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OPTIMAL HEDGING IN THE PRESENCE OF ESTIMATION RISK
Sergio H. Lence and Dermot J. Hayes™

Many of the contributions of economic theory to the study of financial markets involve the
use of parameters that are assumed known or estimable to the economic agents. Examples include
the risk-premium coefficient (B) and the security market lines that underlie the capital asset pricing
model, the volatility measures required for option pricing, and the minimum variance hedge ratio
and expected basis used to construct portfolios of futures contracts and cash positions. Generally,
it is left to practitioners to provide estimates of these parameters which are then substituted directly
for the actual parameter values of the theoretical model. Whenever textbooks demonstrate how
these parameters can be estimated there is usually a cookbook formula provided which requires
some relatively straightforward analysis of the relevant data (e.g., Marshall, Ch. 6 and 7; Cox and
Rubinstein, Ch. 6).

A problem with the procedure described above is that the theory has not been concerned
that the practical application of the model involves parameter estimates. Therefore, important
information such as that conveyed by the standard errors of the estimated parameters is not used.
Often practitioners (or the market participants) will have information about the size of the standard
errors, the sensitivity of the estimated parameters to changes in the time period used for the
estimation, or some type of nonsample information (such as insider information or subjective
priors) which seems important for decision making, and yet is ignored by the theory. For
example, a market participant may have available two estimates of the volatility of a particular
price, one based on historic data, and another based on the expert opinion of a market analyst. :
Each estimate in turn will generally imply a different option premium when employed in the Black- |
Scholes option-pricing formula. It is not immediately clear that using the sample estimate in place
of the expert estimate is the correct approach. Nor is it obvious that the theory is correct in
ignoring prior (or nonsample) and other sample information. In other words, if we admit that we
do not know the true values of the parameters or moments required by the theory, then the
behavioral rules predicted by an appropriate theoretical model may be different.

Hedging is an area in which relaxing the assumption of perfect knowledge about the
relevant parameters is potentially important. The most popular paradigm in the theory of hedging
is the portfolio approach, according to which the amount hedged depends on the tradeoff between
return and risk (Johnson, Stein 1961, Anderson and Danthine). When (i) the decision maker is
extremely risk averse or (ii) the futures prices are unbiased, this model indicates that the optimum
futures position is the well-known minimum variance hedge (Ederington; Benninga, Eldor, and
Zilcha). The portfolio model has been developed under the assumption of perfect knowledge about
the relevant parameters, but in empirical applications the standard procedure is to substitute the 3
parameter estimates based on sample information for the true parameters. There are at least two
shortcomings with this approach. One is that the decision rule so obtained is not necessarily
optimal under the given circumstances, i.e., the theory itself may be wrong. The second is that
such a procedure offers no guidance as to how to proceed when there is relevant nonsample
information.

The objectives of this paper are (i) to show how the standard portfolio model of hedgingis &
modified when there is less than perfect information about the relevant parameters, (ii) to advance a |
practical hedging model to use when both sample and prior (nonsample) information are available,
and (iii) assess the losses involved with employing suboptimal decision rules. The first section
reviews the method one would use to determine the optimum futures position if one knew the true

' *Sergio H. Lence and Dermot J. Hayes are, respectively, Postdoctoral Research Associate and Associate
Professor, Department of Economics, lowa State University, Ames.
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derive the optimum futures position in the presence of esti

mation risk, and discuss and compare
this method with the standard approach. Finally,

We summarize the main conclusions of the study.

The Optimum Futures Po
Since its develop
most widely used model of hedging. Th

@M Wry=Wr+p, Q-cQ +(f,,-f)F

where pr. ; is the random cash price at date T+1, Q is the amount of product sold at date T+1, ¢(Q)
is the cost of producing (or storing) Q, f7,, is the random futures price prevailing at date 7+1 for
delivery at some date 7+4 > T+1, £, is the current futures price for delivery at date 7+4, and F is
the amount bought in the futures market at date T and sold at date 7+1.2 For convenience of

$ characterized by a negative exponential utility

@ maxBW,) - 1A Varwy, )

where: iE(WT+1) =W, + IE(pT+1) Q-¢(Q + [IE(fT+1) - fT] F
= coefficient gf absolute risk aversion

Var(Wr, ) = Q Var(p,, ) +2 QF Cov(py, . fr,,) + F° Var(ty, )

E() is the €Xpectation
corresponding to (2) is

3)

operator and Var(-) denotes variance. The first order condition (FOC)

1
[JE(fT+I) - fT] -5 A2 Q Cov(pTH, fT+1) +2F Var(fTH)] =0
which yields the solution

@ po B -f] _ Covipr,,, fr,,)

A Var(fy, ) Var(fy., )

€ analysis would be analogous if either th

(b T+1" Prand fr. | - £) were assumed to be jointly n
Tealistic thap assumi
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Expression (4) states that the optimal futures position is made of two components
(Anderson and Danthine). The first is the speculative component and is represented by
(B, ) - £ )/[A Var(fy., )], whereas the second is the hedge component and is given by
[- Covipr,y, fr.)/Var(ty,;) QL.

