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Ely:

trough is defined as the point which is less than or equal to 7 preceding values ‘
subsequent values. We are interested in the date at which a turning point will Occ r
As this date is uncertain, we express our beliefs (model’s beliefs) in terms of 4
probabilities. In other words, we are interested in assigning a probability to sucGesg
dates that each will be the next peak or trough. If we have predictive distributig
to k steps ahead at time t, we can predict turning points which occur from t+1-
t+k-1. :

Define two indicator variables z,” and z," such that

1 if a turning point peak occured at time t for series i;

Mz = _
0 otherwise,
and
@ e 1 if a turning point trough occured at time t for series i;
2 Zy =

0 otherwise.
Stated alternatively:

1 if Xy 2 X 4k k = -r,-r+1,..., -1,1,...,7-1,7;

(Ba) z = |
0 otherwise,
and
R 1 i X S Xy K = =7,-7+1,,-1,1,,7-1,7;
@) z =

0 otherwise.
The future values of the random time series X, and the two indicator var
zI can be characterized in terms of predictive distribution functions; th_q ‘

(4) Gtttk Paapse e X | x'txt 1ree%1)

(53) ft+1—-'r ..... t+k—4r(z1+1-ﬂ lz't+k*r l x1xt v 2 bl )’

(5b) f,L_,, t+k—'r(ztt1—'r! =Z:rk—1' | XpX4ogseeXy)-

The predictions are probability distributions over the events W
(“time until the next turning-point peak") and WT Wiy, Wmt ) (
turning-point trough”). These vectors are random and are defined by

(68) Wi = W(ZirZikor) = Ko 1 = 1im

where k is such that z,,,,” = 1and z,,,” = 0, for j < k; and
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“6b) Wy = w(z,-LH,...,z,-Lk_,) =K i=1,.,m,

here k is such that z,,,,” = 1 and z,,;' =0,forj < k. Notice that W," and W,
i = 1,....m, have discrete probability distributions over the set of integers {-r +1,-
4 r+2,...,-1,0,1,2,... -1 +k}. Thus, at time n, the forecaster with known values >F<’Y t =
...,N, issues probability distributions P.,." and P, for the random events W,," and
"W, respectively.

- .

Probability Evaluation Methods ‘

' The prequential principle, introduced by Dawid (1984), is that a model should be

" rejected only on the basis of the forecasts that it actually makes. A model should not
" be rejected a priori because it fails Some preconceived criterion of goodness. In
.p‘articular, one should focus on out-of-sample forecasts and ultimate realizations rather
.~ than on tests of model fit or a priori notions of model adequacy. Below we consider

B i

harpness is defined as:

Bl

K
SHP(p) = (1mk§Tkp“(u-p")’,

here u is a unity vector (u=[1,...,1]), T is the number of probability forecasts, T, is
e number of probability forecasts of distinct type k, where K is the number of distinct

choose among two distributions (a preference was held for the distribution having the
ven that both are well-calibrated (defined below). As
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sharpness and standard deviation do not involve the actual realized event, f'é,_
meet the prequential principle. e

Probability calibration requires issued probabilities to agree with their eXpog
relative frequency. So that if a probability forecast of .25 is issued 100 times, '
calibraiton requires that, after the fact, we should observe 25 of these events to
actually occur. Forecasts can be judged with respect to calibration by applying tk
probability integral transform to the observed fractiles from the cumulative distrint
on each variable at each forecast point. Observed fractiles should be uniform
distributed for a set of well-calibrated distributions. A chi-squared goodness-of.f
statistic may be used to formally test the appropriateness of a particular set of &
Observed outcomes (Dawid, 1984). 3

Kling pointed out that the empirical assessment of the probability distribytia
P, and P, is not reliable if the number of occurrences is small. For this reason
suggested a discrete event approximation of the probability integral transform
cumulative distribution function F,” is calculated as: k-

q '3

®  Fi@= X P,
j=-T+1

where P,"(j) is the probability of a peak in month J: and q is the last month by
they are forecasted. Let U, = Fi (W), then U, is a random variable taking Vs
on the interval [0,1]. An estimated cumulative distribution function F,(U,"):
obtained by taking the observed sequence u,” = Fy WD), t = 1,....n; arran

sequence in the order ui"(1),...,uip(n) of increasing value; and calculating e

©  F,ufQ) - .['; J =1,2,...n.

