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Crop Yield Futures and Revenue Distributions

Viswanath Tirupattur, Robert J. Hauser and Nabil M. Chaherli'

The use of impending crop yield futures contracts to hedge expected net revenue is examined. The
expectation being modeled here reflects that of an Illinois corn and soybean producer in March of the
revenue realized after harvest. The effects of using price and yield contracts are measured by
comparing the resulting expected distribution to the expected distribution found under five general-
alternatives: (1) a revenue hedge using just price futures, (2) a revenue hedge using just yield futures,

* (3) a no-hedge scenario where revenue is determined by realized price and yield, (4) a no-hedge
scenario where revenue is determined by the market and by participating in the current deficiency- &
payment program, and (5) a no-hedge scenario where revenue is determined by the market and by
participating in a proposed revenue-assurance program. Three major conclusions are drawn. First, i
hedging effectiveness using the new crop yield contract depends critically on yield basis risk which
presumably can be reduced considerably by covering large geographical areas. Second, crop yield
futures can be used in conjunction with price futures to derive risk management benefits significantly
higher than using either of the two alone. Third, hedging with price and crop vield futures can
potentially offer benefits that are large relative to the revenue assurance program analyzed. However,
the robustness of the findings depends largely on whether yield basis risk varies significantly across
regions.

Background

Crop producers face both price risk and yield risk. Producers use futures and options
markets directly and indirectly through elevators for price risk management. However, similar
private-sector instruments for managing output risk have not been available. On the other hand,
federal agricultural support programs such as deficiency and non-recourse loan programs as well
as subsidized crop yield insurance programs have provided risk management mechanisms. A
private-market alternative for production and income stabilization will soon be available in the
form of new crop yield futures and options.

Corn yield futures and options will begin trading at the Chicago Board of Trade (CBOT)
in June 1995. Yield futures for soybeans, winter wheat, and spring wheat have also been

IThe authors are Post-Doctoral Research Associate, Department of Agricultural
Economics, University of Illinois at Urbana-Champaign; Professor and Interim Head, Department
of Agricultural Economics, University of Illinois at Urbana-Champaign; and visiting Post-
Doctoral Research Associate, Department of Economics, Iowa State University, respectively.
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proposed by the CBOT. The CBOT yield futures contract is based on the USDA reported
estimate of an average state yield. For corn, the Iowa yield per acre will be used, and the value of
the contract is the traded yield (in bushels) times $100. There will be two expiration months --
September and January -- when the contract is cash settled based on the USDA September and
January corn yield reports. Current proposals call for state average yields of Illinois, North
Dakota and Kansas to be used to settle the yield futures for soybeans, spring wheat and winter
wheat.

The use of yield contracts for hedging production is often discussed in one of two
contexts. The first context involves the direct use of the contract by the producer. The second
context involves the indirect use by the producer through either, for example, elevators offering a
forward contract or through insurance companies offering revenue or production insurance.
Indeed, the yield contract is often referred to as a "yield insurance contract".

The general purpose of the present analysis is to prowde insight into the potential effects
. of using the yield futures contract in conjunction with the price futures contract on the expected-
revenue distribution facing the producer. The model reflects the expectation of revenue to be
realized by an Illinois corn and soybean producer making planting decisions in March. The effects
of using price and yield contracts are measured by comparing the resulting expected distribution
to the expected distribution found under five general alternatives: (1) a revenue hedge using just
pnce futures, (2) a revenue hedge using just yield futures, (3) a no-hedge scenario where revenue
is determined by realized price and yield, (4) a no-hedge scenario where revenue is determined by
the market and by participating in the current deficiency-payment program, and (5) a no-hedge
scenario where revenue is determined by the market and by participating in a proposed revenue-

assurance programi.

Data and Methods

We analyze the revenue distributions resulting from the use of price and yield futures and
from participation in government support programs by simulating the revenue functions in each
case. A general description of the approach is as follows. Prices and yields are assumed to
follow a lognormal distribution. A vector V, consisting of cash prices and yields of corn and
soybeans is generated by using a linear transformation of i.i.d. univariate standard normal variates
based on a variance-covariance matrix estimated from central Illinois county level data for corn
and soybeans. Futures prices and yields are then generated, conditional on the corresponding
cash prices and yields. Thus each pair of cash and futures is assumed to follow a bi-variate
lognormal distribution, resulting in another vector FV, consisting of futures prices and yields.
Revenue distributions are then found from the two vectors, V and FV.

More specifically, we first generate V= (p,, y., P,, ¥.), Where p,, ¥,, p,, ¥, represent cash
prices and yields of corn and soybeans with mean vector p and a variance-covariance matrix Z.
Note that p and I are defined in terms of changes in natural logs, implying lognormality of prices
and yields in levels and allowing the use of Choleski decomposition for generating the vector V
with the required variance-covariance matrix. Recall that for every positive definite square
matrix, e.g., I, there exists a unique lower triangular matrix T such that TT’=Z. This result is
known as the Choleski decomposition. If X -~ N(0,1) and T is the matrix from Choleski
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decomposition, then W=TX + p is distributed as N(u,Z). We use a matrix of four i.i.d univariate
standard normal random variates with a sample size of 10,000 draws each to obtain W2.
Exponentiating W yields the desired vector V. A variance-covariance matrix was estimated using
sample data on cash prices and yields for Champaign county, Illinois, for the period 1972-93.
Yield data were obtained from various issues of the Illinois Agricultural Statistics (Illinois
Cooperative Crop Reporting Service) and price data were obtained Illinois Agricultural Marketing
Service. The estimation was done using log changes in cash prices and yields. The estimated
variance-covariance matrix and correlation matrix are reported in Tables 1 and 2.

Futures prices and yields corresponding to cash prices and yields are generated using a
procedure suggested by Hull. The procedure is similar to that used for generating the vector V,
differing only in the sense that, instead of Z, only pairwise correlation coefficients ( p; ) are
required. The pairwise correlation coefficients reflect basis risk. When p; is one, there is no basis
risk and futures and cash processes are identical. As p; decreases, basis risk increases.