The speculative term receives its name because it is the optimal futures position for a
speculator, i.e., for the case in which there is a null cash position (Q = 0). This term equals zero if
the decision maker perceives the futures price to be unbiased [i.e., E(fy, ) = f;]. When the agent
perceives the futures price to be biased upward [E(f., ) < f;] the speculative term will be negative,
so that he will sell futures contracts at date T hoping to make a profit by buying them at a lower
price at date T+1. The opposite will be true when the futures price is perceived to be biased
downward. The absolute magnitude of the speculative term is inversely related to the futures risk
[Var(fr,,)] and to the decision maker's degree of absolute risk aversion A).

The hedge term is a negative proportion of the cash position, and is so called because it is
the optimal futures position when there are no incentives to speculate [i.e., E(fy, ) = f;]. The sign
of the hedge component is the opposite of the sign of the cash position, so that the hedger will be
short in the futures market if he is long in the cash market and vice versa. The ratio
Cov(pr,is fr +1)/Var(fr, ;) is known in the literature as the minimum variance hedge ratio. It gives
the ratio of futures to cash quantities that the hedger must have in order to minimize the variance of
his combined position. The minimum variance hedge ratio is also the optimum ratio of futures and
cash positions for an extremely risk-averse decision maker because the speculative term vanishes
as the coefficient of absolute risk aversion (A) tends to infinity. Note that when the individual
believes that there is a cost to hedging [i.e., E(fy,,) > 7], he will sell all of his output in the
futures market and then purchase additional futures contracts via the speculative term. The net
effect is to underhedge when hedging costs exist.

The evidence from empirical studies employing historical data on futures prices is
inconclusive as to whether futures prices are biased or not (Peck 1977 Section 1, Baillie and
Myers, Martin and Garcia, Rausser and Carter). Stein (1986, Ch. 2) provides a theoretical model
showing that biased futures prices are consistent with market equilibrium, and that the bias can be
of either sign. Stein (1986, Ch. 5) also provides empirical evidence supporting his hypothesis; he
shows, for example, that large speculators tend to profit from futures trading at the expense of
small speculators because of their special forecasting ability. These results mean that the
speculative term is very important when deciding the optimal futures position, an observation that
is supported by the large share of speculation relative to total open interest (Stein 1986, Ch. 1).

Most empirical studies estimate the minimum variance hedge ratio by regressing p;., on
fr,, using historical data and obtainin g the estimated ratio as the coefficient corresponding to f;.
(Ederington, Hill and Schneeweis, Myers and Thompson). Other studies use conditional forecasts
(Peck 1975) and GARCH models (Baillie and Myers, Cecchetti, Cumby, and Figlewski). Some
examples of empirical estimates of the minimum variance hedge ratio for commodities and financial
instruments are reported in Table 1. The most salient feature of Table 1 is the wide range of

estimates for each particular commodity or financial instrument depending on the data set and the
methodology used.

Despite its intuitive appeal, estimating the optimum futures position in this way has a clear
shortcoming. This arises because expression (4) gives the optimum futures position provided the
decision maker knows the true values of the relevant parameters [E(fnl), Var(fTH), and
Cov(pr,,, fr, )] with certainty. If this is not true we must consider estimation risk, and it need not
be true that (4) yields the optimum futures position when the estimated parameters are substituted
for the true parameters. This concern is appropriate to all empirical studies that attempt to estimate
the optimum futures position because if we knew the actual parameters with certainty there would
be no need to estimate the optimum futures position. Furthermore, empirical studies regarding the
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. Table 1. Estimates of the minimum variance hedge ratio

Study Corn  Soybeans  Wheat 8 % 90 Day 20 Year
GNMA T-Bills _ T-Bonds

‘Cecchetti, Cumby
and Figlewski
Ederington 0.76-1.02 0.78-0.92 0.12-1.04 0.12-0.65
Myers and Thompson ~ 0.85-1.04 0.87-1.12 0.61-1.10

Baillie and Myers 0.09-1.53 0.22-1.17

0.73-1.33

bias of futures prices and the minimum variance hedge ra
differences among the parameter estimates obtained b
estimation risk is not negligible.

