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CONSTANT OR TIME-VARYING OPTIMAL HEDGE RATIOS?

Giancarlo Moschini and Satheesh Aradhyulal

Introduction

Individuals or firms with risky cash positions can eliminate part or all
their risk by hedging using futures contracts. In this setting, the analysis
the optimal hedging problem typically makes use of the concept of a 'hedge
atio’ -- the amount of futures bought or sold expressed as a proportion of the
ash position. Under certain restrictive conditions that apply, nonetheless, to
number of practical situations, the optimal hedge ratio is given by the ratio
f the covariance of futures and cash pPrices to the variance of futures prices.
:sentially, this result applies to situations with price risk only (no quantity
certainty), and reflects the effects of (unhedgeable) basis risk. Under these

The implementation of this simple hedging rule has traditionally relied on
ting the optimal hedge ratio by the slope of a ordinary least square
egression of cash on futures prices, but more general procedures been proposed
First, there is a need to choose an estimating model such that the

roper conditional mean (Myers and Thompson, 1989). For example, if cash and
utures price follow a martingale process, then the slope of a regression of cesh
rice changes on futures pPrice changes (and not the slope of a regression in
levels) estimates the relevant ratio. Moreover, it has been recognized that
commodity prices, along with many other financial series, display time-varying
olatility. If the variance and covariance of cash and futures Prices vary over

Jtechniques consistent with such an hypothesis.

To allow for time-varying optimal hedge ratios Checchetti, Cumby, and
. Figlewski (1988) model cash and futures prices with Engle’s ARCH framework, while
I Baillie and Myers (1991), and Myers (1991) use Bollerslev's GARCH approach.
¢ Although the results of these studies point to the existence of considerable time
¢ Variation in the volatility of commodity Prices, consistent with recent evidence
. concerning other financial time series, the argument in favor of time-varying
' hedge ratios needs further analysis because it is not strictly implied by time
fﬂvarying volatility. 1In other words, it is quite possible to have a time varying
| distribution of futures and cash Prices where the ratio of covariance to variance
' of futures is time invariant, a condition that seems to have been neglected in
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ime, then the optimal hedge ratio may vary over time, which calls for estimation
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the studies mentioned above. Hence, the first objective of this Paper is ¢
develop a framework that allows specification and testing of time dependep
distributions of cash and futures prices that yield a constant hedge ratio,

of this ratio is sensitive to the time horizon of the futures hedge. As the tipe
at which the hedge is lifted moves into the future, the relevant conditiong
moments converge (under stationarity) to the time-invariant unconditiong
moments, such that the relevant hedge ratio may yet be fairly constant. The
second objective of this paper is to discuss this issue in some detail.

2. The Hedging Model

Following Myers (1991), assume that at some point in time a risk-averse
individual allocates an initial wealth among a risk-free asset and a risky asset
(an asset whose end-of-period return is random). There is a futures market for
the risky asset, but the hedging opportunity are imperfect because of basis risk,
Hence the problem of the individual could be represented as:

max E[U(W,)|Q,_,] (1)
Q1%

where:
Wy = (1+r) [W,_, - Pg-19t-1] + Ppqeq + (£yq - £)x, 4 (2)

The time subscripts (t-1) and t denote end-of-period and beginning-of-period,
respectively, W is wealth, q is the quantity of risky assets, x is the quantity
sold in the futures market, p is the price of the risky asset, f is the futures
Price, r is the interest rate, E is the expectation operator, ) is the
information set. The random variables in (2) are p, and fy, the cash and futures
pPrices at the end of the period.

