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A FLEXIBLE DYNAMIC INVERSE DEMAND SYSTEM: AN APPLICATION TO U.S. MEAT DEMAND

Matthew T. Holt and Barry K. Goodwin"

In recent years there has been considerable interest in systems of inverse demand equations for
agricultural commodities. Prior studies have, however, tended to give dynamic considerations short
shrift, working instead with either first—difference or first—order autoregressive models. This study
addresses squarely this issue by developing a general vector time—series model for expenditure shares
in the context of an inverse demand system. Importantly, minimal constraints are placed on the model’s
short—run structure; consistent theoretical behavior is, however, incorporated in the model’s long—run
structure by using an Inverse AIDS (IAIDS) demand system. The resulting framework is used to model
consumer meat expenditure decisions in the U.S. with favorable results. The model is then used to test
for several more restrictive specifications such as autoregressive and partial adjustment models. In
each case these more commonly used models are rejected. Also, the general model is superior in several
regards to a first—difference specification.

1. INTRODUCTION

In recent years there has been renewed interest in systems of inverse
demand equations for food and agricultural products (Chambers and McConnell;
Barten and Bettendorf; Huang). In such systems prices are defined as dependent
variables, while quantities consumed are treated as exogenous or right-hand-side
variables (Anderson; Weymark). Interest in inverse demand systems stems from the
fact that many food products, unlike most manufactured goods and services,
involve relatively long production lags so that quantities available in the short
run are essentially fixed. Furthermore, vmany food items are highly perishable,
and therefore storable for only brief periods of time.

In light of this emerging interest in inverse demand models, several
authors have explored ways in which estimable models can be specified that
maintain essential elements of the theory. Christensen, Jorgenson, and Lau, for
example, develop an Inverse Translog (ITL) demand system, which was subsequently
employed by Christensen and Manser to estimate of a system of inverse meat demand
equations. Alternatively, Chambers and McConnell and Barten and Bettendorf
developed an inverse differential demand system analogous to the Rotterdam demand
model. Recent advances in modelling inverse demand systems, however, utilize the
distance function (Deaton), and include the Inverse Almost Ideal Demand System
(IADS) of Moschini and Vissa, and Eales and Unnevehr (1994), and the Inverse
Lewbel Demand System (ILDS) of Eales. In general, results show that inverse
demand systems can provide reasonable estimates of short-run demand flexibilities

for food items, and in particular for meats in the U.S.

* The authors are associate professors in the Department of Agricultural and
Resource Economics at North Carolina State University. This work was
supported by the North Carolina Agricultural Research Service.

123



While considerable progress has been made in the application of inverse
demand systems, further work is required. Importantly, models estimated to date
have largely ignored the potential for market and price dynamics to influence
consumption decisions. This is in spite of the fact that dynamic adjustments in
consumer demands for meats are well documented (Wohlgenant and Hahn, Kesavan et
al.). Factors such as short-run inventory adjustments, habit persistence, and
sticky prices can all result in significant dynamic behavior in short—run
consumer demand and price formation. The result is that consumers are likely
unable to adjust to equilibrium every time period. Previous studies have tended
to either ignore the potential for dynamic adjustments in demand and persisted
in working with static models, or have otherwise attempted to capture their

effects in relatively restrictive ways.

.. The objective of this paper is to combine recent advances in modelling
systems of inverse demand equations with dynamic demand specifications.
Specifically, the framework advanced originally by Anderson and Blundell (1982,
1983) is used to estimate a flexible dynamic inverse demand system for quarterly
U.S. meat demands. The Anderson-ﬁlundell (A-B) approach has considerable appeal
because it places minimal restrictions on dynamic adjustments that can occur in
short and intermediate runs, while at the same time allowing for a fully
specified inverse demand system (specifically, the IAIDS) to be embedded in the
model’s long—run structure. A further advantage of their approach is that
restrictions implied by theory can be imposed on the model’s long-run structure,
where, if anything, we expect such restrictions to hold (Paris, Caputo, and
Holloway). Finally, the A-B dynamic model nests within it several popular but
more restrictive dynamic specifications, including autoregressive and partial
adjustment models, as well as a static specification. Further, these

specifications can be tested against the more general alternative.