Using vectors V and FV, revenue realizations can be computed for any given set of
expected prices and yields and policy parameters. Revenue from using just cash markets, mr, is

computed as:

(1) mrey =I‘: i B’I.T'yi,f]

where w, is the proportion of ith crop (I=1,2) on the farm and T is the terminal time period.
Revenue from hedging using price and yield futures, 47, 1, is found by:

() Arp_yr= Z‘: W (DY + i, )P, =P DEY )+, )T, - Y DE®,)]

where hr,, and Ar,,, are price and yield hedge ratios, E, (y,7) and £, (p, ;) are expectations made at
time t about terminal yields and prices, P,, is the new-crop futures price for crop / at time.?, and
Y,, is the yield futures for crop I at time t. The second and third terms in (2) describe the income
generated in the price and crop yield futures markets. For example, assume price hedge ratio to
be one. The hedge is placed by establishing a short position in the price futures market equal to £,
(v.0)*P,. The hedge is maintained until contract expiration when the futures position is offset at
the value equal to E, (y,) *P,r. Likewise, assume the yield hedge ratio is one. A short position is
established in the yield futures market equal to E,(p, ) *Y,, , which is offset at £, (p, ) *¥,» In this
illustration, where the two hedge ratios are equal to one, a “full hedge” is described because the
quantity established in the price hedge is the expected yield and the price established in the yield
hedge is the expected price. A “partial hedge” is described by setting 0<Ar,, <1 and /or 0<Ar, <1.
Note further that setting Ar,, equal to zero results in a “pure” yield hedge and setting Ar,,; equal
to zero results in a “pure” price hedge.

Revenue from participation in the existing government support programs, rdlr, is given by

the following:

2See Tong for further details on this procedure.
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) "B Mo pLR ), PgmE)(L < ARP + Flex)Max(TP, ~Max(p,pLR))]

where LR is the loan rate, PgmY, is the program yield, ARP and Flex are the percentages of
setaside acres and flex acres and TP is the target price. The first term describes the revenue
payouts from the non-recourse loan program and the second term describes revenue from
deficiency payments. There are no deficiency payments for soybeans.

Revenue from the proposed revenue assurance program, ra, is given by the following.

) rap =Zw, [Max(p,1, ) 02)]

where Ois the coverage level (proportion) assured under the revenue assurance program and Z is
the target gross revenue. Note that the target gross revenue for each crop is considered
separately as opposed to a revenue assurance for the farm.

Results

~ Gross revenue realizations are computed for each of the marketing strategies described
above. A fixed level of costs representing all production costs except land costs is subtracted
from each gross revenue realization to compute net revenue realizations. The parameter values
used for the simulation analysis are described in Table 3. The resulting distributions are analyzed
within two contexts -- hedging effectiveness (HE) and the frequency distribution of net revenue
realizations. HE indicates the level of variance reduction achieved through the use of a risk
management mechanism and and is measured here in a way that requires explicit incorporation of
basis risk. HE is computed as: [I- (VAR(HR)/VAR(UHR))] where VAR is the variance opefator,
HR is the hedged revenue and UHR is the unhedged revenue’.

We first illustrate the importance of yield basis risk. Recall that basis risk is reflected in
the simulations through p.,, Py, Psp> and py; i.€., the correlation coefficients between the intra-
year changes in the Wiener processes associated with the cash and futures processes of corn
prices and yields and soybeans prices and yields. It is expected that the largest source of basis
uncertainty for a Champaign county cash grain farm pertains to corn yield basis, since the corn
yield contract will be settled based on the Iowa state average yield. We compute revenue
realizations following equation (2) using a range of values for p,, (0.2 to 1.0) but holding the
values of p,, p,, and p,, constant at 0.973, 0.995 and 0.876. The frequency distributions of the
resulting distributions along with corresponding HE measures are reported in Table 4. As p,,
increases the resulting revenue distribution tightens. Correspondingly, HE increases from 0.23 to
0.92 as p,, increases from 0.2 to 1.0 indicating that hedging effectiveness for a producer using
crop yield futures depends critically on the yield basis risk. In other words, the higher is the

3See Hauser, Garcia and Tumblin for a detailed discussion on HE.
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correlation between farm level corn yield and Iowa state average corn yield, the more effective the
yield hedge is. It is important to emphasize in this context that unlike cash and futures prices
which tend to be highly correlated, farm yields are not necessarily highly correlated with a state
average yield level (Iowa for corn and Illinois for soybeans). This implies that even though price
basis risk does not vary widely across the Midwest, yield basis risk may vary substantially and
thus the effectiveness of the yield hedge for individual producers may vary by location even within
the Midwest. The ability to widen the geographical area to reduce basis risk may prove
particularly useful when using yield futures. For example, large grain companies or reinsurers
may be able to reduce basis risk considerably by covering large areas, and then offer secondary
contracts to producers that reflect this decreased basis risk. In the subsequent analysis, p, is fixed
at 0.621 which is the estimated correlation coefficient between the changes in corn yields in
Champaign county yield and Iowa state averages.

Above, the hedge ratios for both price and yield contracts are assumed to be one, implying
a full hedge. We determine “optimal hedge ratios” for the price and yield contracts by
parametrically varying the hedge ratios associated with price and yield for corn and soybeans
separately from 0.0 to 1.0 in discrete intervals of 0.1. Values of HE under alternatives parametric
assumptions of hedge ratios are presented in Tables 5 and 6. The first column in both tables
represents hedging effectiveness using a pure price hedge, and the first row represents hedging
effectiveness using a pure yield hedge. For corn, the “optimal” hedge ratios for pure price and
yield hedges are 0.6 and 0.4 respectively, resulting in a HE of only 28 percent and 11 percent
respectively. For soybeans, the “optimal” hedge ratios for pure price and yield hedges are 0.7 and
0.4 respectively, resulting in a HE of 53 percent and 10 percent respectively. However, if both
crop vield and price futures are used, HE increases considerably. In case of corn, HE increases up
to 50 percent using a combination of price (0.7 hedge ratio) and crop yield (0.5 hedge ratio)
futures contracts. Similarly, for soybeans, HE increases up to 86 percent using a combination of
price (0.9 hedge ratio) and crop yield (0.8 hedge ratio) futures contracts. Thus these results
suggest that price and crop yield futures can be used together to achieve significant improvements
in risk management benefits. '

Expected net revenue distributions from cash marketing and various hedging strategies
using “optimal hedge ratios” are compared to those resulting from government programs in Table
7 in terms of discrete probability densities. The probabilities associated with the scenario where
revenue is determined by just realized price and realized yield are presented in the NMR column.
NHR1, NHR2 and NHR3 represent hedging using both price and yield futures, a pure price hedge
and a pure yield hedge respectively. NRDL and NRA represent the expected distribution
associated with a deficiency and loan program and with a revenue assurance program respectively.

