of estimated
conditional variances essentially vanishes, especially for the two-step approach.
ence, as we move the relevant Planning horizon further into the future, it is
€ar that the estimated conditional variance quickly approaches the
conditional variance estimate.

While the finding that Predicting conditional variances is difficult in the
Present context is not a surprising one, we are left with the apparent puzzle of
significant risk response to risk terms that appear substantially useless in
Predicting price volatility. The resolution of this question probably lies in the
act that our simplified supply equation is misspecified, as indicated by the
Tesence of autocorrelated errors suggested by the Breusch-Godfrey statistic.
ving this specification problem may involve a more accurate representation
Upply decisions. Alternatively, one may simply correct for autocorrelation. When

® ® - g9 ® ® € v ®w

o

® o o® nu o
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this is done by modeling autocorrelation as an autoregressive process of order
4, unreported results suggest that the statistical significance of the risk,
coefficients disappears. ' i

Finally, Table 4 reports some elasticities of sow farrowings. all evaluateq
at the sample means. The estimated elasticitity with respect to expected Price

variance allow the calculation of the ratio reported in equation (5), which is
found to take values of about 0.25. This would suggest a rather large departyre
from marginal cost Pricing due to risk aversion, However, in view of the
i discussion above, the elasticities with respect to conditional variance are
4‘ probably not very reliable, and any conclusion concerning the extent of risk
4' effects does not appear warranted.

i Conclusion

decisions, Predicting conditional variances is difficult, Hence, it could be
argued that the risk to which producers probably respond is best represented by
the unconditional variance of prices. While this leaves open the possibility of
risk being important in determining Production decisions, it makes the
econometric estimation of risk response virtually impossible in the framework of
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Parameter Estimates for the AR(6), AR(6)-ARCH(6), and AR(6)-
GARCH(1,1) Models. .

Two-Equation Svystem

AR(6) AR(6)-ARCH(6) AR(6)-GARCH(1,1)
ock
1.874 1.167 1.166
s. (0.962) (0.806) (0.803)
: . 1.049 1.001 1.004
y." 7 (0.080) (0.079) (0.076)
: 5 -0.161 -0.104 -0.109
ell E (0.105) (0.095) (0.094)
-0.058 -0.064 -0.065
(0.103) (0.091) (0.090)
) 0.294 0.257 0.261
rsis 78 4 (0.103) (0.095) (0.093)
iral 2 ;
-0.718 -0.627 -0.629
(0.108) (0.090) (0.086)
I
0.493 0.468 0.468
(0.078) (0.065) (0.061)
‘.S," :
*Conditional
‘Wariance:
- 1.912 0.720
(0.509) (0.320)
- 0.499 0.196
(0.167) (0.083)
- - 0.616
(0.120)
0.806 0.803 0.803
BG(4) 3.776
Q(10) 15.293
2
Q" (10) 37.358

—

Note: Standard errors appear in parentheses. BG(4) is the Breusch-Godfrey test
statistic; Q(10) is the Ljung-Box portmanteau Q-statistic; and Q%(10) is
the McLeod and Li portmanteau Q*-statistic.
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Table 2. Estimates of Sow Farrowing Supply Models under Alternative Risk i
Specifications, 1958-90.

Single Equation Two-Equation System
Kernel
Parameter ARCH leave-one-out ARCH GARCH
constant -1.902 -0.318 0.138 0.132
(3.177) (3.285) (3.040) (3.084)
Q2 6.700 6.667 6.523 6.476
(0.976) (0.997) (0.907) (0.907)
Q3 5.241 5.018 . 5.368 5.319
(1.056) (1.086) (0.985) (0.988)
Q4 23.565 23.264 22.888 22.851
(1.215) (1.237) (1.155) (1.167)
Q2-D75 -5.603 -5.593 -5.232 -5.192
(1.081) (1.101) (1.002) (0.966)
Q3-D75 -6.459 -6.094 -6.238 -6.204
(1.116) (1.149) (1.028) (0.994)
Q4-D75 -16.800 -16.620 -16.305 -16.266
(1.127) (1.145) (1.053) (1.028)
D75 6.680 6.348 6.162 6.156
(0.878) (0.890) (0.852) (0.837)
ﬁt 0.300 0.247 0.255 0.263
(0.088) (0.087) (0.090) (0.084)
vi -0.098 -0.042 -0.096 -0.102
(0.040) (0.033) (0.058) (0.063)
Pe_ -0.197 -0.282 -0.200 -0.195
(0.091) (0.083) (0.090) (0.098)
, . 0.706 0.700 0.680 0.677
(0.061) (0.062) (0.058) (0.059)
2 0.892 0.889 0.893 0.893
BG(4) 36.3 43.3

Note: Standard errors are in parentheses.
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