In recent years there have been numerous meat demand studies, including
Moschini and Meilke; Eales and Unnevehr (1988, 1993, 1994); Eales; Alston and
Chalfant (1991, 1993); Brester and Wohlgenant; and Kesavan et al. Of these, only
Kesavan et al. develop a dynamic model similar in spirit to the one presented
here. Moreover, to our knowledge the A-B approach, although well established in
the general economics literature, has not been used previously to estimate a
dynamic demand system (either direct or indirect) for a set of agricultural

commodities. We report here the first known attempt to do so.

The specification of the IAIDS model used to characterize long—run demand
behavior is given in the next settion. In section 3 we turn to modelling short-—
run dynamics in the context of an error correction model, where error correction
terms are identified by IAIDS demand equations. The approach is then applied to
a model of quarterly U.S. meat demand for the period 1960-93 in section 4. To
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facilitate comparison, the general dynamic model is contrasted with a model
specified on first differences of the data, a common but potentially restrictive
approach to capturing short-run dynamics in meat demand estimation (e.g.,
Moschini and Meilke; Eales and Unnevehr (1988, 1993); Alston and Chalfant (1991,
1993); Brester and Wohlgenant). Finally, results are summarized and conclusions

are presented in section 5.

2. THE IAIDS MODEL AND LONG RUN PREFERENCES

AR A A e A s A e

As noted in the introduction, the modelling strategy pursued here assumes

‘the long-run structure of a dynamic model of meat expenditures is consistent with

economic theory. We consider this structure first. Anderson and Blundell (1983)
assumed that consumer expenditures could, in the long run, be characterized by
a direct AIDS demand system. Our approach follows A-B's general setup, but with
the caveat that long—-run preferences are now specified according to the IAIDS

demand system.

Let w denote a n x 1 vector of budget shares on n goods, gan x 1 vector
of quantities, and Q a measure of scale effects. In general, the long-run

inverse demand structure may be written as:

w = f(g, Q, 8), | (1)

where © is a vector of underlying parameters that characterizes consumer
preferences. By using the IAIDS demand system of Moschini and Vissa and Eales

and Unnevehr (1994) to describe (1) yields:

w = [I(8)x, (2)

where x = is a 1 x 1 vector of (transformed) quantities and scale effects, and
I is an appropriately dimensioned matrix function of the parameters, 8.
Specifically, a single equation from (2), representing the i—th budget share, is

given by:

W, = oy + Ej‘yijlnqj + ﬁian, (3)

where woo= Mg, Ty being the normalized price of the i—th good (nominal price
1 normalized by total outlay); qj denoting the per capita quantity of the j—th

125



good consumed; and 1nQ a suitable per capita quantity aggregator index. The

specification of 1nQ, derived from the consumer'’'s underlying distance function

representation, is:

LT T,
InQ = + Z ozJ 1an + B X & Vij lnqilnqj, (4)

which can be interpreted as a translog quantity aggregator index.

The long-run IAIDS structure is therefore given by (3) and (4), 1 =
1,...,n, which includes nonlinear cross—equation parameter restrictions. This
structure conforms to the description of long-run preferences in (2), where x
consists of an intercept, log quantity terms, and transformed log quantity terms.
The vector of underlying preference parameters can be obtained by placing
suitable nonlinear restrictions on II. Furthermore, in any fully integrable
inverse demand system the usual properties of adding up, homogeneity, and
symmetry apply. For the long—run IAIDS model these restrictions imply: I, a; =
1, =5 Yii = 0, Z ﬁi = 0 (adding up); &; 7v:: = 0 (homogeneity); 7ij = 7ji
(symmetry). See Eales and Unnevehr (1994) for gurther details on the derivation
and properties of the IAIDS model.

3. A FLEXIBLE DYNAMIC MODEL OF CONSUMER EXPENDITURES

In recent years there has been considerable interest in estimating error
correction models, where short—run dynamics are modeled simultaneously with the
model’s implied long-run structure (Engle and Granger; Hoffman and Rasche). The
flexible dynamic framework used here to model consumer expenditures on meat has
its foundation in the error correction paradigm. The main difference is, of
course, that we embed a theoretically consistent specification of consumer

behavior in the long-run structure, the IAIDS model.