When no hedging strategies are used (NMR), the probability of receiving a net revenue of
$45 to $70 is 7.5%. When hedging with both price and yield contracts, the probability falls to
0.1%. Examination of Table 7 provides perspective on how the use of price and yield contracts
causes the market revenue distribution to collapse. The mean remains at about $134 while, as
expected, the distribution becomes progressively tighter with the use of yield contracts (NHR3),
price contracts (NHR2), and then yield and price contracts (NHR1).

In a safety-first context where, say, $95 is the threshold level, the probability of receiving
less than the threshold level is 24.2% in the no-hedge scenario, NMR. Hedging with the yield
contract reduces the probability to 22.3%. The use of just price contracts reduces it to 17.7%,
and the use of both contracts reduces it to 8%.
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Under 70% revenue assurance, the mean increases slightly from about $134 to $135.5 and
the probability of revenue at lower end of the distribution goes to zero. The probability of
receiving revenue less than the $95 threshold is quite high, as much as 24.2%. The overall risk-
reduction effect seems minimal. Note that the expected average gross revenue is about $262 per
acre and thus the 70% revenue assurance level is about $183. After accounting for non-land
costs, the assured net revenue is about $60. Consequently, because of the relatively low threshold
levels and because of the offsetting effects of corn and soybeans, the truncating effect on the net
revenue distribution does not appear large.

However, the effects of the present analysis ignores any market price level effect of a
program. It is often argued that a revenue-assurance program would cause commodity prices in
general to increase because replacing the current program with a revenue assurance program
would presumably lead to a decrease in production and an increase in price.

The expected distribution associated with participation in the deficiency-payment program
(NRDL) is scaled considerably higher than the others, resulting in a mean of about $170. The
probability of falling below $95 is 2.3%.

An important point when comparing the free market distributions to either of the
distributions involving government programs involves the "stability" of the results across regions.
The underlying basis risk of price hedges and particularly yield hedges may vary considerably from
region to region, presumably causing the comparative results between non-program and program
distributions to be sensitive to location.

Conclusions

We draw three major conclusions from the results. First, hedging effectiveness using the
new crop yield contract depends critically on yield basis risk which presumably can be reduced
considerably by covering large geographical areas. Second, crop yield futures can be used in
conjunction with price futures to derive risk management benefits significantly higher than using
either of the two alone. Third, hedging using price and crop yield futures has a potential to offer
benefits larger than those from the proposed revenue assurance program. However, the
robustness of the findings depends largely on whether yield basis risk varies significantly across
regions.
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Table 1. Sample Variance-Covariance Matrix Used to Estimate the Cash Prices and Yields

(Excluding land rents)

118

Apc Ay, Ap, Ay,
Ape 0.047357
Ayc -0.01915 0.047691
Ap, 0.035028 -0.01527 0.037954
Ay, -0.01369 0.023965 -0.01025 0.019965
_ Table 2. Implied Sample Correlation Coefficient Matrix .
Apc Ay, Ap, Ay,
Ape 1.000
Ay -0.403 1.000
Ap, -0.826 -0.359 1.000
Ay, -0.445 0.777 -0.372 1.000 -
Table 3. Parameter Values Used in the Simulations
Corn Soybeans
Expected Price (3/Bu): 2.10 5.79
Expected Yields (Bu/Acre) 131.08 42.16
Cash-Futures Correlations: _
- price 0.973 0.995
- yield 0.621 0.876
Proportion of acreage in the farm  0.58 0.42
Target price ($/Bu) 2.75 -
Loan rate ($/Bu) 2.00 5.00
ARP (%) 10 -
Flex (%) 15 -
Revenue assurance level 0.70 0.70
Costs per acre (3) 155.20 81.04




~ Table 4. Effect of Yield Basis Risk on Net Revenue Probability Density Functions
' (Hedging using price and yield futures)

Net Py Pey Pey Pey Pey
Revenue (0.2) (0.4) (0.621) (0.3) (1.0)
<45 3.4 2.2 0.8 0.1 0.0
45-70 5.3 38 2.7 1.0 0.1
70- 95 10.4 10.5 8.6 5.9 1.3
95-120 17.1 18.1 20.1 21.0 13.2
120-145 22.4 25.3 30.1 31.7 63.6
145-170 19.4 21.0 240 26.4 21.2
170-195 13.1 12.8 10.6 6.8 0.6
195-220 6.2 4.7 2.6 1.0 0.0
220-245 2.0 1.1 0.5 0.1 0.0
>245 0.7 0.3 0.1 0.0 0.0
100% 100% 100% 100% 100%
Mean (%) 134.17 134.19 134.20 134.19 134.15
Variance 2199 1696 1144 702 218
HE 0.229 0.406 0.599 0.754 0.923
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Table 7. Probability Density Function of Net Revenue Under Alternative
Risk Management Mechanisms - ' )

Net NMR - NHR1 NHR2 NHR3 NRDL NRA

Revenue

<45 2.2. 0.1 1.0 1.8 0.0 0.0 |

45-70 7.5 1.0 40 6.2 0.2 7.7 !