Another problem with employing (4) in the presence of estimation risk is that it is not clear
how to proceed when parameter estimates based on nonsample information (e.g., insider
information, expert opinion) are available.

tio indicate that there are substantial
y different authors, thus suggesting that

Optimal Decisions under Estimation Risk4
Consider a decision maker characterized by a utility function U[r(d,
* I(d, y) is a function of a vector of decision variables d and a (k x 1) vector o
variables y = x| related to the decision pro
| corresponding to y is p(ylB), where 6 is the
the pdf. Therefore, if p(yI8) is known with
e solution to

Y)], whose argument
f future random
blem. The joint probability density function (pdf)
vector of parameters (or moments) that characterizes |
certainty, the problem of the decision maker is to find

3 maxy  pBe(U) = max, pJ Ulr@, v)] p(yi@) dy

Vhere D is the feasible decision set and Y is the domain of
€ nfzrally faced with incomplete knowledge about p(y19),
\lein). Estimation risk may be due to lack of knowledge

¥. But in empirical applications we are
or estimation risk (Bawa, Brown, and
about (i) the exact functional form of
eters contained in 8 (given that p(y10) is known). In what follows we will
SSume a situation Characterized by case (ii), i.e., we postulate that the decision maker knows the
e _ bout the parameters. For example, the agent knows that a random
ariable is normally distributed, but he does not know exactly the true mean and variance.

If the decision maker does not know the true values of the parameters in 6, the problem as

Presented in (5) cannot be solved because E p(U) is a function of these unknown parameters and
refore it is also unknown. The standard solution to this problem is to substitute the point
ate 9(X) for the unkno

) | Wn parameter vector 8, where X = ()_cl,. - Xp)'1s a (T X k) matrix of
:.past realizations of x, In such a case, instead of (5) we have
)

Mg ¢ pByg - §U) = max, J U, v plyBC0] dy

or Example, if p(¥10) were the k-
Pd W_1th the sample means, varia

variate normal pdf, then p[xlE(X)] would be the k-variate normal
variances, This technique is so

nces, and covariances instead of the true means, variances, and
metimes called the parameter certainty equivalent (PCE) method

4R : . > ,
Or a detailed exposition of decision making under estimation risk, see DeGroot (Ch. 8).
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(Bawa, Brown, and Klein), to emphasize that parameters are taken as if they were known. This
approach completely ignores the uncertainty regarding the parameters in 8. .

Uncertainty about 8 can be taken into account by means of the Bayes decision criterion.
By Bayes theorem, we have’

() p@X, Ip) =< p(8I1;) p(X10)

where p(81X, 1)) is the posterior pdf for § given the sample data X and the prior (nonsample)
information Iz, =< denotes proportionality, p(8ILy) is the prior pdf for ©, and p(X10) is the
likelihood function. The posterior pdf conveys all prior (nonsample) and all sample information
about 8 by means of the prior pdf and the likelihood function, respectively. Because the decision
maker is uncertain about the true 8, the Bayes decision criterion states that the optimal decision
must be made after integrating out the unknown parameters in Eﬁﬂ(U) by applying the posterior
Pdf (7) to do so. That is, this criterion postulates that the appropriate objective function is

(8) ma-xg c D]EQ[E!IQ(U)] = ma-x_d_ c Dé[ {&_[ U[r(d, v pyle) dy} p(@IX, IT) df
O =maxg g J U@ V1 [] pu1®) p(@X, 1) @) dy

8" =max [ Ulrd. ¥) pX, 1) dy

where © is the domain of § and p(yIX, I;) is the predictive pdf of y.6 In expression (8),
Ulr(d, y)] represents what the decision maker wants, p(y|@) denotes what he knows, and peIX,

I;) is what he believes (Borch). The most important aspect of (8" compared with (5) is that it does

not involve any unknown parameter, it only involves prior (nonsample) and sample information.
As pointed out by Bawa, Brown, and Klein, there are at least three reasons for employing
the Bayes decision criterion (8) rather than the PCE (6), namely,
1. The Bayes criterion can be derived from the basic axioms advanced by von Neumann-
Morgenstern and Savage, whereas the PCE approach has no axiomatic foundation.
2. The Bayes method takes into consideration all the relevant (sample as well as nonsample)
information about § through the posterior pdf. In contrast, the PCE technique only uses
the sample information contained in the point estimate 6.
3. The Bayes model leads to decisions that have minimum average risk (or maximum average
value).