system (PFS) the graph of the calibration function Fu(u;" (i) should not be s
different from a forty-five degree line. For a well-calibrated PES, u°(1),...
be uniformly distributed and chi-squared test can be applied to test that t
well-calibrated.

mutually exclusive and collectively exhaustive states {Sq serees Sy} Lot H
Pt = (Pyy sy Pae) (P20, Z,Pe=1; N=1,....N: t=1,..,T) denote the t fore
collection of T forecasts, where Pr¢ is the forecast probability of state Sp |
forecast, and let the row vector d; = (dy...,dy,) denote the t" observatio
collection of T relevant observations, where d,, equals one if state s, ob
observation and zero otherwise. Then PS for the collection of T forecas
is PS(p,d), where =

.
(10) PS(p,d). = (1/173131 (R-0) (p,-c)’
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which a prime denotes a column vector. The PS is a probability forecast analog of
nean-squared error (MSE) of point forecast. The range of the probability score is
0,2] with PS = Q corresponding to perfect accuracy.

A problem which has been identified with the Brier score is that it doesn't

" Panama canal are unordered variables; whereas, probabilities on various price
\Intervals are ordered variables. For continuous variables like prices, the distance
‘between values is meaningful. Let the row vector Pt = (Pit s Pry) (P20, L Pu=1;
n=1,..,N; t=1,..,T) denote the t forecast in a collection of T forecasts, where Pnt iS
‘the forecast probability of state s, on the t" forecast, and let the row vector d, =
(dy;,-.,dy) denote the t" observation in the collection of T relevant observations, where
d equals one if state s obtains on the t" observation and zero otherwise. To '
Calculate the RPS, we need to define the cumulative row vector forecast P, =

= 1,...N) and the cumulative observation row vector D, = (D,,,...,Dy,) where
n

\ Dy =X e

i | m=1

= 1,.,N). Then RPS for the collection of T forecasts Py (t=1,...,T) is RPS(p,d),

e 3
19 RPSE) - - B (P-D)(P-0)

q‘jwhich a prime denotes a column vector. Note that the range of RPS(r,d) in
€quation (13) is the closed interval [0, N-1], where N is the number of states, 0 is the

' Perfect score and N-1 is the worst score.

Suppose that we have two vector forecasts such as p' = (0.0, 0.2, 0.3, 0.4, 0.1,
* 0.0) and p? = (0.2, 0.3, 0.0, 0.4, 0.0, 0.1) and an observation vectord = (0, 0, 0, 1, 0,
: 0). Then the cumulative forecasts and observation are P' = (0.0, 0.2, 0.5, 0.9, 1.0,
81.0), P? = (0.2, 0.5,0.5,0.9,0.9,1.0), and D = 0,0,0,1,1, 1), respectively. The

o)

© PSsof p' and p? are both equal to 0.5, even though p' has probabilities "closer" to the

o
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One can construct examples in which the probabili
probability score (RPS) give conflicting results. Suppose that
forecasts such as p' = (0.0, 0.1, 0.4, 0.4, 0.1, 0.0) and p? = (0.2,
0.1). Suppose further that we have an actual observation ve
0). Then the PSs of p' and p? are 0.54 ang 0.34; while the RPSs of p

and 0.38, respectively. Even though the PS of p?is lower (better),
worse than that of p’,

Application to Daily Cotton Prices
Below we consider turning point forecasts of daily cotton prices. The applicati x
presented in three subsections. First we describe the data. Second we sy Q
the time series method used to generate probability for

results.

Data

Daily observations on cotton futures prices from the New York Cotton Exc
(NEARFT), daily cotton cash prices from the Memphis market (PFICASH)
world cotton prices (AINDEX) are studied. The period of analysis is froml Ju
1989 to December 21, 1990. The data Sources are Cotton Pri

: : _ Ce Statistics 5
Cotton Market Review published by Agricultural Marketing Service of U.S. Depans
of Agriculture. TR