70-95 14.5 6.9 12.7 14.3 - 21 16.5 ;

95-120 18.9 25.1 212 20.1 9.1 19.0 ;‘

120-145 18.6 34.2 24.4 20.3 18.9 18.6 :

145-170 15.0 214 17.5 15.3 23.8 15.0 |

170-195 10.7 8.2 10.9 10.7 20.3 10.7

195-220 6.0 % - 49 5.8 13.3 6.0

220-245 3.4 0.6 2.0 3.0 7.2 34

>245 32 0.3 1.3 2.5 5.1 3.2 r;
100% 100% 100% 100% " 100% 100% |

Mean(3) 134.14 134.16 134.15 134.16 169.53 135.50

Variance 2854 913 1835 2528 1882 2639
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A FLEXIBLE DYNAMIC INVERSE DEMAND SYSTEM: AN APPLICATION TO U.S. MEAT DEMAND

Matthew T. Holt and Barry K. Goodwin®

In recent years there has been considerable interest in systems of inverse demand equations for
agricultural commodities. Prior studies have, however, tended to give dynamic consideraticns shovk
shrift, working instead with either first-difference or first-order autoregressive models. This study
addresses squarely this issue by developing a general vector time-series mode] ;
in the context of an inverse demand system. Importantly, minimal constraints are placed on the model’'s
short-run structure; consistent theoretical behavior is, however, incorporated in the model’s long-run
structure by using an Inverse AIDS (IAIDS) demand system. The resulting framework is used to model
consumer meat expenditure decisions in the U.S., with favorable results, The model is then used to test
for several more restr_ict.ive specifications such as autoregressive and partial adjustment models. In
each case these more commonly used models are rejected. Also, the general model is superior in se\;veral
regards to a first-difference specification.

for expenditure shares

1. INTRODUCTION

In recent years there has been renewed interest in systems of inverse
demand equations for food and agricultural products (Chambers and McGonnell:
Barten and Bettendorf; Huang). In such systems prices are defined as dependent
variables, while quantities consumed are treated as exogenous or right-hand-side
variables (Anderson; Weymark). Interest in inverse demand Systems stems from the
fact that many food products, unlike most manufactured goods and services,
involve relatively long production lags so that quantities available in the short
run are essentially fixed. Furthermore, many food items are highly perishable,
and therefore storable for only brief periods of time,

In light of this emerging interest in inverse demand models, several
authors have explored ways in which estimable models can he specified that
maintain essential elements of the theory. Christensen, Jorgenson, and Lau, for
example, develop an Inverse Translog (ITL) demand system, which was subsequently
employed by Christensen and Manser to estimate of a system of inverse meat demand
equations. Alternatively, Chambers and McConnell and Barten and Bettendorf
developed an inverse differential demand system analogous to the Rotterdam demand
model. Recent advances in modelling inverse demand systems, however, utilize the
distance function (Deaton), and include the Inverse Almost Ideal Demand System
(IADS) of Moschini and Vissa, and Eales and Unnevehr (1994), and the Inverse
Lewbel Demand System (ILDS) of Eales. In general, results shoy that inverse
demand systems can provide reasonable estimates of short-run demand flexibilities
for food items, and in particular for meats in the U.S,

The authors are associate professors in the Department of Agricultural and
Resource Economics at North Carolina State University. This work was
supported by the North Carolina Agricultural Research Service
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While considerable progress has been made in the application of inverse
hemaud systems, further work is required. Importantly, models estimated to date
have largely ignored the potential for market and price dynamics to influence
consumption decisions. This is in spite of the fact that dynamic adjustments in
consumer demands for meats are well documented (Wohlgenant and Hahn, Kesavan et
al.). Factors such as short-run inventory adjustments, habit persistence, and
sticky prices can all result in significant dynamic behavior in short—run
consumer demand and price formation. The result is that consumers are likely
unable to adjust to equilibrium every time period. Previous studies have tended
to either ignore the potential for dynamic adjustments in demand and persisted
in working with static models, or have otherwise attempted to capture their

effects in relatively restrictive ways.

The objective of this paper is to combine recent advances in modelling
systems of inverse demand equations with dynamic demand specifications.
Specifically, the framework advanced originally by Anderson and Blundell (1982,
1983) is used to estimate a flexible dynamic inverse demand system for quarterly
U.S. meat demands. The Anderson—-Blundell (A-B) approach has considerable appeal
because it places minimal restrictions on dynamic adjustments that can occur in
short and intermediate runs, while at the same time allowing for a fully
specified inverse demand system (specifically, the IAIDS) to be embedded in the
model’s long-run structure. A further advantage of their approach 1is that
restrictions implied by theory can be imposed on the model’s long-run structure,
where, if anything, we expect such restrictions to hold (Paris, Caputo, and
Holloway). Finally, the A-B dynamic model nests within it several popular but
more restrictive dynamic specifications, including autoregressive and partial
adjustment models, as well as a static specification. Further, these
specifications can be tested against the more general alternative.

In recent years there have been numerous meat demand studies, including
Moschini and Meilke; Eales and Unnevehr (1988, 1993, 1994); Eales; Alston and
Chalfant (1991, 1993); Brester and Wohlgenant; and Kesavan et al. Of these, only
Kesavan et al. develop a dynamic model similar in spirit to the one presented
here. Moreover, to our knowledge the A-B approach, although well established in
the general economics literature, has not been used previously to estimate a
dynamic demand system (either direct or indirect) for a set of agricultural
commodities. We report here the first known attempt Cto do so.

The specification of the IAIDS model used to characterize long-run demand
behavior is given in the next section. In section 3 we turn to modelling short-—
run dynamics in the context of an error correction model, where error correction
terms are identified by IAIDS demand equatioms. The approach is then applied to
a model of quarterly U.S. meat demand for the period 1960-93 in section 4. To
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facilitate comparison, the general dynamic model is contrasted with a model
specified on first differences of the data, a common but potentially restrictive
approach to capturing short-run dynamics in meat demand estimation (e.g.,
Moschini and Meilke; Eales and Unnevehr (1988, 1993); Alston and Chalfant (1991,
1993); Brester and Wohlgenant). Finmally, results are summarized and conclusions

are presented in section 5.