Myers (1991) shows that, if (p,fy) are jointly normally distributed, and
the futures market is unbiased in that fi-1 = E[£;|Q;-1], then the expected utility
maximizing level of futures sales relative to the optimal level of investment on
the risky asset (the optimal hedge ratio denoted HR, ;) is:

Xgq _ Cov(p,,£i|0Q, ;)

= 3
Var(ftlﬂt_l) HRy., 2

Q£-1

a result similar to that of Benninga, Eldor, and Zilcha (1984) . Alternatively,
the hedge ratio HR;_; can be viewed as a risk-minimizing optimal hedge given a
level q;-; of the risky asset (Kahl, 1983). If the joint distribution of cash
and futures prices changes over time, then Var(f,|Q,-,) and Cov(py, £y |O-y) will
typically change over time, such that the expected-utility maximizing hedge ratio
in (3) will also change over time (Checchetti, Cumby, and Figlewski, 1988 ;




272

1llie and Myers, 1991; Myers, 1991). The time path of this hedge ratio can be
culated given knowledge of the (time dependent) process generating cash and
itures prices, which can be estimated with GARCH-type models.

It should be observed, however, that the hedge ratio in (3) can still be
f constant, even if Var(fy|0,-;) and Cov(p,,£,|Q;-;) both vary over time, as long as
the covariance term is proportional to the variance term, i.e., Cov(py, £y |0-y1)
= vy Var(f,|Q,.,) for all t (for some constant 7). This case is somewhat
‘restrictive, but perhaps not too unreasonable. To illustrate, it is useful to
nake explicit the link between cash and futures prices, the basis relationship,
ecause the crux of the matter here is basis risk.? In particular, assume that
cash and futures price are generated by the following stochastic process:

f, = E[f£|9t-1] +d) €y * 8371 4
Py = E[py|B_y] + byey + byny, (3

where (e,ny,n;) are conditionally indeﬁendently distributed, mean-zero random
terms. Hence, cash and futures prices depend on a common shock (¢), but also on
specific own disturbances (»;,n;). From (4) and (5):

3 Cov(p,,£,|Q,_,) = a,b,Var(e,|Q,_,) C))

Var(f,|Q,_,) = afVar(etIQt_l) + a§V&r(n2t|ﬁt_l) €D

~ Hence, in this case Cov(py,fy|Q-;) is not proportional to Var(f;|Q;-1), and the
: optimal hedge ratio is in fact time varying. Note, however, that this requires
¢ that the futures price may change without affecting the cash price (via the term
i n1), which is indeed the necessary condition in terms of basis relationships for
. the optimal hedge ratio to be time varying. If movements in the futures price
. are always reflected in the cash price, however, a;, = 0 and Cov(f,,p.|Q:-1) =
- (a;/by) Var(f,|Q,-;), which implies that the optimal hedge ratio is constant and
E equal to (a;/b;). In conclusion, although a constant hedge ratio is restrictive,

. it is a legitimate possibility, even in the face of time-varying price
: distributions. Because of its obvious practical importance, it may be of
interest to test this hypothesis. The next section shows how to implement
bivariate GARCH models that allows for such test.

3. GARCH Models with Constant Optimal Hedge Ratios

Modeling the time dependence of cash and futures price distributions begins
with an explicit model for the conditional mean of these prices. Following
Baillie and Myers (1991), and Myers (1991), we will assume the following model
of price formation:

Z Without basis risk the optimal hedge ratio is obviously constant for all
time periods, regardless of the possible time dependence of the distribution of
the futures price.

sy
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Pr = Pt-1 * Bgdy + Ugy

£ =Ly, + uy

Hence, consistent with the assumption leading to the optimal hedge ratio i
the futures price is assumed an unbiased predictor of the next period
price (E[fy|Q:-;] = fy-;), whereas for the cash market price E[pe|Q:-q) 7
K12y where the drift term p;.Z; may denote, among other things, the effects'

carrying charges and convenience yield. Equations (8) and (9) can be exXpres
in vector notation as:

futurg

Ayy = pZy + u, a

where Ayy = (py - Pe-1,fe - £41)', p = (4y,0), and u, = (Upe,upe) ', with ¢
superscripted prime indicating vector transposition. ;