The Multinormal Family of Distributions
If the particular functional forms of the pdf’s involved in the Bayes criterion are not
sufficiently tractable, the usefulness of this method to obtain specific solutions may be severely

undermined. However, it is straightforward to obtain a simple predictive pdf if the elements in the |
(k% 1) vector y are jointly normally distributed with unknown (k x 1) mean vector 4 and unknown - |

(k X k) variance-covariance matrix X, ie.,

@ py8) =£M iy, D)

SRecall that pla, e) = p(e) p(ale) = p(a) plela), and therefore p(ale) = p(a) p(ela)/p(e) =< p(a) p(ela), where
p(a, e) is the joint pdf of any pair of random variables a and e, plale) and p(ela) are the conditional densities, and p(a)
and p(e) are the marginal densities. :

6The predictive pdf is obtained by employing the fact that p(e) = _[ pla, e) da= J' pla) p(ela) da, where A
A A

is the domain of a.

b
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where ],‘;,(k) (-) is the k-variate normal density. To this end, let the prior pdf be multivariate normal-
Wishart,” so that

(10 p@Ip) = £ =g, 7, 2, v)
=KW, 7' 2 FPZ IV EY W, T30, v k-1

where fs/(-) is the k-variate normal-Wishart density, £%() is the k-variate Wishart density,
is a (k X 1) vector of prior means, Zyisa (kxk) prior variance-covariance matrix, and 7 and v are
parameters that measure the strength of the prior beliefs in W, and X, respectively. The larger 7
(v) is, the stronger the decision maker's prior beliefs about Uy (Z,) are.® Given the pdf (9) and the
prior pdf (10), the predictive pdf is k-variate Student-¢ (see Aitchison and Dunsmore):510

D palX, 1) = £* vy, 2., m)

where: g(k) (-) = k-variate Student-¢ density

Ucszqu"'(l'mr)ﬁ
m=V+T-1+A(7)

- 1 ) Ly $ T
,};T-(1+T+T)[1 = ]{covzo+(1 w")2+mr[m-A(1:)

=]/]0ifzr =0
A9 {1 otherwise

(- 1o) (@ - wy)')

L=1X/T

L=(X-10Y X-1AMT-1)

. =7(t+7)

O, =V/(v+T-1)

1= vector of ones of dimension (T x 1)

confidence in hig prior beliefs about the means or when the sample size is small, and Lris close to
the Sample mean vector [1 in the Opposite situation. Similarly, Zris closer to the prior variance-
Covariance matrix the higher the confidence on Zo (represented by V) compared to T.

Upon substitution of (11) into (8"), the problem to solve is

(12) M2y ¢ pBy[Bp(U)] = max, . p, J Ulrd. w1 £ (yu, Z;, m) dy

\

— w;'ihe Wishart pdf is, Ioosz_tiy Speaking, a mullivgrigte generalization of the Chi-square pdf. The Wishart pdf
N we have a (k x k) variance-covariance matrix instead of a scalar variance.
. For example, .r_and v are both large if the agent possess insider information about Land Z, whereas 7and
10 zero if the decision maker has little prior knowledge about y and X.
Voo Note that in (11) (he ranges of the prior parameters are relaxed to allow the limiting operations 7 — 0 and

» Which fepresent the absence of prior information about Y and Z, respectively,
ViErer i<
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There remains the question of the particular functional form of the utﬂity argument r(d, y). Unlesg
r(d, y) is a tractable function of y, the only way to solve the optimization problem is by numerica]
integration. But if r(d, y) is a linear combination of y, the solution is straightforward. Let

(13) rd.y=ayd+a'y

where oy, (d) is a function of the decision vector d and g = [, (@),..., a(d)]"is a (k X 1) vector of
functions of d. The crucial assumption here is that both o,y(d) and & are independent of y. If (i) =
r(d, y) is a linear combination of y as depicted in (13), and (ii) the predictive pdf of y is k-variate
Student-¢ as in (11), then by standard statistical results r(d, y) follows a univariate Student-¢
distribution with mean p, = 0(d) + &' W, variance 6 = o' Z &, and m degrees of freedom
(Judge et al., p. 242). Therefore, the decision problem (12) can be further simplified to yield

(14) max, . DJEQ[JE)L@(U)] = RI U(r) £y, o, m) dr
(14" _ - I{ U, + 0, 1,) £(t,)0, =", m) dt,,

where R is the domain of r(d, y), £(-) is the univariate Student-¢ pdf, R is the set of real numbers |
(which is the domain of #,), and ¢,, is a random variable with a standardized univariate Student-¢
pdf with m degrees of freedom. Expression (14') follows from (14) because if r(d, y) is 1
distributed as Student-¢ with mean p, variance G, and m degrees of freedom, then?, = (r - M/, &
is distributed as Student-f with mean 0, variance m/(m - 2), and m degrees of freedom. Expression
(14") is the specification best suited to solve for the optimal decision vector d, and is the one we ;
will use to derive the optimum futures position.