2 THE IAIDS MODEL AND LONG RUN PREFERENCES

As noted in the introduction, the modelling strategy pursued here assumes
the long-run structure of a dynamic model of meat expenditures is consistent with
economic theory. We consider this structure first. Anderson and Blundell (1983)
assumed that consumer expenditures could, in the long run, be characterized by
. a direct AIDS demand system. Our approach follows A-B's general setup, but with
the caveat that long-run preferences are now specified according to the IAIDS
demand system. '

Let w denote a n x 1 vector of budget shares on n goods, g a n x 1 vector
of quantities, and Q a measure of scale effects. In general, the long-run
inverse demand structure may be written as:

w = £(g, Q, 8, | (1)

where 8 is a vector of underlying parameters that characterizes consumer
preferences. By using the IAIDS demand system of Moschini and Vissa and Eales
and Unnevehr (1994) to describe (1) yields:

w = I(8)x, (2)

where X = is a 1 x 1 vector of (transformed) quantities and scale effects, and
II is an appropriately dimensioned matrix function of the parameters, 8.

Specifically, a single equation from (2), representing the i-th budget share, is
given by: i

w3y lnqj + 8, 1nQ, (3)

J

where W, = mq, w being the normalized price of the i-th good (nominal price
P; normalized by total outlay); qj denoting the per capita quantity of the j-th
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gobd consumed: and 1nQ a suitable per capita quantity aggregator index. The
specification of 1nQ, derived from the consumer’s underlying distance function

representation, is:
1InQ = ay + Z; aJ. lnqj + 433 Yij lnq:.L lnqj, (4)

which can be interpreted as a translog quantity aggregator index.

The long-run IAIDS structure is therefore given by (3) and (4), i =
1l,...,n, which includes nonlinear cross—equation parameter resﬁrictions. This
structure conforms to the description of long-run preferences in (2), where x
consists of an intercept, log quantity terms, and transformed log quantity terms.
The vector of underlying preference parameters can be obtained by placing
suitable nonlinear restrictions on II. Furthermore, in any fully integrable
inverse demand system the wusual properties of adding up, homogeneity, and
symmetry apply. For the long-run IAIDS model these restrictions imply: Z; @, =
1, 3 Tay ™ 0, Z, ﬂi = 0 (adding up); Z; Fys 0 (homogeneity); 7ij = in
(symmetry). See Eales and Unnevehr (1994) for further details on the derivation
and properties of the IAIDS model.

3. A FLEXTBLE DYNAMIC MODEL OF CONSUMER EXPENDITURES

In recent years there has been considerable interest in estimating error
correction models, where short-run dynamics are modeled simultaneously with the
model's implied long—run structure (Engle and Granger; Hoffman and Rasche). The
flexible dynamic framework used here to model consumer expenditures on meat has
its foundation in the error correction paradigm. The main difference is, eof
course, that we embed a theoretically consistent specification of consumer
behavior in the long-run structure, the IAIDS model.

For illustrative purposes, consider a general first order dynamic model of
the form:

* *
bw = AAx, - B (W, ) - (@)X, ;) + &, (5)

- - * -
where A is a first difference operator such that Azt -2z, - 2. 1 A is a
o ; * - G- ;
conformable short-run coefficient matrix, B is an appropriately dimensioned
Speed-of-adjustment or error correction matrix, £, is a n x 1 wvector of

indePendently and identically distributed mean-zero random error terms, and t is
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a time index, t = 1,...,T. Define the parameter matrices in (5) such that B*

(1 - cl), A* = Al’ and 1I(8) = B*_l(Al + A2)' It then follows that an equivalent

representation of (5) is:
(6)

The two dynamics specifications, (5) and (6), are observationally equivalent.
While (6) may be the more familiar specification of a dynamic model, the relative
advantage of (5), however, is that the model's long-run parameters——in this case,
the parameters of the IAIDS model——are specified directly. In other words, model
(5) facilitates directly imposing behavior consistent with theory on the long run

structure.

Without further restrictions, neither (5) or (6) are estimable. This is

because: (1) an intercept term is included in both . and X and (2) because

adding up implies v'w = 1 for all t, where ¢ is a conformable vector with all

elements equal to one. To derive an estimable form of (5), let gt denote x,,
only with the constant term deleted, and let superscript n denote the operator
that deletes the n-th row of any matrix or vector. It then follows that an

estimable form of (5) is given by:

- B(wp_; - IU@)E,_;) + £, (7)

1)
Iet

As Anderson and Blundell (1983) note, there is a loss of identification in
the error correction matrix, B. Specifically, they show that the n x (n - 1)
elements of B are related to the n’ elements of B by

ij bij in, = 1,...,0; and ] =1,...,8 =1L

Without additional information pertaining to the error correction parameters, the
bijs cannot be recovered from estimated bi' parameters. In any event, the adding
up restriction does, however, imply no loss of information regarding the model’s
long run structure; all elements in @ can be recovered by applying appropriate
restrictions on I2, Finally, adding up restrictions on the complete model in (7)
implies L'ﬁ.‘!t = 0. As Anderson and Blundell (1982) demonstrate, this identity
results in additional restrictions on elements of A and B. The column sums of
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these matrices must all be zero.