3.1 Positive Definite Multivariate GARCH(1,1)

Alternative parameterizations of the time dependence of the conditiona
covariance matrix Hy = E[u,u,’|0Q,.,] are possible. Baillie and Myers (1991), and
Myers (1991), consider two versions of the bivariate GARCH model of Engle. The

GARCH(1,1) referred to as 'positive definite’ parameterization in matrix notation
is written as:

H, =C'C + A'u,_yul 1A + B'H,_,B (11)

where C, A, and B are 2x? parameter matrices (A and B are unrestricted and C is
symmetric). If h}J denote the elements of the conditional covariance matrix H,, '
such that hi' = Var(py|Q,.;), h# = Var(f,|Q,.,), and hi? = Cov(p,f|Q-,), then

equation (11) for the special case of a bivariate problem can be rewritten as:

1 _ 2.2 2.2 253 12 2,22 12
hy” = wyy + a11Uip-g + 285385 Uy qUp, q + 8z1Uz¢-1 + biyhely + 2by by bt + bz:1he%y (12)
Rz o . & L ( ” ) 2

t = @12 ¥ 813810Use-q + (81285 4813859 Uy qUpy g + 8p1855U5. (13)

11 12 22
+ byybyohyty + (by3bgy +byybyy) ity + by1bashi™y

22 _ 2_2 2 2 2 , i 12 222 14

ht® = wy, + 815U3p-1 + 2855855U5, yUp,_y + 83Uzt + Dihely + 2by,bgoh%) + b22he”y (14)

where a;; are the elements of the A matrix, b;; are the elements of the B matrix,
and wyy = (c}; + cfp), wy = (cd; + cd;), and wyy = (eqy cgp + cpp C22) .

Because in this notation the optimal hedge ratio is HR; = h{?/h22, this
ratio will be constant if h{? = yh#? for all t, for some proportionality constant
Y. For this to happen, the coefficients in (13) must be proportional to the
corresponding coefficients in (14), which requires the following 5 nonredundant
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trictions:3

= YCyp , Cig ™ 72C22 15
= 7812, 8y =78y (48
= vby; , 21 = by,

nce, the 11 independent parameters of the GARCH model (12)-(14) reduce to 6

th the restrictions in (15)., yielding a restricted GARCH model with time-
varying variances and covariance but with a constant hedge ratio.

How useful is this restricted GARCH parameterization? To answer this
uestion, note that the restrictions in (15) when applied to (12) imply hi! = 42

Hence, the conditional correlation between cash and futures prices, p, =
12/ (hi! hE2)/2 g restricted to equal unity. This appears very restrictive,
lbecause it corresponds to the case of no basis risk. In terms of the linear
basis relationship postulated in (4)-(5), a correlation coefficient equal to one
ould require a, = b, = 0. Hence, for the purpose of obtaining a constant
ptimal hedge ratio, the restricted GARCH model of equations (12)-(15) is clearly

necessarily too restrictive, because in the context of (4)-(5) all that one
eeds is a, = 0, as discussed earlier,

.2 A More General Multivariate GARCH(1,1)

A GARCH parameterization alternative to (12)-

(14), also considered by Myers
(1991) and Baillie and Myers (1991), is:

vech(H,) = C + Avech(ut_lui_l) + Bvech(H,_,) (16)

ing operator that stacks the lower triangular
» and for the bivariate case C is a 3x1 vector of
%3 matrices of parameters. Hence, this model has
and for the bivariate case can be written explicitly

' Parameters, and A and B are 3
| a total of 21 parameters,

ﬁ as:
11 2 2 1 22 12 17
hy" = Wy + @y g + agpug g + @13Uye-qUpe.g + Pyhyy + Biahty + Bishy"y an
22 _ 2 2 11 22 12
he® = w, + @21Ugp-1 + QppUpy g + @23Use-1Ue-1 + Bpyhyly + By hEl + Bashi™y (18)
17, 2 2 11 22 12
he® = wy + agyu?,, + F32Uze-1 * AgaUipUpey + ByshyTy + ByhZ?) + By hl2 (19)

where aj, ﬂijs and w; are the elements of the matrices A, B, and C, respectively.