For illustrative purposes, consider a general first order dynamic model of

the form:

€ (3)

*

where A is a first difference operator such that 4z = Zt —Z_qo A is a

* .
conformable short-run coefficient matrix, B is an appropriately dimensioned
speed—of-adjustment or error correction matrix, £, is a n x 1 vector of
independently and identically distributed mean—zero random error terms, and L is
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a2 time index, t = 1,...,T. Define the parameter matrices in (5) such that B*

* . - B
(1 - Cl>’ A = Al’ and 1I(8) = B l(A1 + AZ). It then follows that an equivalent

representation of (5) 1is:
w,_ = A X, + A X + C,w + €. (6)

The two dynamics specifications, (5) and (6), are observationally equivalent.
While (6) may be the more familiar specification of a dynamic model, the relative
advantage of (5), however, is that the model’s long-run parameters——in this case,
the parameters of the IAIDS model——are specified directly. In other words, model
(5) facilitates directly imposing behavior consistent with theory on the long run

structure.

Without further restrictions, neither (5) or (6) are estimable. This is
because: (1) an intercept term is included in both X and zt—l; and (2) because
adding up implies i'gt - 1 for all t, where ¢ is a conformable vector with all
elements equal to one. To derive an estimable form of (5), let Xt denote - S
only with the constant term deleted, and let superscript n denote the operator
that deletes the n—th row of any matrix or vector. It then follows that an

estimable form of (5) is given by:

- @)%, _{) * & (7

|
ot

|
t
4

As Anderson and Blundell (1983) note, there is a loss of identification in

the error correction matrix, B. Specifically, they show that the n x (n - 1)

2

clements of B are related to the n° elements of B by

i3

bijzbij“big, i=1,...,n, and j = 1,...,n~ L.

Without additional information pertaining to the error correction parameters, the
bj.s cannot be recovered from estimated bi' parameters. In any event, the adding
up restriction does, however, imply no loss of information regarding the model’s
long run structure; all elements in 8 can be recovered by applying appropriate
restrictions on I’. Finally, adding up restrictions on the complete model in (7)
implies L'Aﬂt = 0. As Anderson and Blundell (1982) demonstrate, this identity

results in additional restrictions on elements of A and B. The column sums of
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these matrices must all be zero.

Model (7) is a flexible specification of dynamics in consumer expenditures.
Nested within this specification are several commonly used dynamic setups,
including autoregressive and partial adjustment models. A purely static model
ig also mnested within dynamic system (7). Specifically, a first—order
autoregressive model of the type estimated by, for example, Eales and Unnevehr

(1994) and Eales, can be obtained by imposing the restrictions:

a k-1, (8)

1] = Hij+l<§>’ 7 i=1,...

on (7), where a. s and Hi.+l(§) are, respectively, the ij—th elements of A and .
Likewise, a partial adjustment model can be deduced from (7) by imposing the

restrictions:
a.. = 2y bikn .+l(§), i=1,..., 0~ 1, j=121,..., k-1, (9

where a; . and ni.%l(g) are as defined in (8). Finally, a purely static model,
where adjustments to equilibrium occur instantaneously every period, can be
derived from (7) by combining the restrictions in (8) with restrictions on B.

Specifically, a static model can be obtained by enforcing:

I

aij Hij+1<g)’ i=1,...,n—-1,]3= 1,...,k -1,

I
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The restrictions implied in (8)—(10) provide a basis for conducting
statistical tests of the dynamic structure of a system of expenditure equations.
Of the above specifications, the autoregressive model is most frequently‘employed
in meat demand studies (e.g.. Eales and Unnevehr (1984), and Eales).
lmportantly, as illustrated by the restrictions in (8), autoregressive models
constrain short-run and long—run effects to be identical. This is a strong
assumption, and moreover, such restrictions are typically imposed without the
benefit of formal statistical support. Lastly, it 1is possible to impose
restrictions on (7) to obtain a share equation system specified entirely in
first—difference form.* But as Anderson and Blundell (1982) indicate,
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1ikelihood ratio or other asymptotically equivalent tests are invalid in this
situation so that formal tests for a first—difference alternative are mot

available.