Model (7) is a flexible specification of dynamics in consumer expenditures.
Nested within this specification are several commonly used dynamic setups,
including autoregressive and partial adjustment models. A purely static model
is also nested within dynamic system (7). Specifically, a first-order
autoregressive model of the type estimated by, for example, Eales and Unnevehr
(1994) and Eales, can be obtained by imposing the restrictions: '

aij"nij_'_l(g)o i-l!"')g_lij=1l"‘l..1$_,l’ (8)

on (7), where a and Hi'+1(§) are, respectively, the ij—th elements of A and I,

1
Likewise, a par%ial adjustment model can be deduced from (7) by imposing the
restrictions:
aij-ngi_nlg+l(§)' ig]_’___’ B—I-! J=11-'-) 1_<_1: (9)

where a; and Hi.+l(§) are as defined in (8). Finally, a purely static model,
where adjustments to equilibrium occur instantaneously every period, can be
derived from (7) by combining the restrictions in (8) with restrictions on B.
Specifically, a static model can be obtained by enforcing:

aiJ=H1J+1(§)1 i.‘-_-l,...,_ll_l,_j*l,...,lﬁ"l,

bij =11i=1j, bij =0, i=3j, and bgj = -1, ji=1,...,n-1,

The restrictions implied in (8)-(1l0) provide a basis for conducting
statistical tests of the dynamic structure of a system of expenditure equations.
Of the above specifications, the autoregressive model is most frequently employed
in meat demand studies (e.g., Eales and Unnevehr (1984), and Eales).
Importantly, as illustrated by the restrictions in (8), autoregressive models
constrain short-run and long-run effects to be identical. This is a strong
assumption, and moreover, such restrictions are typically imposed without the
benefit of formal statistical support. Lastly, it is possible to impose
restrictions on (7) to obtain a share equation system specified entirely in
first-difference form.%/ But as Anderson and Blundell (1982) indicate,
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likelihood ratio or other asymptotically equivalent tests are invalid in this
situation so that formal tests for a first-difference alternative are not

available.

APPLICATION TO MEAT EXPENDITURE DECISIONS IN THE U.S.

4. AN

The data used in the application are quarterly time-series data on
consumers' expenditure on four meat items in the U.S. for the period 1960-1993 .2/
Specifically, the four meats included are beef, pork, chicken, and turkey. The
data were obtained from standard USDA sources, and all quantities are expressed
in per capita terms. Prior to estimation, all data were deseasonalized by
regressing each price and quantity series on a set of three trigonometric
seasonal indices, a fifth-order polynomial trend, and interaction terms between
trend and seasonal indices to allow for gradual shifts in seasonality.? The
resulting deseasonalized data, used in all subsequent estimations, are summarized

in figures 1 and 2 and table 1.

First, augmented Dickey-Fuller (ADF) test statistics reported in table 1
indicate that the null hypothesis that all meat expenditure share and quantity
data contain a unit root cannot be rejected at any reasonable levels.? This
result has implications for subsequent model specification, and among other
tings, suggests that modelling short—run behavior by using data in levels is

inappropriate.

Turning to the data themselves, as figure 1 illustrates, the most dramatic
. change in meat consumption over the past 30 years has been for chicken, with per
capita consumption in 1960 at about 5.5 pounds (on a quarterly basis) but
increasing to slightly under 20 pounds by 1993. Moreover, per capita chicken
consumption surpassed pork in 1986 and beef in 1990. At the same time, beef
consumption increased from slightly over 15 pounds per capita in 1960 to a
maximum of 24 pounds in the first quarter of 1976 (table 1), and has since
returned to early 1960s levels. At the same time, pork consumption has neither
grown nor declined dramatically (table 1), although consumption did drop
significantly in the mid 1980s. Lastly, per capita turkey consumption remains
low, but has experienced some growth in recent years.

Alternatively, figure 2 and table 1 show that expenditure shares on these
meats have remained relatively more stable than have quantities consumed. For
example, beef’s share of total meat expenditures has hovered between 50 and 59
percent, reaching its absolute peak in 1975. Likewise, expenditures on pork have
declined gradually over the sample period from approximately 35 percent in the
early 1960s to 27 percent in the mid-1990s. The opposite pattern is observed for
chicken, with its share of total meat expenditures growing from around 10 percent
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in the early 1960s to just over 18 percent in recent years. Lastly, turkey's
share of total meat expenditures has remained rather constant at around 3

percent, although modest growth has been noted in recent years. The stability

of expenditure shares may suggest that much of the shifts in quantities consumed

are largely offset by relative price changes.

As the preceding discussion suggests, considerable changes have occurred
in meat expenditures in the U.S. over the past thirty years. What implications
do these changes have for modelling meat demands, and might meat expenditure
equations be better characterized in dynamic context? To address these and
related questions, we estimate a general dynamic flexible model similar to that
outlined in the previous section. Specifically, we estimate dynamic share
equations that include fourth—order error correction terms of the type:¥

4
5%
he, - ASZ - T B, - TOX Q) * g (i)
where
q(g)_t "% + 3 —yij 1ant Kk + ﬁi th Kk’ i,j =1, K I8 (12)
k - l, :L"a
and
k=1,...,4.

in the & . i . " _

n the dynamic system speglfled in (11)-(13) ;; (1, lnql;’ lnng, lnqss, lnqag.
anE) , where ¢ ~ BF ¢ Aoe = PKQE, A3, = CKQE, Uy = TKQE; t=5,....,136;
g?(g) denotes the i—-th row of the long-run IAIDS parameter matrix, m=(8); and €
is a mean-zero, joint normally distributed error vector, € denoting the

contemporaneous covariance matrix of £, -

Adding up, homogeneity, and symmetry restrictions imposed on parameters in
(@) in (11) and (12) are as defined previously. With these restrictions in
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place, there are 60 free parameters to be estimated in model (11
= 0 for all t, it follows that 4'Q = 0 for all t. That 1S, the e BecauseyA!
covariance matrix is singular. To avoid this problem the equaty, °nteﬂlporanenu§
omitted during estimation (both in the short-run structure, o3 Curkey vas
long-run IAIDS model). Full information maximum likelihoog . W-ell as in the
parameters implied in the flexible dynamic meat expenditure Mode 1'mates of the
all restrictions implied by theory imposed—were obtained by - I (1)—ith
Fletcher—Powell algorithm as implemented in the FORTRAN-baseq Progf the Dayigop-
estimates, along with asymptotic standard errors, are reporteq .nau: iQOPT' The
able 3,
In terms of the estimated long-run IAIDS demand StruCtUre
estimated parameters reported in table 2 are more than twice th;ira of the 2
asymptotic
. tang, . e,
more than two. Alternatively, only five of the 48 estimateq e Td erpop by

standard errors. Regarding the estimate of the short-run Coeffy,.
. . 4
eight of 16 estimated a,. parameters exceed their asymptotic s