: A restricted GARCH model with constant optimal hedge ratios can be obtained
. readily from equations (17)-(19) by requiring hi? - vh%, which yields the

® The 6 equalities in (15) yield 5 restrictions because y needs to be

estimated.
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following 6 nonredundant restrictions (again, y needs to be estimated):

@31 = Y2y , @3z = T3 ,
Q33 = Yap3 , Ba1 = VB2 (20
Baz = YB2z » B3z = YB23

w3 = YW, .

This restricted GARCH model appears more useful for the purpose of testing the
constancy of optimal hedge ratios because it does not unnecessarily restrict hit
and therefore p,. However, the problem with such model is that the Positive.
definiteness restrictions on the conditional covariance matrix is not mai

ntained: :
by parametric restrictions. i

3.3 Special Cases of Multivariate GARCH(1,1)

The bivariate GARCH(1,1) in (17)-(19) is often estimated in a more
parsimonious version obtained by assuming that A and B are diagonal matrices, as
originally suggested by Bollerslev, Engle and Wooldridge (1988), and used by
Baillie and Myers (1991) and Myers (1991) to estimate time-varying optimal hedge
ratios. The resulting GARCH model is:

11 2 11 21
hy™ = wyy + egyuyy g + Byyheh (21)

22 2 22 22
By = w, + ayupe g + Byhity (22)

=g
o
N
I

- 12 23
W3 + QggUyp qUpe. + Baghyly (23)

Hence, this formulation can yield a constant hedge ratio hi?/h?? only if a;; = fy;
= @3 = B33 = azg3 = P33 = 0, which would imply that the variances of futures and
cash prices and their covariance are constant over time (i.e., no GARCH effect
at all). Clearly, this is extremely restrictive, and does not provide a useful
vehicle to test the constancy of hedge ratios over time.

Another parsimonious version of the bivariate GARCH(1,1) model, which has
computational advantages, assumes that the conditional correlation coefficient

is constant (Bollerslev, 1990). In other words, the GARCH(1,1) model is written
as:

4
hi::u =W + “11”%1;-1 * ﬁnh:-ll (24
2 5
hf W, + azz”%t-l + ﬁzzhtz.fl (25)

26)
i = pynl o2 (

where p is the (constant) conditional correlation between cash and futures

prices. However, note that the conditional correlation and the optimal hedge
ratio are related as:
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; Al 27
AR, = by | =y (27)
_‘.' ht

nce, py and HR; can both be constant only if the ratio h}!/h?? is constant.
iThis is very restrictive, more than is necessary to obtain a constant conditional
‘edge ratio. For example, in terms of the basis relationship (4)-(5) one would
require a; = b, = 0, again implying that the correlation is not only constant but
so equal to unity (i.e., there is no basis risk). In other words, if one
arts with a GARCH specification that assumes constant conditional correlation,
then it is very unlikely that the hedge ratio will be constant. For example,
ven when the true HR, is constant, if the conditional correlation is not

onstant specifying a GARCH with constant p is likely to yield time varying HR,.

The analysis of the constant conditional correlation model, however,
suggests another useful parameterization of the bivariate GARCH model that allows
~a constant hedge ratio specification. Specifically, the ’'diagonal’ GARCH model
- of equations (21)-(23) can be augmented by rewriting the covariance equation (23)
. as:

12 12 22 28
he” = w3 + agaugy_qupy g + Baghpty + Yhi (28)

The bivariate GARCH model of equations (21)-(22) and (28) would display a
constant hedge ratio if the following three restrictions are satisfied:

Wy = @33 = B33 =0 (29)

a proposition that can be subjected to statistical test.