The daily cotton futures prices are daily settlement prices of nearby‘4 fljt
contract in the New York Cotton Exchange for bas . Mém’

price of cotton for grade 41 (Spotted Light Middling) and staple
world cotton price is "A" Index which is the average of the five chea
Middling 1-3/32-inch cotton offered for sale in No
be the most representative world cotton price series. Thus, NEAR
predictive cotton prices in nearby contract mo
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distributed with mean ¢(B) and variance/covariance VCV = PP’. Here P is a a8
: decomposed matrix of VCV. A particular draw of parameter matrix ¢ (B) is Qiver
¢ (B) = ¢(B) + Pe,
i where e is a vector of standard normal draws. Uncertainty in residuals is modellgg]
i drawing an error vector ¢, from the empirical distribution of reshuffled error Vectors
i Applying the chain rule of forecasting (see Sargent, 1979, p.268), a k-step-ahead
| forecast vector is generated (observed values of the X vector are substituted for.
i forecasted values_ when:e the forfner are available): o
‘ | % Xt+k =9 (B)Xt+k-1 +t €k P
i where X,,," is a simulated value for X,,, and €. IS @ draw from the one-step errq
distribution. :

i Table 2. FPE® Statistics on First-Differenced Data.

|
Series® ;
| Lags AINDEX NEARFT PRCASH
0 0.3889 0.8220 0.743
1 0.3861 0.8098 .
2 0.3897 0.8185
3 0.3907 0.8250
4 0.3946 0.8283
5 0.3980 0.8140
6 0.4017 0.8190

Note: Asterisks denote the smallest FPE statistics for each _variabfe.

T+k+1
T-k-1
a particular order of lags used to represent Y-

* FPE(k) =

: -:
X (-%(K))?/T, where T is the number of observations, and
t=k+1 . -

oHe

® The data points vary with respect to lags used. For the lag 0, data points 98
were used. For the lag 1 through the lag 6, data points 8-195 were used.

Table 3. Lags on Each Variable in the Autoregressive Representation of__.
Variable as Determined Using Hsiao’s Search Procedure.

Equation
Lags on series AINDEX NEARFT
(iags)
B AINDEX 1 0
NEARFT 2 0
PRCASH A 5

Note: Data points 7 - 195 were used to calculate multiple FPE statistics.
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srequential Models of Cotton Prices

ots of the series suggest that they are mean nonstationary (figure 2). Dickey-Fuller
‘Augmented Dickey-Fuller tests are used to test the null hypothesis that the original
es is a random walk (nonstationary). Table 1 shows the t-statistics of the test in

Is. From the results it is concluded that these series are nonstationary in levels;
ile first differenced series appear to be stationary. Models will be built using the

st differenced series.

able 1. t-statistics of Stationarity Tests on Data Points 1 - 195.

(1-B)’ (1-B)?

DF? ADF® DF ADF
-1.192 -2.003 -18.502 -13.857
-1.040 -2.082 -12.757 -14.215
-1.384 -1.865 -16.376 -14.384

ickey-Fuller (DF) test is on the coefficient ¢,, from regression

B)X; = ¢, + ¢,X,.,, where B is the lag operator. Failure to reject the null
pothesis (¢, = 0) is consistent with the process X, being generated as a random
|'walk. As the distribution theory underlying these tests is nonstandard, Monte Carlo
| generated critical value (¢ = 0.05) of 3.4 will be used (Dickey and Fuller 1979).

e augumented Dickey-Fuller (ADF) test is of the same form as that given in the
F_test except lags of the dependent variable as are specified (using FPE) on the

ht-hand side of each equation.

| Previous results have suggested that univariate models perform well (Bessler
and Kling, 1986). However, they can not explain the inter-relationships among
%rjgbles because they have only one variable in the model. But, univariate models
may be helpful in providing a good set of forecasts which can be compared to those
‘génerated from other, multiple series, models. :

A statistical loss function is used for determining the order of lags in an
autoregressive model. Table 2 gives estimated FPE statistics on lags O through 6 on
each series. The minimum FPE-statistics are obtained at lag 1 for AINDEX, at lag 1 for
NEARFT, and at lag O for PRCASH.