. i ) . m .
B, matrices reported in table 2 are more than twice their asyy Sters in the

te Standard
ratio (LR) test of the restrictions implied by B, =B, =B _ 0 2 1ike11h00d
2 3 4 Yie]

statistic of 59.293, which is extreme in the asymptotic X2(33) ™

errors. This result is likely due to multicollinearity bec&use

ded g toqt
St ibutioy,
As outlined in equations (8), (9), and (10), the flexible d ‘

nested within its structure, respectively: (1) a fourth—order Ao Mode] has
model; (2) a first-order partial adjustment model; and (3) g Stag ut°regre55ive
The LR test statistic for restrictions implied by a fourt:h..order uta‘\l’DS model,
model equals 247.812, the value of an asymptotic x (39) distribUt_oorGBIESSi‘v’e
null hypothesis, strongly rejecting the fourth—order autore res: Under the
Likewise, the LR test statistic for the first—order partial adjyg, Ve node].

224.723, an extreme value in the asymptotic x2(36) distributiop ent Modg] is

e f3 "

partial adjustment model -is also rejected in favor of the . flrst—order
. 2 e

specification. Finally, the LR test statistic for a statie o ra] dynamic

826.460, which for all practical purposes has a p-value of zerg G thes Mode] {g
x“(48) distribution. Of these three specifications, the .  SYmptotic
autoregressive model is most similar to the types of IAIDg Node :urth‘order
previously for meat demands (e.g., Eales and Unnevehr (1994)’ . €stimated
Importantly, our results show that the autoregressive approach to Eales).gf
dynamics in meat demand estimation may well be too restrictive ealing with

Although the first-difference model cannot be tested Statistica
the general dynamic model, it is possible to compare estimatio Y against
Estimates of a first-difference model—obtained for the same samp] Tesyltg.
recorded in table 3. Compared with the long-run IAIDS structyre in pe‘~‘iod--_are
biggest discrepancies seem to occur for estimates of ﬂi scale p,, eatle 2, the
first-difference model implies larger ’Bi estimates (in absolyte terms)ers. The

for pork
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and turkey and smaller ﬂi estimates for beef and chicken (again, in absolute
terms) than does the flexible dynamic model. This outcome is consistent with
Anderson and Blundell's (1982), who found large divergences in estimated
expenditure effects between a general dynamic AIDS model and a more restrictive
static AIDS model. In addition to scale effects, there is also considerable
variation in estimates of cross—quantity effects between the two models. .

Further comparisons between the two models can be made by examining the
estimated residuals. Several diagnostic measures are reported in table &4. For
the dynamic model, Box-Pierce Q(1l2) statistics indicate only the pork share
equation has any remaining significant autocorrelation. Likewise, for the first-
difference model, only the chicken equation has significant autocorrelation.
Importantly, R%s for share equations in the dynamic model are, in every case,
larger than their counterpérts in the first—difference model (table &4). In fact,
Ezs for beef, pork, and chicken equations in the dynamic model are more than
twice those estimated for their counterparts in the first—difference model. of
course residual root mean squared—errors exhibit a parallel pattern, being lower
for all equations in the dynamic model than in the first—difference model. On
balance, the flexible dynamic model does a good job of explaining the data, and
provides a better fit than does a first-difference specification.

Additional insights can be obtained by examining own-price, cross—price,
and scale flexibilities for both models. These estimates, along with asymptotic

standard errors, are recorded in table 5.% To start, all own-price
flexibilities for the dynamic model are negative and are less than one in
absolute terms, suggesting that meat demands are flexible (i.e., own—price

flexibilities are between zero and minus one). Furthermore, the magnitudes, at
least for beef, pork, and chicken, are comparable to those reported by Eales and
Unnevehr (1994) and Eales. Interestingly, long-run cross—price flexibilities
computed with the dynamic model suggest that pork and beef, and chicken and
turkey are gross g-substitutes. Perhaps of greater interest, however, is that
no beef cross—-price flexibilities is significantly different from zero (table 5),
a result that stands in contrast to that reported by Eales. Scale flexibilities
computed for the dynamic model are all negative and in each case are significant.
In general, scale flexibility for beef is larger than previous estimates and
scale flexibilities for pork and chicken are smaller than prior estimates.

Cross—price and scale flexibilities for the first-difference model reported
in table 5 are generally in closer agreement with those reported by Eales and
Unnevehr (1994) and Eales, at least with respect to beef, pork, and chicken.
When compared with the estimates of the dynamic model, with the exception of
turkey there is not much discrepancy in own-price estimates. Estimated cross—
price flexibilities are, however, generally larger in absolute terms than those

132



for the flexible dynamic model. Likewise, there is a noticeable difference in
scale beef flexibilities for beef implied by the two models. Interestingly, own—
and cross—price flexibilities for turkey are mostly insignificant in the first-
difference model, and the associated scale flexibility is implausibly large and
positive (albeit significantly different from zero). Flexibilities obtained
under the general dynamic specification generally appear more acceptable.

As a final comparison of the two approaches to modelling meat demand,
eigenvalues of the Antonelli substitution matrix, along with associated standard
errors, were computed at the means of the sample data.?/ To assure existence of
a well-defined distance function, not only must estimated share equations satisfy
homogeneity and symmetry, but the estimated Antonelli substitution matrix must
be negative semi—definite as well.®/

The negativity results, reported in table 6, are striking. In neither case
is the dominate eigenvalue, Al’ significantly different from zero. For the
dynamic model, however, the remaining three eigenvalues are significantly less
than zero, while for the first-difference model only the final wvalue, A4, is
significantly less than zero. Moreover, in 10,000 draws on the parameter vector,
the long-run IAIDS specification embedded in the general dynamic model did not
fail the negativity requirement on the estimated Antonelli matrix once, as
indicated by Prob = 1.0 for the dynamic model in table 6. Alternatively, in the
same number of draws, Prob = 0.18 for the first-difference model, implying the
negativity condition is satisfied only 18 percent of the time. On the basis of
these results alone, it appears the long-run IAIDS structure associated with the
general dynamic model provides a more satisfactory representation of consumer
preferences than does the first—difference model.Y/