The Optimum Futures Position under Estimation Risk

In this section we will apply the Bayes decision criterion to derive the optimum futures
position in the presence of estimation risk. To remain consistent with the derivation of the
optimum futures position in the absence of estimation risk [i.e., expression (4)], we will assume
that the utility function is negative exponential {i.e., U[r(d, Y] =-exp[- A r(d, y)1}, that its
argument is terminal wealth [i.e., r(d, y) = W, ], and that cash and futures prices are jointly
normally distributed.

Note that terminal wealth (1) is a linear combination of the random variables because it can
be expressed as

(15) Wg, =0yd+a'y
where: o)(d) = Wy - ¢(Q) - fr F

a=(Q F
¥ =@z fryy)’

Hence, we can apply (14') to derive the optimum futures position. The objective function is
(16)  maxcE[- exp(- A W, )] = max, . p, J {- exp[- A r(d, ¥)1} p(vIX, I;) dy

(16") =maxge p [ (- expl- A (1, + 6, £,)]) 6,0, )
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6) follows from the Bayes decision criterion and (16") is derived by using (14"). One
m with (16') is that the expectation assuming a Student-/ distribution is not defined.
rer, if we approximate this distribution by means of the normal distribution with mean zero
'ajnce [m/(m - 2)], the solution to (16") is straightforward because we can apply the mean-
framework and obtain

1
maxgE[- exp(- A Wr, )] = maxglp, - 5 A (=) 0]

corresponding to (17) is
' 1
Mer-f)- 5 A o) 2 QO +2F o) =0

B =0 By +(1-0) llf

1 A(D)
=1+ m)[l- gl

~ T -~ -~
A({)cov Op + (1-0,) Gy + @, [m———-_ 7 (})](up-upo) (TPERTINY’
1 % - B 2
Opr=(1+ e T)[l" e ]{wvoffo+(l'mv)cff+m-; [ ](“f‘“fo) }

m - A7)
Hoo are;C tfhe sample and prior means of Prs1s Keps f.tf, and W, are the posterior, sample, and
eans of . ;; G

pf> Opp> and O, are the posterior, sample, and prior covariances between
d fr.|; and Gy, G, and Gy are the posterior, sample, and prior variances of fr.1-

Solving (18) for F yields the optimum futures position in the presence of estimation risk
g to the Bayes decision criterion:

_ -f c
Fyay = (222) B f) O
Ottt O .
St, the standard approach used in empirical studies about the optimum futures position is
method, which yields

(“f B f]") _ _(_yﬁ
A Gy O

Seen that Fy , |, Focg in general. Moreover, it can also be observed that (19) is generally

from the optimum futures position in the absence of estimation risk (4). However, we

W below that ( 19) is a more general model than either (4) or (20) because the latter are
the former,

S.Consider first the s
much more confj
dtion and variance,

PCE =

peculative term. When the sample size is positive but the decision

dent about his prior beliefs than about the sample estimates of the futures
we have @, — 1 and @, - 1 and the speculative term in (19) simplifies to
2 (p'f‘r - f7) (Hgo - f7)

m ) —L = X0

E A Ogp A S
2ression is the speculative term in 4).

0 contrast, if the decision maker holds

G "diffuse” prior beliefs about the mean and the

€ T=v=0) the speculative term in (19) becomes
o2y W) _ (T -3) (-1p)
A Gfﬂ‘ (T- - 1) A fo
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Note that (22) is different from the speculative term obtained by means of the PCE method (20) by
the factor of proportionality [7 (T - 3)/(T? - 1)]. This factor of proportionality will always lie
between 0 and 1 for a finite number of observations and will getcloser to 1 as the sample size
grows. In other words, if the decision maker has diffuse prior beliefs, using the PCE will
overstate the actual absolute value of the speculative futures position by the proportion

[3/T - 1/T)]. Forexample, [3/(T - 1/T)] = 0.06 with a sample of T = 50 observations.

If the sample size is so large that the quality of the sample estimates is infinitely greater thap
the quality of the decision maker's prior beliefs, then w_— 0 and @, — 0. In this instance, the
speculative term in (19) collapses to (e - £/A Og), Which is the speculative term calculated by .
means of the PCE approach (20). Note, however, that for this to happen it is necessary to have an
infinitely large sample size. -

A distinguishing feature of (19) is that it indicates an optimal way of blending prior
(nonsample) and sample information. For example, consider the situation in which the decision :
maker has no information regarding the variance other than that provided by the sample, but he hag |
nonsample information (or beliefs) that the futures price is positively biased (i.e., Ly < f;) and the
sample mean indicates that the futures price is unbiased (i.e., ue=f7). Then, the speculative term 1
is‘ negative according to (19), whereas it equals zero-according to the PCE approach (20) and is not
defined according to expression (4).