4. AN APPLICATION TO MEAT EXPENDITURE DECISIONS IN THE U.S.

The data used in the application are quarterly time—series data on
consumers’ expenditure on four meat items in the U.S. for the period 1960-1993 .2/
Specifically, the four meats included are beef, pork, chicken, and turkey. The
data were obtained from standard USDA sources, and all quantities are expressed
in per capita terms. Prior to estimation, all data were deseasonalized by
regressing each price and quantity series on a set of three trigonometric
seasonal indices, a fifth-order polynomial trend, and interaction terms between
trend and seasonal indices to allow for gradual shifts in seasonality.?/ The
resulting deseasonalized data, used in all subsequent estimations, are summarized

in figures 1 and 2 and table 1.

First, augmented Dickey-Fuller (ADF) test statistics reported in table 1
indicate that the null hypothesis that all meat expenditure share and quantity
data contain a unit root cannot be rejected at any reasonable levels.’ This
result has implications for subsequent model specification, and among other
tings, suggests that modelling short—run behavior by using data in levels is

inappropriate.

Turning to the data themselves, as figure 1 illustrates, the most dramatic
change in meat consumption over the past 30 years has been for chicken, with pex
capita consumption in 1960 at about 5.5 pounds (on a quarterly basis) but
increasing to slightly under 20 pounds by 1993. [lMoreover, per capita chicken
consumption surpassed pork in 1986 and beef in 1990. At the same time, beef
consumption increased from slightly over 15 pounds per_ capita in 1960 to a
maximum of 24 pounds in the first quarter of 1976 (table 1), and has since
returned to early 1960s levels. At the same time, pork consumption has neither
grown nor declined dramatically (table 1), although consumption did drop
significantly in the mid 1980s. Lastly, per capita turkey consumption remains

low, but has experienced some growth in recent years.

Alternatively, figure 2 and table 1 show that expenditure shares on these
meats have remained relatively more stable than ha'e quantities consumed. For
example, beef’'s share of total meat expenditures has hovered between 50 and 59
percent, reaching its absolute-peak in 1975. Likewise, expenditures on pork have
declined gradually over the sample period from approximately 35 percent in the
early 1960s to 27 percent in the mid-1990s. The opposite pattern is observed for
chicken, with its share of total meat expenditures growing from around 10 percent
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in the early 1960s to just over 18 percent in recent years. Lastly, turkey's
share of total meat expenditures has remained rather constant at around 3
percent, although modest growth has been noted in recent years. The stability
of expenditure shares may suggest that much of the shifts in quantities consumed

are largely offset by relative price changes.

, As the preceding discussion suggests, considerable changes have occurred
in meat expenditures in the U.S. over the past thirty years. What implications
do these changes have for modelling meat demands, and might meat expenditure
equations be better characterized in dynamic context? To address these and
related questions, we estimate a general dynamic flexible model similar to that
outlined in the previous section. Specifically, we estimate dynamic share

equations that include fourth—-order error correction terms of the type:2/

A
bw = A0% - E B G - @E ) * £ (11)
where
_Ql;l(g))_td_k=a + 3 7Jlnqj_t-__k+ﬂ nQ,_,, i,j=1,....3, (12
k=1, RN
and
= . Lﬁ ; i i ] o= . -
111Q§-k Z; aj]11qj£_k + %33 yijlquig_kﬁhnqjg_k, i,] 1,....,3, (13)

s lant, 1nq4t,

In the dynamic system specified in (11)—-(13) x £ - (1, lnqlt, lant
. t=5,....,136;

1nQ Y, where qlt = BFQt, th = PKQE’ th = CKQ q4t = TKQ
ﬂ?(@) denotes the i-~th row of the long—run IAIDS parameter matrlx H“(G) and £,
is a mean—zero, joint normally distributed error vector, ( denoting the
contemporaneous covariance matrix of £
Adding up, homogeneity, and symmetry restrictions imposed on parameters in
m(8) in (11) and (12) are as defined previously. With these restrictions in
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place, there are 60 free parameters to be estimated in model (11). Because L’Ayt
= 0 for all t, it follows that :'Ql = 0 for all t. That is, the contemporaneoug
covariance matrix is singular. To avoid this problem the equation for turkey was
omitted during estimation (both in the short-run structure, as well as in the
long—run IAIDS model). Full information maximum likelihood estimates of the
parameters implied in the flexible dynamic meat expenditure model in (1l)-—with
all restrictions implied by theory imposed--were obtained by using the Davidon-
Fletcher—Powell algorithm as implemented in the FORTRAN-based program GQOPT. The

estimates, along with asymptotic standard errors, are reported in table 2.