5. CONCLUSIONS ' !

In recent years there has been renewed interest in estimating inverse
demand systems for meat and other agricultural commodities. While progress has
been made, dynamic considerations in most prior applications of inverse demand
systems have been largely overlooked. This paper has addressed this issue by
specifying and estimating a flexible dynamic model of consumers' meat
expenditures in an inverse demand context. This was accomplished by adopting
Anderson and Blundell’s (1982, 1983) approach, which allows modelling of short-—
run expenditure dynamics in a fully flexible manner, while at the same time
maintaining a theoretically consistent structure in the model’s long-run
response. Specifically, long-run demands were specified according to the Inverse
Almost Ideal Demand System (IAIDS) advanced recently by Eales and Unnevehr (1993,
1994) and Moschini and Vissa. Importantly, the specified model had nested within
its framework several commonly used specifications for demand dynamics, including
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autoregressive and partial adjustment setups.

A fourth-order general dynamic model was estimated by using quarterly time-
series data on meat expenditures and quantities in the U.S. The estimated model
fit the data well, appeared to do an adequate job of capturing dynamics in meat
expenditure decisions, and yielded reasonable parameter and flexibility
estimates. Of interest is that more restrictive specifications associated with:
(1) an autoregressive model:; (2) a partial adjustment model; and (3) a static
model all were rejected in favor of the general specification. Inasmuch as these
models, and in particular the autoregressive model, are among the most frequently
employed dynamic demand specifications, results here suggest that future work
should pay much more attention to the nature of underlying market dynamics.

Finally, the general dynamic model was compared with a first-difference
model, a specification which has been employed frequently in studies that use
time-series data. The general dynamic model was found to be superior in a
several regards to the first-difference model, including model fit, flexibility
estimates, and, perhaps most importantly, in its ability to satisfy negativity
conditions arising from consumer theory. Given that these conditions are often
the most difficult to impose in empirical applications, results reported here
suggest that the dynamic specification could also be a useful vehicle for
conducting policy and welfare analysis.

ENDNOTES
1/ In particular, a first difference model can be obtained from (7) by
imposing:
a]._J = nij+l(g), { =1,...58=Li F=l.... k=1,
b.lj =0, £,3=1,...40 = 1.
2/ In the empirical application the first four observations are used to

initialize the model’s dynamic lag structure.

37 Specifically, the seasonal indices are given by cos(2nt/2), sin(2nt/4),
and cos(2rxt/4), t = 1,...,136.
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Indeed, the same general results regarding unit roots hold for the log
quantity data as well. ADF test statistics for a unit root in the log
quantity terms are, respectively, -1.89 (1nQBF), -2.68 (InQPK), -1.81
(InQCK), -2.05. (1InQTK), all of which are less than, in absolute terms,
the critical value of -3.13 at the 10" percent level.

The fourth—order specification in (11) was determined largely on the basis
of preliminary testing; the specification makes sense, however, because
previous studies involving quarterly time-series data often find
significant autocorrelation at annual frequencies (e.g., Kesavan et al.).
Specifically, models estimated by Eales and Unnevehr (1994) and Eales
employ a first-order autoregressive model with the autocorrelation terms
constrained to be the same across equations (this is done to ensure
invariance with respect to the equation omitted; see, e.g., Berndt and
Savin). When this specification was tested against the general dynamic
model, an LR test statistic of 249.284 was obtained, a value which also is
extreme in the asymptotic x2(47) distribution.

Flexibilities were obtained by using the formulae reported in Eales and
Unnevehr (1994), evaluated at the means of the sample data. Standard
errors were obtained by employing the Monte Carlo simulation techniques
introduced by Geweke and employed in a demand systems context by Chalfant,
Gray, and White. Specifically, the estimated parameter covariance matrix
was used to obtain 10,000 draws on the @ parameter vector. Flexibilities
were then computed after each draw. Resulting sample standard deviations
were used as estimates of asymptotic standard errors.

The same Monte Carlo method used to compute standard errors for
flexibilities was used to compute standard errors for eigenvalues, as well
as the associated probability the Antonelli substitution matrix is quasi-
concave,

Due to adding up, the Antonelli matrix can never be of full rank, and
hence can never be strictly concave. The implication is the dominate
eigenvalue of the Antonelli matrix will-—within acceptable roundoff error
—equal zero.

Of course all results regarding eigenvalues of the Antonelli matrix are
conditional on symmetry and homogeneity being imposed.
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TABLE 1

Descriptive Statistics for IAIDS Meat Demand Variables: Variations

in Quantities and Budget Shares (sample 1961-93, N = 132)

‘Augmented Dickey-Fuller regression equation for a unit root:

Ayt =a + 6t + PY .1t 1§iAyt—i + € t=1,...,136.
£ . L i i "1 E

I ™M oo

Sample Standard

Variable Average Error Min Max ADF?
Quantities:

Beef Quantity (BFQ): 19.29 2.00 15.39 24 .04 -1.91

Pork Quantity (PKQ): 14 .44 1.40 1r.7% 17.82 -2.66

Chicken Quantity (CKQ): 11.29 3.81 5.58 19.69  -0.07

Turkey Quantity (TKQ): 2.41 0.98 4,52 1.22 -1.63

Budget Shares:

Beef Budget Share (WBF): 0.55 0.02 0:.:50 0.59 -1.07
Pork Budget Share (WPK): 0.30 0.02 0.26 0.35 -2.32
Chicken Budget Share (WCK): 0.12 0.03 0.09 0.18 .27
Turkey Budget Share (WTK): 0.03 0.01 0.02 0.05 -1.38

Note: Quantities are in pounds per capita, budget shares are in percent. Min
denotes minimum value in the sample data and Max denotes the corresponding
maximum value. Likewise, ADF denotes the augmented Dickey-Fuller unit root
test statistic on p.

a. Critical value at the a = 0.10 level is -3.13.
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