In Tables 2 and 3 we show the results of some simulations regarding the speculative term
for the Bayes criterion, the PCE, and the case of perfect parameter information (PPI) [i.e.,
expressions (19), (20), and (4), respectively].!! The speculative terms are measured in physical
units of commodity traded in the futures market. There are noticeable differences among the three
models. The absolute magnitude of the speculative term in (19) is negatively related to the sample
variance (O), whereas the sample size has a positive (although very small) effect on the
speculative term. Also, the sample mean is a very important determinant of the speculative

component obtained by means of the Bayes decision criterion. When the sample mean is unbiased

(Table 2), the sample variance has little impact on the speculative term unless ©,, is small and @, is
large. Table 2 also shows that the speculative term in (19) can exceed the magnitude of that in (4);
this happens when the relative strength of the prior mean (,) is large but the relative strength of
the prior variance (w,) is small and the sample variance (Op) is smaller than the prior variance i
(Ogp)- Because of this particular scenario, the posterior mean-variance ratio is larger than the prior 3§
mean-variance ratio. In Table 2, the parameter exerting the greatest effect on the speculative term
in (19) is the relative confidence in the prior mean (,); this term is close to that in the PCE when
@_is small and close to that in the PPI when @, is large. In contrast, w_has little impact when the
prior and the sample means coincide (Table 3). In this instance, the sample variance has a sizable
effect on the speculative term derived by application of the Bayes decision criterion, and the same
can be said about ®,, (particularly when O # Oppp)-

Consider now the hedge term. The minimum variance hedge ratio in (19) can be expressed

as
o OvOmot(1-0)G +0, [— “ace ) e Hp0) G- ko)
(23) =
- T - 2
Oeer @y Ogro+ (1 - @) 0p + 0, [m] (K- Ko

As it was discussed before, w,— 1 and ®, — 1 when the decision maker is much more confident
about his prior beliefs than about the sample estimates. In such circumstances, the minimum

HThe speculative term from expression (4) was calculated by substituting 1) and Ogpo for E(fy, ;) and
Var(fr, ), respectively.
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Table 2. Speculative terms for current futures price (f;) equal to 1, prior futures mean (Kg) equal

to 1.15, prior futures variance (Oggp) €qual to 1, and sample futures mean (ﬁf) equal to 1

Sample ~ Sample _Relative Strength of Prior Speculative Term Corresponding to
. Variance  Size Mean Variance Bayes Crit. PCE PPI
0.5 30 0.25 0.25 0.057/A 0 0.15/A
0.5 30 0.25 0.75 0.041/A 0 0.15/A
0.5 30 0.75 0.25 0.170/A 0 0.15/A
0.5 30 0.75 0.75 0.126/A 0 0.15/A
0.5 200 0.25 0.25 0.059/A 0 0.15/A
0.5 200 0.25 0.75 0.043/A 0 0.15/A
0.5 200 0.75 0.25 0.176/\ 0 0.15/A
0.5 200 0.75 0.75 0.128/A 0 0.15/A
1.0 30 0.25 0.25 0.035/A 0 0.15/A
1.0 30 0.25 0.75 0.036/A 0 0.15/A
E 1.0 30 0.75 0.25 0.107/A 0 0.15/A
1.0 30 0.75 0.75 0.110/A 0 0.15/A
1.0 200 0.25 0.25 0.037/A 0 - 0.15/A
1.0 200 0.25 0.75 0.037/A 0 0.15/A
1.0 200 0.75 0.25 0.111/A 0 0.15/A
1.0 200 L — % 0 Bl N 045
30 0:25 0.25 0.026/A 0 0.15/A
30 0.25 0.75 0.032/A 0 0.15/A
30 0.75 0.25 0.078/A 0 0.15/A
30 0.75 0.75 0.098/A 0 0.15/A
200 0.25 0.25 0.027/A 0 0.15/A
200 0.25 0.75 0.033/A 0 0.15/A
200 0.75 0.25 0.081/A 0 0.15/A
200 0.75 0.75 0.099/A 0 0.15/A

© Parameter } is the coefficient of absolute risk aversion.
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Table 3. Speculative terms for current futures price (f7) equal to 1, prior futures mean (Kg) equal

to 1.15, prior futures variance (Ofre) €qual to 1, and sample futures mean (}:Lf) equal to