. Toidentify a restricted VAR, the FPE loss function is again applied. Hsiao

. Provided a search procedure to select the lags of which the coefficients are non-zero
(Hsiao, 1979). Table 3 gives a summary of lags selected. The maximum lag length

" Was set as five. PRCASH series has no lags (cash prices are generated as a random
- Walk). NEARFT has five lags of PRCASH series only. The AINDEX series has one lag
- Of itself, two lags of NEARFT and one lag of PRCASH in its multivariate representation.
A bootstrap-like procedure was applied to generate predictive probability
'diStribution. Its explicit description is given in Kling and Bessler (1989). Assume a

 finite AR model: X; = ¢(B)X,, + €. The procedure followed allows for uncertainty in

. #(B) and ¢, At each date, the elements of ¢(B) are assumed to be normally

.‘;-
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: Doing this one hundred times generates a set of probability distributions at each
horizon, k. The model is then updated at the next data point with the Kalman filter and
‘a new set of probability forecasts is generated with the same procedure.

4 The prequential turning point prediction has been applied to cotton price series

- over data points 196 to 295. Several input requirements must be specified in order to

' make the procedure operational.

3 i 7 is selected as two. It is assumed that we are interested in a directional

change in the short-run. As we have first-differenced series, if a sum of

forecasts of the series at data point t-1 and t is greater than zero, this
implies a forecast of an increase from t-2 to t, and if a sum of forecasts
of the series at data point t+1 and t+2 is less than zero, this implies

A aforecast of a decrease from t to t+2. Thus, t is predicted as a peak.

The reverse case is predicted as a trough.

ii Errors are drawn from the empirical distribution of the residuals. Values
for the regression coefficients are drawn from a multivariate normal
distribution with mean vector ¢, and variance E,

i 200 is selected as the number of draws N.

iv 20 is selected as the number of periods in the forecast horizon. A twenty

-period horizon is judged long enough to have at least one turning point.

a The univariate model and the restricted VAR model were estimated using data

- point 1 through 195. One-step-ahead through twenty-step-ahead forecasts were

-generated at each data point 196 through 295. The predictive distribution w," and

W, and their probability distribution P,” and P, were generated using the above

procedure.

§ To evaluate the forecasting performance, chi-squared statistics are calculated.

§The calibration functions are plotted to check their underconfidence and

E : Results

~The results of UNIV and RVAR forecasts are reported in table 4. If we compare the

i performance of the univariate model and the restricted VAR model, the restricted VAR
‘model dominates in AINDEX peak and trough and NEARFT trough prediction. As the
 Univariate and mutivariate model on PRCASH are the same, entries in these columns
are identical. Seven of twelve chi-squared statistics are greater than 21.6 (critical value
- at .01 significance level). The hypothesis that forecasts are well-calibrated is rejected
for those predictions. The calibration functions are plotted in figure 2 for AINDEX,

' NEARFT, and PRCASH, respectively. Locations are overestimated for AINDEX peak
gtand trough prediction for UNIV model. This implies that turning points are predicted

' later than the dates on which turning points actually occur. Locations are

' Underestimated for NEARFT peak prediction. Other locations are close to the actual
locations. The functions show flat-steep or flat-steep-flat patterns, which suggests that
Spread is overestimated, i.e., forecasts are underconfident.

Recalibration was performed on the next data set from data point 296 to 395.

- To do this we used the miscalibration observed over the period 196 to 295 to adjust
-issued probabilites over the period 296 to 395.

overconfidence. The PS, RPS, and SHP are calculated to compare the performances.
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Table 4. Results of Turning Points Forecasts (Data Points 196 - 295) :
Peak Forecast Trough Forecast
Series Measure UNIV  RVAR UNIV
AINDEX PS 0.8046 0.7510" 0.7896 0.681g"
RPS 1.2062 1.1114° 1.2065 1.0384"

SHP 0.8435 0.7725 0.8496 0.7726"

CHI-SQ  41.71 7.75 44.51 18.55'%

NEARFT PS 0.8676°  0.8692 0.8300 0.7927;

RPS 17196  1.7315 1.2143 1.1450

SHP 0.8544 0.8146" 0.8540 0.8355¢

CHI-SQ  20.22 38.57 25.88 22.75%%

PRCASH PS 0.8445  0.8445 0.8192 0.8192

RPS 1.4601 1.4601 1.2807 1.2807

SHP 0.8520 0.8520 0.8474 0.8474

CHI-SQ  26.08 26.08 24.83 24.83 18

Note: Asterisk denotes the better measure between UNIV model and RVAR ’-__@_

The performance results of recalibrated and non-recalibrated forecasts are shown i
table 5 and table 6 for turning point peak and turning point trough, respectively. :Ng
recalibrated models perform better in accuracy for all series except for AINDEX serig
Recalibrated UNIV model performs best in accuracy in AINDEX peak prediction,:
Recalibrated RVAR performs best in accuracy for AINDEX trough prediction.
Recalibrated models show the better chi-squared statistics in AINDEX prediction.