4. Distant Conditional Hedges

The notion of time-varying optimal hedge ratio as addressed in this paper,
and in the studies of Checchetti, Cumby, and Figlewski (1988), Baillie and Myers
(1991), and Myers (1991), essentially deals with an estimation problem because
the problem in (1) and (2) is not dynamic in a structural sense.* In
particular, (1) and (2) assume that a cash and futures position is entered at
time (t-1) and is liquidated one period hence [in Myers (1991), and in our
subsequent empirical application, this period is one week]. For most relevant
hedging cases, however, the cash position is held for a longer time. For
instance, given that we are considering only basis risk and are abstracting from
Production risk, our hedging situation best applies to storage hedges. Storage
E is likely to be undertaken for periods much longer than one week. If adjusting
E the hedge position were costless, then the time-varying optimal hedge would be

&

Hence, this sort of time-varying hedge ratios should be carefully
distinguished from the case when the revision of the hedge ratio is brought about
by the gradual resolution of uncertainty, as in Anderson and Danthine (1983),
Karp (1988), and others. : ’
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an optimal strategy for such a case. However, the existence of transactigpg .
costs may make such continuous updating of the hedge position unattractive, Y d
such a case the agent may wish to enter the futures position only once (when the
cash position is opened), and carry it as long as the risky cash position is]
held.

If conditional moments change over time, the relevant hedge ratio is stil]
time dependent even if there is no plan to adjust the hedge position over time
Specifically, suppose an hedge is entered at time (t-1) to protect a cash

position maturing not at time t but at time (t+k). Assuming that the futures

position to be established will be liquidated only when the cash position is?
liquidated, the relevant conditional hedge ratio is:

COV(pt.+k'ft+k|Qt.-1) (30)

B, w
Feox Var(£y [0 1)

To make this rule operational, note that the conditional variances and covariance
of a GARCH model are random variables. Thus, they are not known more than one
period ahead, and the estimated optimal conditional hedge ratio in (28) is:

12 B
HRy . = E[h““mt‘l] (31)
E hfaz-k ,nt—l

If the optimal hedge ratio in (29) is estimated from a (diagonal) GARCH(1,1) _'
model, as in (24)-(26), following Baillie and Bollerslev (1992) we have:

k-1
E[hf’zkmb-l] E wzif‘:‘; (azy + By2)d + (agy + Byy)E hE2 (32)
12 k-1 - .
E[ht*klnt,_l] = W, ZO (alz + ﬁ1z)d * (‘112 & ﬂ1z)k ht. (33)
J- .

If the GARCH(1,1) is stationary, such that (a2 + B23) <1 and |ay; + B3| < 1 and
the unconditional moments are defined, the above expression is equivalent to:

34
E[BZ10,1] = 0% + (ag + B22)* (BZ - o) "

(35)

E[hgfzklﬂr.q] = ol + (g + By)* (B - 032)

where a%z is the unconditional variance futures price and afz is the unconditional
covariance of futures and cash Prices.

As k increases (the hedge will be lifted further and further ahead in tl}e
future) the quantity (a,, + ,,)* approaches zero and the conditional hedge rati®
approaches the unconditional hedge ratio 03,/0%;. Hence, the hedge ratio in (8)
is going to look fairly constant as k increases. Note, however, that this 18
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ewhat distinct from the issue of statistical significance. As long as (a,
.s) 1s statistically different from zero, (o, + Brs)* will be statistically
ferent from zero, and the conditional moments will differ statistically from

unconditional ones no matter how small (a,; + fB;)* gets (unless the
roportionality hi? = y h?? holds for all t). This is a good reminder, perhaps,
f the distinction between statistical and economic significance.

The existence of the unconditional moments in the GARCH model, and
erefore of the unconditional hedge ratio, depends on the condition of
tionarity, which may or may not hold. If it does hold, and assuming that the
conditional hedge ratio is what one may want (because k is 'large enough’,
é‘y) , then a relevant issue may be what is best suited to get the unconditional

stimates, say OLS or GARCH (assuming that the true process is, in fact,
onditionally heteroscedastic).