) In terms of the estimated long-run IAIDS demand structure, 18 of the 24
estimated parameters reported in table 2 are more than twice thelr asymptotic
standard errors. Regarding the estimate of the short—run coefficient matrix A,
eight of 16 estimated a. . parameters exceed their asymptotic standard errors by
more than two. Alternatively, only five of the 48 estimated parameters in the
B, matrices reported in table 2 are more than twice their asymptotic standard
errors. This result is likely due to multicollinearity because a likelihood
ratio (LR) test of the restrictions implied by BZ = B3 = %4 = 0 yielded a test
statistic of 59.293, which 1s extreme in the asymptotic x (33) distribution.

As outlined in equations (8), (9), and (10), the flexible dynamic model has
nested within its structure, respectively: (1) a fourth—order autoregressive
model; (2) a first—order partial adjustment model: and (3) a static IAIDS model.
The IR test statistic for restrictions implied by a fourth—order autoregressive
model equals 247.812, the value of an asymptotic X2(39) distribution under the
null hypothesis, strongly rejecting the fourth—order autoregressive model.
Likewise, the LR test statistic for the first-order partial adjustment model is
224.723, an extreme value in the asymptotic X2(36) distribution. The first—order

partial adjustment model 1is also rejected in favor of the general dynamic

specification. Finally, the LR test statistic for a static IAIDS model is
896 .460, which for all practical purposes has a p—value of zero in the asymptotic
x2(48) distribution. Of these three specifications, the fourth-order

autoregressive model is most similar to the types of IAIDS models estimated
previously for meat demands (e.g., Eales and Unnevehr (1994), and Eales).&
Importantly, our results show that the autoregressive approach to dealing with

dynamics in meat demand estimation may well be too restrictive.

Although the first-difference model cannot be tested statistically against
the general dynamic model, it is possible to compare estimation results.
Estimates of a first—difference model——obtained for the same sample period——are
recorded in table 3. Compared with the long-run IAIDS structure in table 2, the
biggest discrepancies seem tO OCCUI for estimates of ﬂi scale parameters. The

first—difference model implies larger ﬂi estimates (in absolute terms) for pork
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‘and turkey and smaller @i estimates for beef and chicken (again, in absolute
terms) than does the flexible dynamic model. This outcome 1is consistent with
Anderson and Blundell's (1982), who found large divergences in estimated
expenditure effects between a general dynamic AIDS model and a more restrictive
static AIDS model. In addition to scale effects, there 1s also considerable

variation in estimates of cross—quantity effects between the two models.

Further comparisons between the two models can be made by examining the
estimated residuals. Several diagnostic measures are reported in table 4. For
the dynamic model, Box-—Pierce Q(12) statistics indicate only the pork share
equation has any remaining signifiéaht autocorrelation. Likewise, for the first-
difference model, only the chicken equation has significant autocorrelation.
Importantly, R°s for share equations in the dynamic model are, in every case,
larger than their counterparts in the first—difference model (table 4). In fact,
§25 for beef, pork, and chicken equations in the dynamic model are more than
twice those estimated for their counterparts in the firsﬁ—difference model. Of
course residual root mean squared—errors exhibit a parallel pattern, being lower
for all equations in the dynamic model than in the first—difference model. On
balance, the flexible dynamic model does a good job of explaining the data, and

provides a better fit than does a first—difference specification.

Additional insights can be obtained by examining own-price, cross—price,
and scale flexibilities for both models. These estimates, along with asymptotic
standard errors, are recorded in table 5.1/ To start, all own—price
flexibilities for the dynamic model are negative and are less than one in

absolute terms, suggesting that meat demands are flexible (i.e., own—price

flexibilities are between zero and minus one). Furth=rmore, the magnitudes, at
least for beef, pork, and chicken, are comparable to those reported by Eales and
Unnevehr (1994) and Eales. Interestingly, long—run cross—price flexibilities
computed with the dynamic model suggest that pork and beef, and chicken and
turkey are gross g-substitutes. Perhaps of greater interest, however, is that
no beef cross—price flexibilities is significantly different from zero (table 5),
a result that stands in contrast to that reported by Eales. Scale flexibilities
computed for the dynamic model are all negative and in each case are significant.
In general, scale flexibility for beef is larger than previous estimates and

scale flexibilities for pork and chicken are smaller than prior estimates.