1.15
Sample  Sample Relative Strength of Prior Speculative Term Corresponding to
Variance Size Mean Variance Bayes Crit. PCE PPl
0.5 30 0.25 0.25 0.228/A 0.3/A 0.15/A
0.5 30 0.25 0.75 0.166/A 0.3/A 0.15/A
0.5 30 0.75 0.25 0.232/A 0.3/A 0.15/A
0.5 30 0.75 0.75 0.169/A 0.3/A 0.15/A
0.5 200 0.25 0.25 0.238/A 0:3/A ~0:15/A
0.5 200 0.25 0.75 0.171/A 0.3/A 0.15/A
0.5 200 0.75 0.25 0.239/A 0.3/A 0.15/A
0.5 200 0.75 0.75 0.171/A 0.3/A 0.15/A
1.0 30 0.25 0.25 0.143/A 0.15/A 0.15/A
1.0 30 0.25 0.75 0.145/A 0.15/A 0.15/A
1.0 30 0.75 0.25 0.145/A 0.15/A 0.15/A
1.0 30 0.75 0.75 0.147/A 0.15/A 0.15/A
1.0 200 0.25 0.25 0.149/A 0.15/A 0.15/A
1.0 200 0.25 0.75 0.149/A 0.15/A 0.15/A
1.0 200 0.75 0.25 0.149/A 0.15/A 0.15/A
1.0 200 0.75 0.75 0.150/A 0.15/A 0.15/A
L5 30 0.25 0.25 0.104/A 0.1/A 0.15/A
1.5 30 0.25 0.75 0.129/A 0.1/A 0.15/A
1.5 30 0.75 0.25 0.105/A 0.1/A 0.15/A
1.5 30 - Q.78 0.75 0.131/A 0.1/A 0.15/A
) 200 0.25 0.25 0.108/A 0.1/A 0.15/A
1.5 200 0.25 0.75 0.133/A 0.1/A 0.15/A
1.5 200 0.75 0.25 0.109/A 0.1/A 0.15/A
1.5 200 0.75 - .75 0.133/A 0:1/A 0.15/A

Note: The parameter A is the coefficient of absolute risk aversion.
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ance hedge ratio in (19) simplifies to ¢/, which is the same as the minimum variance
ge ratio in the absence of estimation risk [i.e., expression (4)].

The opposite situation arises when the sample size is so large compared to the strength of
ithe prior beliefs that the relative weights are 0_— 0 and @, — 0. In this instance, the minimum
ariance hedge ratio in (19) collapses to O,/ Ops, i.€., it is equal to that under the PCE approach
" It is interesting to note that even if the decision maker's prior beliefs about the variance and
variance are such that @, — 0, the minimum variance hedge ratios for (19) and the PCE (20)
ay be different. In general, this will happen if the individual attaches some weight to his prior

liefs about the mean (i.e., @, > 0). In such event, the minimum variance hedge ratio
rresponding to (19) will be

~ T - -~

- il - 2
Oger Opp + @, (T,_'l“)(uf'ufo)

ich is different from 6_/G...

In Tables 4 and 5, we 1llustrate the minimum variance hedge ratios corresponding to (4),
), and (20) for a set of reasonable values for the parameters of the model. These tables reveal
t there are important differences among the minimum variance hedge ratios in (19), (20), and 4)
less 6, = G_0). It can also be observed that the sample mean, the sample size, and the relative
fidence in the prior mean have little effect on the minimum variance hedge ratio in (19). In
trast, the relative confidence in the prior variance and the size of the sample covariance (cpf) are.
€ry important to determine the magnitude of the minimum variance hedge ratio in (19).
To summarize, the optimum futures position in the presence of estimation risk given by the
)ayes decision criterion [expression (19)] embodies the two extreme scenarios of total lack of prior
owledge about the parameters [expression (20)] and perfect parameter information [expression
4)]. The advantage of expression (1 9) over either (20) or (4) is that, in addition to nesting the two
tremes, it allows us to obtain the optimum futures position in the realistic scenario in which the
ecision maker has prior beliefs but is not completely certain about the quality of these priors.
) p{css§on (19) is useful because it can be directly applied to decision making. Another important
evaluating the robustness of the standard approach (20) with realistic counter-
E> a.mples._ For instance, one obvious prior would be to use the variance of futures implicit in the
p(tlmns Price-as Gyy,.  Other priors could be obtained by eliciting expert opinions about the mean

the variance of futures prices, the covariance between cash and futures, and the mean of cash
Ces (see Winkler).