An Application to Iowa Corn

‘ The model outlined in the foregoing is applied to the problem of hedging
cash corn in Iowa. Our framework is very similar to that of Myers (1991).
Essentially, it is assumed that an investor (say, an elevator operator) buys and
stores corn for resale at a price which is unknown at the time of purchase. The
investor can hedge the long cash position by selling futures. We assume that the
reference contract is the July contract (when a contract approaches maturity, at
the end of June, the July contract of the following year is used.) The investor
takes out futures positions on this contract and reevaluates his portfolio on a

weekly basis. The portfolio may be adjusted every week to reflect changing
information.

The price series used are mid-week (Thursday) prices. The cash price is
the average of corn cash prices quoted in North-Central Iowa. The futures price
is the Thursday closing price for the July Corn contract quoted on the Chicago

Board of Trade. The sample period extends from January 1976 through December
1990, with a total of 782 observations.

Two different specifications of bivariate GARCH models were estimated using
maximum likelihood methods. The variance-covariance matrix (H,) in full vech
specification has 21 parameters and is given by equations (17)-(19). Constancy
of the OHR in this case is obtained if the restrictions in (20) are satisfied.
The alternative specification we considered is the augmented diagonal
specification of equations (21), (22) and (28). The augmented diagonal
formulation can yield a constant OHR if the restrictions in (29) hold. Note that
even under (29), the variance-covariance matrix is time-varying. The augmented
diagonal specification has only 10 parameters in H, and is more parsimonious than

the full vech specification. GARCH models were estimated separately for corn and
soybeans.

Estimation of OHRs requires specifying a model for the conditional means

of cash and futures prices. The specification that we choose lead to the
following model of cash and futures prices:

Ap, = §, + §,DUM, + u,, (36)
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Afy = uy (37

Hence, we assume that the expected return to holding futures is Zero, so that ¢
conditional mean of the futures price can be specified as E[ftmt_l] - F W
Despite its simplicity, there is considerable evidence supporting this Marti“g:]lf
process for commodity futures price data (Gordon, 1985). For the conditiong)
mean of cash prices we are assuming E[py|Q;-;] = py-1 + 65 + 6; DUM,. As ip Myer
(1991), the constant §, captures the fact that (other things being equal) the
cash price rises throughout the crop year to reflect carrying charges apg
convenience yield. However, because we are using data spanning many crop years.
we have to allow for the fact that (other things being equal) price drop jUE‘Q-:t:
before harvest every year. This effect is captured by the term involving the
DUM;, a dummy variable taking value of one for weeks in the months of ;

July‘w
August and September, and value zero otherwise. ;

6. Results

Table 1 reports the maximum likelihood estimates of the conditional mean
of cash prices for corn and soybeans assuming that the variance-covariance matrix
is constant (time-invariant). All parameters in Table 1 are significant at all
conventional levels of significance. The Ljung-Box statistics for the residuals
are slightly below 51.0, the relevant critical value at the 5% level. Hence, the
null hypothesis that the residuals from each estimated conditional mean equation
are white noise is not rejected, implying that the simple conditional models of
cash and futures prices seem to fit the data adequately. When squared residuals
are examined, however, we find serial correlation among them. In all cases, the
Q® statistic at 36 degrees of freedom is significant at 1% level. This

correlation among squared residuals suggests that a GARCH model may be
appropriate (Bollerslev, 1987).

Maximum likelihood estimates for the corn hedging model under full vech
specification are presented in Table 2. Results in Table 2 indicates that 17 out
of 23 model parameters for corn hedging model are significant at 5% level. As
expected, 6, is positive and §, is negative. The Ljung-Box statistics for the
standardized residuals, and the standardized squared residuals, from the
estimated GARCH models are also reported in Table 2. In each case, the estimated
values for Q(36) and Q*(36) are below 51.0, the critical value of the chi-squared
distribution at the 5% level. Thus, no further first- or second-order serial
dependence is present in the estimated GARCH models.