Cross—price and scale flexibilities for the first—difference model reported
in table 5 are generally in closer agreement with those reported by Eales and
Unnevehr (1994) and Eales, at least with respect to beef, pork, and chicken.
When compared with the estimates of the dynamic model, with the exception of
turkey there is not much discrepancy in own—price estimates. Estimated cross—

price flexibilities are, however, generally larger in absolute terms than those
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for the flexible dynamic model. Likewise, there is a noticeable difference in
scale beef flexibilities for beef implied by the two models. Interestingly, own—
and cross—price flexibilities for turkey are mostly insignificant in the first-
difference model, and the associated scale flexibility is implausibly large and
positive (albeit significantly different from zero). Flexibilities obtained

under the general dynamic specification generally appear more acceptable.

As a final comparison of the two approaches to modelling meat demand,
eigenvalues of the Antonelli substitution matrix, along with associated standard
errors, were computed at the means of the sample data.? To assure existence of
a well—defined distance function, not only must estimated share equations satisfy
homogeneity and symmetry, but the estimated Antonelli substitution matrix must

be negative semi-definite as well.¥

The negativity results, reported in table 6, are striking. In neither case
is the dominate eigenvalue, A significantly different from zero. For the
dynamic model, however, the remaining three eigenvalues are significantly less
than zero, while for the first—difference model only the final value, A&, is
significantly less than zero. Moreover, in 10,000 draws on the parameter vector,
the long—run IAIDS specification embedded in the general dynamic model did not
fail the negativity requirement on the estimated Antonelli matrix once, as
indicated by Prob = 1.0 for the dynamic model in table 6. Alternatively, in the
same number of draws, Prob = 0.18 for the first—difference model, implying the

‘negativity condition is satisfied only 18 percent of the time. On the basis of
these results alone, it appears the long—run IAIDS structure associated with the
general dynamic model provides a more satisfactory representation of consumer

preferences than does the first—difference model .2/

5. CONCLUSIONS

In recent years there has been renewed interest in estimating inverse
demand systems for meat and other agricultural commodities. While progress has
been made, dynamic considerations in most prior applications of inverse demand
systems have been largely overlooked. This paper has addressed this issue by
specifying and estimating a flexible dynamic model of consumers’' meat
expenditures in an inverse demand context. This was accomplished by adopting
anderson and Blundell’s (1982, 1983) approach, which allows modelling of short-—
run expenditure dynamics in a fully flexible manner, while at the same time
maintaining a theoretically consistent structure in the model’s long—run
response. Specifically, long-run demands were specified according to the Inverse
Almost Ideal Demand System (1AIDS) advanced recently by Eales and Unnevehr (1993,
1994) and Moschini and Vissa. Importantly, the specified model had nested within

its framework several commonly used specifications for demand dynamics, including
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autoregressive and partial adjustment setups.

A fourth-order general dynamic model was estimated by using quarterly time-
series data on meat expenditures and quantities in the U.S. The estimated model
fit the data well, appeared to do an adequate job of capturing dynamics in meat
expenditure decisiomns, and vyielded reasonable parameter and flexibility
estimates. Of interest is that more restrictive specifications associated with:
(1) an autoregressive model; (2) a partial adjustment model; and (3) a static
model all were rejected in favor of the general specification. Inasmuch as these
models, and in particular the autoregressive model, are among the most frequently
employed dynamic demand specifications, results here suggest that - future work

should pay much more attention to the nature of underlying market dynamics.

Finally, the general dynamic model was compared with a first—difference
model, a specification which has been employed frequently in studies that use
time—series data. The general dynamic model was found to be superior in a
several regards to the First—difference model, including model fit, flexibility
estimates, and, perhaps most importantly, in its ability to satisfy negativity
conditions arising from consumer theory. Given that these conditions are often
the most difficult to impose in empirical applications, results reported here
suggest that the dynamic specification could also be a useful vehicle for

conducting policy and welfare analysis.

