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APPLICATION OF NEURAL NETWORKS: PREDICTING CORN YIELDS

.J'. william Uhrig, Bernard A. Engel and W. Lance Baker!

n nsist of highly parallel, interconnected, simple
Scessing units. These systems differ radically from conventional
puting systems; no programming 1s required, and knowledge is
red in the topology of the net and in the connection matrix,
her than explicitly coded 1n defined data structures. They offer
alternative to rule-based expert systems for developing
elligent applications. Computer _algorithms allow these systems
learn from examples and genera}llze this learned knowledge for
unigue situation. They provide an extremely powerful method
r storing and recovering relational information in symbolic and
eric domains. Neural network software was used on weather data,
1 moisture data and a trend yield variable to predict corn
elds. Modeling corn yields allows an alternative to yield
'j'eptions made 'by other methods, and can provide an early
cast of corn yields.

‘.1 networks coO

INTRODUCTION

n ranks second in terms of overall production of the world's
In 1990 the United States produced approximately 43
rcent of +the world's total, with about 9 percent of the U.S.
5‘1 being produced' in Indiana. About 60 percent of the corn
oduced in the U.S. is fed to livestock. Up to 25 percent of the
S...corn crop is exported. In 1990, the U.S. exported 2.37 billion
shels of corn, almost 71 percent of world corn exports. That was

,:_‘-;]_y 2.5 times the amount of corn exported by all foreign

ing the past 10 years, U.S. average corn yields have varied from
low of 81.1 pushels per acre during the 1983 drought to a record
gh of 119.8 bushels per acre in 1987. By definition, corn
duction is the product of the U.S. average corn yield times the
acreage harvested for grain. Variation in corn yields has been
jor factor in the large fluctuation in annual production.
-iation 4in U.S. planted acreage of corn has been heavily
luenced by government programs designed to control production by

miting acreage-

The price of corn is determined by worldwide supply/demand
nditions. variations in U.S. production, especially changes in
n yield, can greatly influence world feed grain prices.

National Agricultural Statistical Service (NASS) of the U.S.
epartment of Agrlcultqre (USDA) has .a long history of gathering
ta important to agriculture. NASS has the responsibility of
ing crop production estimates. The first official production
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estimate for corn, based on a survey of producers, is released in
August. In addition to a producer survey, NASS also conducts an
objective yield survey, and looks at data gathered by satellite and
garnered from computersimulated crop/weather models.

The objective of this paper is to demonstrate the application of
neural network software in predicting corn yields. A crop
reporting district in Indiana (9 counties in size) is the basic
unit of this study. Most states have 9 or 10 crop reporting
districts. Yields for each crop reporting district were weighted by
acreage to predict state corn production. The same procedure could
be extended to other major corn-producing states to arrive at an
estimate of U.S. production.

FACTORS IN CORN PRODUCTION

Because corn is the number one cash crop and typically the most
profitable crop grown in the Cornbelt, agronomists have devoted
many resources to determining the critical factors in corn
production. Cowan and Milthorpe (1968) offer the following as a
list of the most important environmental factors affecting corn
growth: 1) temperature, 2) light, 3) water, and 4) soil mineral
nutrient supply.

Air temperature measures the amount of heat energy in the air.
Kiniry and Keener (1982) attributed 95 percent of the variability
in corn development to temperature indices alone.

Water is a necessary part of nearly every biochemical process in
plants. The availability of water to corn (and the interaction with
other climatic factors) is often the most limiting factor in corn
production. Lack of moisture may retard seed germination after
planting, slow or temporarily stop growth during the vegetative
stage, and delay tasseling and silking 4 to 5 days.

Hewitt and Smith (1974) found many plant nutrients were needed for
normal corn plant growth and development. They found that nitrogen
generally effected corn growth to a much greater extent than other
nutrients. It is an essential element in the synthesis of amino
acids and proteins, and is generally regarded as the most deficient
micronutrient. Nutrient supply is the only primary growth factor
that is controllable (in non-irrigated production areas).