To test for constancy of OHRs, the full vech GARCH model is re-estimated
after imposing restrictions in (20). Because the restricted model under (20) is
nested in the full model, standard likelihood ratio tests can be used for testing
the constancy of the OHRs. The appropriate statistic is twice the difference of
the maximized values of the log likelihood functions for the unconstrained and
constrained models which will have a chi-square distribution with 6 degrees of
freedom under the null hypothesis. The calculated statistic for corn (72.52) is
well above the critical value of the chi-square statistic with six degrees of
freedom at all conventional levels of significance. Thus, for Iowa corn the null
hypothesis of constant OHRs can be convincingly rejected in favor of time-varying
OHRs. It should be noted that our test is somewhat more general than previous
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(e.g., Myers 1991, Baillie and Myers 1991) in that the variance-covariance
iz, even under the null hypothesis of constant OHR, is time-varying.

The estimated hedging models for corn under the augmented diagonal

gpecification is reported in Table 3. The GARCH parameter estimates in Table 3
e highly significant. Again, the Q and Q? test statistics reported in Table
re statistically insignificant for the unrestricted GARCH model. However, the
festricted model displays considerable correlation of the squared residuals in
e futures price equation. As in the full vech specification, a likelihood
tio test can be used to test formally for constancy of OHRs. The calculated
t statistic for corn (220.28) is well above the critical value of the
square distribution with 3 degrees of freedom. Hence, the hull hypothesis
constant OHRs can be rejected under augmented diagonal specification as well.
hus, results in tables 3 and 4 indicate that OHRs are indeed time-varying.

OHRs are computed from the estimated GARCH models using the in sample
stimates of the time-varying conditional variance-covariance matrices.
stimated conditional OHR's under full vech specification are illustrated in
‘Figure 1. The horizontal straight line is the unconditional OHR implied by the
conditional moments of the H,, also under full vech specification. Figure 1
clearly demonstrates that OHRs are time-varying and change from week to week as
new information is obtained. The conditional OHRs presented in Figures 1 and 2
re obtained by using all the information available prior to the present period.
Following the discussion of section 4, k-period ahead OHRs are also computed
using the equation (29). Figure 2 illustrates six-weeks ahead OHRs for corn
- under the full vech specification. It is apparent from these figures that as we

¢ forecast farther and farther into the future, the conditional OHRs converge very
¢ quickly to the unconditional OHRs.

Bt

é 7. Conclusion

' In this paper we have developed a general model for testing the hypothesis that
| the optimal hedge ratio is constant over time. In particular, we have developed
i alternative parameterizations of the bivariate GARCH(1,1) model that nest the
. hypothesis of constancy of the ratio of conditional covariance to conditional
. variance of one of the variables, and that retain time-varying variances and
| covariances even under the restrictive assumption of constant OHR,

Two of the GARCH models developed were estimated using weekly data for Iowa corn.
In both cases the statistical test suggests that the OHR is indeed time varying.
However, when longer holding periods are considered, the time-varying OHR
converges fairly rapidly to the constant hedge ratio based on the unconditional

moments. Hence, for some realistic hedging problems a constant hedge ratio may
be desirable, notwithstanding the fact that statistically the time-varying OHR
dominates the constant ones.

i What remains to be seen is whether the time-varying

¢ hedge ratio performs significantly better than a constant one from an economic

i standpoint. As Myers (1991) has found in a similar context, the difference in
performance of time-varying and constant hedge ratios may be small.
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1
: l'
Lgble = Maximum Likelihood Estimates of Constant Covariance Matrix Hedging ‘w
L Model for Corn : it
!
iarameter Estimate t-value
0.00069 3.636 |
-0.00218 -4.554 ‘%
0.00606 9.672 4
0.00501 19.662 i
0.00446 17.605 |
Ap, 50.50 j
Af, 49.11 ﬂ
Apy 348,33 ' i
Af, 382.59 i
| Log-1likelihood 2260.27 i