In NEARFT prediction, non-recalibrated UNIV model shows the most accurat
forecasts for peak and trough prediction. Chi-squared statistics show that they
well-calibrated except for recalibrated RVAR trough prediction. In PRCASH. p
non-recalibrated UNIV model performs best in accuracy for peak prediction w
recalibrated RVAR model performs best in accuracy for trough prediction. -

All forecasts for PRCASH turning points fail in chi-squared tests. Reca
has improved chi-squared statistics in AINDEX series only. Non-recalibrated
fail in chi-squared tests for AINDEX prediction. Eight out of twelve recalibrate
forecasts fail in chi-squared tests and eight out of twelve non-recalibrated fore
in chi-squared tests at .01 significance level. : ol

Summary and Discussion .
Prequential analysis was applied to turning point forecasts for three cotton price
series: world market price (AINDEX), the nearby futures price (NEARFT), and M

Cash market price (PRCASH). As "prequential” implies, sequential, ex ante,
forecasting was performed.
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Table 5. Results of Turning Point Peaks Forecasts: Recalibrated Vs Non-
recalibrated (Data Points 296 - 395)
UNIV RVAR
Series Measure RECAL NONRECAL RECAL
INDEX PS 0.8045 0.7503" 0.7540
RPS 1.2092" 1.3882 1.2294"
SHP 0.78??' 0.8500 0.7925"
CHI-SQ  29.91 59.39 31.97"
NEARFT  PS 0.8722 0.8542" 0.8911
RPS 1.6977 1.6470" 1.7480
SHP 0.8615 o.asgs' 0.8476
CHI-SQ 17.33 16.92 13.17"
PRCASH PS 0.8411 0.8238" 0.8411
RPS 1.2336 1.2449 1.2336"
SHP 0.8323" 0.8507 0.8323" 8570
CHI-SQ 32.96 32.33 32.96 32,83

Note: Asterisk denotes the best measure among recalibrated and non- recallb ati

UNIV model and RVAR model.

Table 6. Results of Turning Point Troughs Forecasts: Recalibrated Vs
recalibrated (Data Points 296 - 395). il
UNIV RVAR
Series Measure RECAL NONRECAL RECAL NO
AINDEX PS 0.8022 0.7850" 0.7185 :~+#
RPS 0.9399 0.9399" 1.1881
SHP 0.9399 1.1881 0.8459"
NEARFT PS 0.8875 0.8525" 0.9616
RPS 1.5213_ 1.4749" 1.6118
SHP 0.8173 0.8471 0.7562"
CHI-SQ 16.08 14.24" 3567
PRCASH PS 0.9278 0.8918" 0.9278
RPS 2.4489 2.3093" 2.4489
SHP 0.8152° 0.8362 0.815
CHI-SQ 29.14" 30.78 29.14

UNIV model and RVAR model.

Note: Asterisk denotes the best measure among recalibrated and no €
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T As traditional point forecast evaluation tools such as mean-squared error (MSE)
" can not be used without ignoring much potentially useful information, other evaluation
" tools were considered. They include PS, RPS, sharpness, and chi-squared statistics.
'was argued that the RPS is a more appropriate measure for "ordered" variables than
is the PS. Chi-squared goodness-of-fit statistics are used to formally test the
calibration of forecasts. However, the chi-squared statistics do not capture accuracy.
" Our goal of probability forecasting is to issue accurate and sharp distributions for the
‘future events at each data point. This is measured by the RPS.

~ |tis proposed that the chi-squared test be used to test calibration formally, and
“the scoring rules be used to select the better performing models. That is to say,

* calibration is not the only criterion of probability assessment "goodness." Scoring
rules offer us more information and should be used. Ultimately, forecast users must

: gansider the rate at which they will trade off reliable probabilites (good calibration) for
increased precision (sharper forecasts).
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