Other factors may limit corn production. Shaw and Newman (1984)
list freeze prior to physiological maturity as the single greatest
risk to a corn crop during grain fill. Potential losses range up to
50 percent. Ullstrup (1977) estimates that diseases account for 2-7
percent of the U.S. corn crop. Corn insects may cut yields as well
as reduce the acreage harvested.

PREVIOUS MODELING EFFORTS

In 1914, Smith studied the effects of summed weekly and monthly
temperature and precipitation on corn yield in Ohio. determined
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precipitation from the middle of July through the

The middle of August to be the most dominant weather factor
controlling final yield. In 1958, Runge and Odell found similar
results in central Illinois.

Corn yields in the U.S. have increased steadily since the 1930's
and more rapidly since the 1960's. Thompson (1969) used
technology-trend variables for two time periods: 1) a linear yield
increase from 1930-1960, and 2) a quadratic increase from 1960-
1967. Using quadratic regressions on yield on monthly
precipitation and mean temperatures for five midwestern states, he
found that below-average mean temperatures in July and August and
above-average July rainfall were associated with highest yields.

Nelson and Dale (1978) used applied nitrogen rates to account for
technological trends. Soil moisture has also been used as the
moisture variable rather than precipitation. Dale and Shaw (1965)
modeled the daily soil moisture in the corn root zone and
correlated the number of non-moisture stress days with experimental
plot corn yields. Leeper et al. (1974) found that under high levels
of fertility and management, the potential of a soil to produce
high corn yields was due largely to its waterholding
characteristic.

NEURAL NETWORKS

Neural networks offer an alternative to rule-based systems for
research application. These systems have been available for several
decades (Hebb, 1949, Rosenblatt, 1961). Our understanding of
neural networks has grown during the past few years and fostered
many diverse applications. The July 1991 issue of AT Expert lists
40 neural-net simulation packages, neural-net shells, and chip-
based networks. Several basic network architectures have emerged--
all are based on the concept of connecting a large number of simple
processing elements in a massively-parallel, highly-distributed
processing environment.

Two basic neural network architectures have emerged. These include
feedback and feedforward networks (Bolte, 1989). Each have
particular characteristics which make them applicable to particular
types of problems. (For additional information on the differences,
see Bolte, 1989.)

Uhrig and Botkin describe neural networks as follows: Neural
network applications can be classified into two broad categories of
recognition and generalization (Dutta, 1989). For both classes, the
neural network is first trained on a set of input/output pairs:
(£,9), (1,9),...,(I,0). In recognition problems, the trained
network is tested with the input I(1<=j<=n) corrupted by random
noise. The trained network is expected to reproduce the output 0
corresponding to the input I, in spite of the presence of noise.
Examples of recognition problems are shape recognition (Hinton,
1987) and speech generation (Senjowski, 1986).
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Conversely, in generalization problems, the trained neural network
is tested with input I, which is distinct from the inputs 1, I,...,
I used for training the network. The network is expected to-
correctly predict the output O for the input I from the paradigm it
has learned in the input/output training session. Classification
and prediction are common examples of generalization problems.
Within the generalization category there are various applications,
some of which are well defined while others are less specific.
Electrical circuit analyses on the one hand, and the diagnosis of
diseases from symptoms on the other, are examples of these
extremes.

Neural networks are composed of many simple processing elements
joined together through numerous interconnections. Processing
elements, the neural network equivalent of biological neurons, are
generally uncomplicated devices that receive a number of inputs (x)
which are weighted with weights (w). This sum is processed in an
activation function to determine the activation 1level of the
receiving neuron. The activation function may take many forms.
Typically a threshold function (sending 1 if the input sum exceeds
some threshold, or O otherwise) or a sigmoid function (ranging
continuously between O and 1) is used to compute the activation
level of a particular neuron (Bolte, 1989). The output value of the
transfer function is generally passed directly to the output path
of the processing element. This output signal (y) is then sent to
many other processing elements as input signals via the
interconnections between processing elements. Due to the
interconnected nature of the network, these calculations must
proceed in parallel to accurately determine the state of a network.