Conclusions

timate the optimum futures position is the parameter
method consists of directly substituting the sample
ariance for the true unknown values in a formula derived
edge about these parameters.- We show that the optimal
the PCE approach lacks normative value because itis
ertainty regarding the actual parameter values.

be used to obtain an optimum futures position in the realistic
as sample information and prior beliefs regarding the relevant
the Bayes decision criterion and nests both the theoretical
rmation and the PCE formula. Our model yields the perfect

when the decision maker is completely confident about his prior

_ The standard procedure used to es
;inty equivalent (PCE) method. This
Hmates of the mean, variance, and cov
inder the assumption of perfect knowl
#Mltures position estimated by means of
erally suboptima when there is unc

€ provide a model that can
where the decision maker h
€ters. This model is based on

With perfect parameter info
Cter information paradigm

Uation

',‘eI




Table 4. Minimum variance hedge ratios for prior futures mean (L) equal to 1.15, prior futureg
variance (Ggg) equal to 1, prior covariance (Gpm) equal to 1, sample futures mean (ﬁf)
equal to 1, and sample futures variance (&ff) equal to 1
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—

Sample ~ Sample _Relative Strength of Prior Min. Variance Hedge Ratio Corresponding to

Covariance __ Size Mean __ Variance _ Bayes Crit. PCE PPI

0.5 30 0.25 0.25 0.622 0.5 1 |
0.5 30 0.25 0.75 0.874 0.5 1
0.5 30 0.75 0.25 0.617 0.5 1
0.5 30 0.75 0.75 0.871 0.5 1
0.5 200 025 0.5 0.622 0.5 1
0.5 200 0.25 0.75 0.874 0.5 1
0.5 200 0.75 0.25 0.617 0.5 1
0.5 200 0.75 0.75 0.871 0.5 1
1.0 30 0.25 0.25 0.996 1.0 1
1.0 30 0.25 0.75 0.999 1.0 1
1.0 30 0.75 0.25 0.987 1.0 1
1.0 30 0.75 0.75 0.996 1.0 1
1.0 200 0.25 0.25 0.996 1.0 1
1.0 200 0.25 0.75 0.999 1.0 1
1.0 200 0.75 0.25 0.987 1.0 1
1.0 200 0.75 0.75 0.996 1.0 1
1.5 30 0.25 0.25 1.369 1.5 1
1.5 30 0.25 0.75 1.123 1.5 1
1.5 30 0.75 0.25 1.357 1.5 1
1.5 30 0.75 0.75 1.120 1.5 1
1.5 200 0.25 0.25 1.369 1.5 1
1.5 200 0.25 0.75 1.123 1.5 1
1:5 200 0.75 0.25 1.358 1.5 1
1.5 200 0.75 0.75 1.120 1.5 1
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Tablc 5. Minimum variance hedge ratios for prior futures mean (TN equal to 1.15, prior futures
variance (Gpp) equal to 1, prior covariance (Gpﬁ)) equal to 1, sample futures mean (uf)
equal to 1.15, and sample futures variance (O‘ff) equal to 1

Sample  Sample Relative Strength of Prior Min. Variance Hedge Ratio Corresponding to
Covariance  Size Mean Variance Bayes Crit. PCE PPI

05 30 0.25 0.25 0.625 0.5 1
0.5 30 0.25 0.75 0.875 0.5 1
0.5 30 0.75 0.25 0.625 0.5 1
0.5 30 0.75 0.75 0.875 0.5 1
0.5 200 0.25 0.25 0.625 0.5 1
0.5 200 0.25 0.75 0.875 0.5 1
0.5 200 0.75 0.25 0.625 0.5 1
0.5 200 0.75 0.75 0.875 0.5 1
1.0 30 0.25 0.25 1.000 1.0 1
1.0 30 0.25 0.75 1.000 1.0 1
1.0 30 0.75 0.25 1.000 1.0 1
1.0 30 0.75 0.75 1.000 1.0 1
1.0 200 0.25 0.25 1.000 1.0 1
1.0 200 0.25 0.75 1.000 1.0 1
1.0 200 0.75 0.25 1.000 1.0 1
1.0 200 0.75 0.75 1.000 1.0 1
1.5 30 0.25 0.25 1.375 1.5 1
1.5 30 0.25 0.75 1.125 1.5 1
L.5 30 0.75 0.25 1.375 1.5 1
L5 30 0.75 0.75 1.125 1.5 1
L5 200 0.25 0.25 1.375 1.5 1
L5 200 0.25 0.75 1.125 1.5 1
LS 200 0.75 0.25 1.375 1.5 1
. 15 200 0.75 0.75 1,128 1.5 1
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information relative to the sample information. The PCE formula is nested within our model when
the quality of the sample information is infinitely larger than the quality of the prior, and the sample
size is infinite. Either case depicts a rather extreme state of affairs. In general, the decision maker
will have relevant prior and sample information. In this instance, the model we advanced can be
used to optimally blend both types of information.
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