. \
| Notes: }
;:Q(36), and Q%(36) denote the Ljung-Box Portmanteau test statistics for serial w
| correlation in the levels and squares, respectively, with 36 degrees of freedom. |

| The value of the x? distribution with 36 degrees of freedom and at 5% level of |
| significance is 51.0.
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Table 2. Maximum Likelihood-Estimates of Full and Restricted GARCH Modelg
Corn under Full Vech Specification

---- Full Model ---- -- Restricted Model --

Parameter Estimate t-value Estimate t-value

6y 0.00571 4.020 0.00638 4,291

6, -0.02319 -4.,048 -0.02446 -5.307

wy 0.00033 3.845 0.00058 3.611

aq, 0.07473 7.154 0.13403 5.076

7P 0.24601 5.965 0.19500 4,928

o3 0.00010 0.086 0.00000 -0.001
- B11 0.68550 23.207 0.63503 " 11.466

B2 0.01080 1.288 0.00007 0.027 4
Bis 0.00808 0. 877 0.00020 0.051 X
wy 0.00056 53273 0.00047 3.316 4
Qg 0.00941 1.347 0.00000 0.008 -
og 0.14858 4.405 0.15502 -3.625 b
Qg3 0.12960 7.821 0.19536 4,205 3
Ba1 0.00003 0.043 0.00000 0.007 1
Baz 0.43334 6.344 0.60973 7.883 :
Bas 0.23640 4,210 0.02664 0.410 (
Wy 0.00025 2.170

a3y 0.10230 8.577

Qan 0.08588 2.209

Qg3 0.28604 7.488

Ba1 0.27077 3.877

B3z 1.24999 6.839

Baa 0.18512 1.257

Y 0.86903 38.541

Q(36) Ap, 45.64 46.50

Q(36) Af, 46 .47 47.39

Q2(36) Ap 24,51 23.96

Q%(36)  Af, 24.13 24,84

Log-likelihood 2490.17 2453.76

Notes: Q(36) and Q?(36) denote the Ljung-Box Portmanteau test statistics

for serial correlation in the levels and squares, respectively, at
36 degrees of freedom.

The value of the x% distribution with 36 (6) degrees of freedom and
at 5% level of significance is 51.0 (12.6).
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- |
ETable Maximum Likelihood Estimates of Full and Restricted GARCH Models for T
! Corn under Augmented Diagonal Specification

i

f—

e saeas Full Model ----- -- Restricted Model -- il

| parameter Estimate t-value Estimate t-value i

i/ 15
]

k5, 0.00621 4.546 0.00591 3.512 g

5, -0.01875 -3.693 -0.03152 -13.592 E

o, 0.00158 5.444 0.00123 16.498 |

o 0.36912 7.775 0.11747 7.402 jé

A1 0.37972 5.EL5 0.61719 163.782 iF

o, 0.00084 5.717 0.00194 8.181 -

. 0.22674 9.731 0.03350 12.089

L Bas 0.58691 13.991 0.48077 14.589

| w; 0.00106 5.606

a5 0.26796 8.340

} B2 0.51342 12.110

Ly -0.04581 -1.365 0.76359 38.394

E Q(36) Ap, 51.62 49.31

L Q(36) Af, 43.14 49.80

| Q%(36)  Ap, 29.29 50.05

| Q%(36)  Af, 28.31 220.57

| Log-likelihood 2465.08 235494

ﬁfNotes: Q(36), and Q?(36) denote the Ljung-Box Portmanteau test statistics

for serial correlation in the levels and squares, respectively, at
36 degrees of freedom.

The value of the x? distribution for 36 (3) degrees of freedom at 5%
level of significance is 51.0 (7.8).
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