Processing elements are usually organized into groups called
layers. A typical network consists of a sequence of layers with
full or random connections between successive layers. Input layers
are connected to output layers through numerous junctions with a
hidden layer. "Learning" is the process of adapting or modifying
the connection weights in response to stimuli being presented at
the input layer and (optionally) the desired outputs of those
inputs (Klimasauskas, 1989). A "trained" network is referred to as
hetero-associative if the desired output is different from the
input.

An essential characteristic of any network is its learning rule
which specifies how weights adapt in response to a learning
example. The parameters governing a learning rule may change over
time as the network progresses in its learning. 1In supervised
learning, for each input stimulus, a desired output

stimulus is presented to the system and the network gradually

configures itself to achieve that desired input/output
relationship.

Most neural networks employ an algorithm termed "backpropagation"
or "generalized delta rule" algorithm. In short, when the network
is presented with a training set, the dlfference between the
predicted output (calculated from the‘current network state) and
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the training output (from actual data) is computed. The error,
transformed by the derivative of the transfer function, is then
propagated backwards from the output layer through the hidden layer
to the input layer, with connection strengths adjusted so that

. output error is minimized. All data in the training set is

presented until the network is able to successfully duplicate the
training set with some predefined error tolerance. At this point,
the network is considered trained and new input data is presented
for testing purposes. Back-propagation is a very powerful technique
for constructing non-linear transfer functions between several
continuously valued inputs and one or more continuously valued
output.

Back-propagation networks configure themselves in such a way as to
establish a relationship between input and output variables that
minimizes the error between the network-generated output and the
actual, or target, output (in the sense of least squares fitting).
After minimizing the error or training the network, the network has
learned the input/output relationship. The technique used to
establish the coefficients in a network is described as a set of
differential equations which modify the coefficients in such a way
as to reduce the mean-square-error of the output for the training
set. These are derived by defining the error for a single pass
through a training set (which consists of several presentations of
input and expected, or desired, output) as the sum of the squares
of the difference between the actual and expected outputs. This is
called the square error.

The derivative of each weight, or coefficient, in the network is
computed as a function of the error. For most cases, these

.differential equations do not have a closed-form solution. As such,

the solution is derived by using numerical methods. The numerical
techniques compute the direction to change the weight coefficients
(gradient) and then changes them slightly in that direction.
Today's computational technology allows rapid, multiple iterations
of differential equations which result in the appropriate error-
minimizing solution.

Conventional statistical techniques can be applied to well defined
domains. Regression analysis has often been applied in modeling
agricultural phenomena. However, conventional modeling efforts are
guickly complicated when the underlying functional form of the data
is not obvious. Because a neural network does not require a priori
specification of a particular functional form, its use may present
improvement over currently used statistical methods. Furthermore,
insight into correct data relationships may be gained.

NEURAL NETWORK MODEL

Indiana corn yields were analyzed using a trained backpropagated

‘neural network. This network was assembled in three layers

consisting of 25 input processing elements (weekly data from May 10
through September 15), one hidden layer with 50 nodes, and one .
output element for corn yields. Data was collected for the
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After the model has been %alidated, the network was trained over
the data from 1960-1989. After the training was accomplished, the
input data for 1990 was subjected to the network to predict 1990

corn yield (the output).

The neural network model was then trained with weekly input data
for June and July in an attempt to provide an early forecast of
corn yield. The results are very encouraging.

Table 1 shows the yield forecast by crop reporting districts of
Indiana for 1990. UPDATENET is the neural network model trained
through 1989. Columns 3 and 4 are the August and final USDA crop

estimates respectively.

The percent error columns in Table 1 are the difference between
forecasted yields and USDA final estimates in proportion to USDA
final estimates. The table indicates that the network models have
a lower error than those of USDA final estimates for zones 3, and
4, while forecasting yields higher than USDA final estimates for
the other zones. The network correctly forecast yield for zone 6
to the nearest bushel. Zone 9 yields were correctly forecast to
within one bushel by the network. USDA forecasts were under USDA
final estimates for zones 3 and 7; over for zones 1, 4, and 8; and
correct to the nearest bushel for zones 2, 5, 6, and 9.

Table 1. Yield Forecasts for 1990. (bu. per acre)

| Zone UPDATENET USDA -'USDA . $ERROR $ERROR
FINAL UPDATENET USDA
ESTIMATE .
1 136 134 133 2.26 0.75
2 135 132 132 2.27 0
3 122 121 126 -1.59| -3.97
4 132 . =% am 136 -2.9 0.74
5 138 135 135 2.22 0
6 124 124 124 0 0
7 123 113 118 7.63| -4.24
8 116 110 107 - 8.41 2.8
L o 119 118 118 0.85 0
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To calculate production, an estimate of harvested acreage was
needed. NETSR represents a regression estimate based on only 6
years of data. Because of limited historical data, a second
estimate (NETSA) was calculated using a 3 year average, column 4 is
the USDA final acreage estimate.

The errors for NETSR ranged from a high of 18.74% for zone 7 to a
low of 0.25% for zone 9. USDA errors ranged from a high of -5.17%
for zone 1 to a low of 0.55% for zone 4. The state errors were
0.78% for USDA, 0.95% for NETSA and 1.02% for NETSR.

What would we do differently if starting over?

The following changes are very subjective and may or may not
improve the results. Suggested changes include:

s S Choosing a software package that is user friendly. A
package including graphic capabilities would be desirable.

B Use state data rather than crop reporting districts.

. Include 10-12 variables or changes in variables and let
the neural network model choose which ones are relevant.

4. Do not use cumulative data.

5. Use the change in data instead of the real value.

6. Normalize the data to allow the maximum range of each
variable.

SUMMARY

This research project has applied neural network software to an
agricultural application: predicting corn yields in a crop
reporting district in Indiana. The same procedure will be applied
to the other eight crop reporting districts to predict the state
average yield. The next step is to apply the procedure to eight
other Midwest states which are important in U.S. corn production
(and for which weather data is readily available) to predict a
national corn yield.

Using the neural network model with weekly data for June and July
can provide a relatively inexpensive method of predicting the final
crop yield by early August.

At this stage, choosing the right neural network software package,
the design of the architecture of the network model in terms of
number of layers, the number of nodes in the hidden layer, the
format of the data, etc. is more of an art than a science. This
project is a demonstration of what is possible using neural network
software. The future research appears to be limited only by our
imagination and ingenuity. '
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2. "An operational soil moisture monitoring capability for the
Midwestern United States is developed using a multilayer soil water
balance model which incorporates daily weather data to calculate
precipitation, soil evaporation, plant transpiration, runoff, and
drainage through the soil profile. The effects of vegetation on
soil evaporation and plant transpiration are incorporated through
the use of a model for the growth and development of corn. Data
requirements include daily observations of maximum temperature,
minimum temperature, precipitation and hourly observations of cloud
cover, humidity, and wind speed; this data are collected in real
time and aggregated on a climate division scale. The average
characteristics of the dominant soils in each climate division are
used as representative of that climate division. Using these
weather and soil data, the model makes estimates of the current
soil moisture status on a climate division basis updated daily.
Historical soil moisture estimates using this same model were
generated for the period 1949-89 to provide an historical
perspective on current soil moisture estimates. This information
is accessible to the public through a dial-up computer information
system," Kunkel, 1990.