ENDNOTES
1/ In particular, a first difference model can be obtained from (7) by
imposing:
aij = Hij+l(§)’ i=1,...,n -1, 3~ 1,...,k -1,
b.. =0, i,j=1,...,n - 1.
1]
2/ In the empirical application the first four observations are used to

initialize the model’s dynamic lag structure.

3/ Specifically, the seasonal indices are given by cos(2nt/2), sin(2nt/4),
and cos(2nt/4), t = 1,...,136.
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Indeed, the same general results regarding unit roots hold for the log
quantity data as well. ADF test statistics for a unit root in the log
quantity terms are, respectively, ~1.89 (InQBF), —2.68 (lnQPK), -1.81
(InQCK), =2.05 (1InQTK), all of which are less than, in absolute terms,
the critical value of -3.13 at the 10 percent level.

The fourth-order specification in (11) was determined largely on the basis
of preliminary testing; the specification makes sense, however, because
previous studies involving quarterly time-— series data often find
significant autocorrelation at annual frequencies (e.g., Kesavan et al.).
Specifically, models estimated by Eales and Unnevehr (1994) and Eales
employ a first—order autoregressive model with the autocorrelation terms
constrained to be the same across equatlons (this is done to ensure
ipvariance with respect to the equation omitted; see, e.g. Berndt and
Savin). When this specification was tested against the general dynamic
model, an LR test statistic of 249.284 was obtained, a value which also is

extreme in the asymptotic x" (47) distribution.

Flexibilities were obtained by using the formulae reported in Eales and
Unnevehr (1994), evaluated at the means of the sample data. Standard
errors were obtained by employing the Monte Carlo simulation techniques
introduced by Geweke and employed in a demand systems context by Chalfant,

Gray, and White. Specifically, the estimated parameter covariance matrix
was used to obtain 10,000 draws on the © parameter vector. Flexibilities
were then computed after each draw. Resulting sample standard deviations

were used as estimates of asymptotic standard errors.

The same Monte Carlo method used to compute standard errors for
flexibilities was used to compute standard errors for eigenvalues, as well
as the associated probability the Antonelli substitution matrix 1is quasi-

concave.

Due to adding up, the Antonelli matrix can never be of full rank, and
hence can never be strictly concave. The implication is the dominate
eigenvalue of the Antonelli matrix will——within acceptable roundoff error

——equal zero.

0f course all results regarding eigenvalues of the Antonelli matrix are

condltlonal on symmetry and homogeneity being imposed.
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TABLE 1

Descriptive Statistics for IAIDS Meat Demand Variables: Variations

in Quantities and Budget Shares (sample 1961-93, N = 132)

Augmented Dickey—Fuller regression equation for a unit root:

8
Ayt =a + 6t + PY 1 + ZlgiAyt_l t .,136.
= _ ;:, = -

. Sample Standard

Variable Average Error Min Max ADF®
Quantities:

Beef Quantity (BFQ): 19.29 .00 15.39 2404 -1.91

Pork Quantity (PKQ): 14.44 .40 11.71 17.82 -2.66

Chicken Quantity (CKQ): 11.29 .81 5.58 19.69 -0.07

Turkey Quantity (TKQ): 2.41 .98 4.52 1.22 ~-1.63
Budget Shares:

Beef Budget Share (WBF): 0.55 .02 0.50 0.59 -1.07

Pork Budget Share (WPK): 0.30 .02 0.26 0.35 -2.32

Chicken Budget Share (WCK): 0.12 .03 0.09 0.18 -0.27

Turkey Budget Share (WTK): 0.03 .01 0.02 0.05 -1.38

Note:

Quantities are in pounds per capita, budget shares are

in percent. Min

denotes minimum value in the sample data and Max denotes the corresponding

maximum value. Likewise, ADF denotes the augmented Dickey—Fuller unit root

test statistic on p.

Critical value at the a = 0.10 level is -3.13.
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TABLE 3

Estimated Coefficients for the First—-Difference IAIDS Model

of Meat Demand, 1961-1993

Commodity 1 o5 i1 Yi2 i3 i By
Beef 1.843 1.406 ~0.308 -0.283 -0.816 -0.247
(1.976) (0.300) (0.124) (0.154) (0.351) (0.378)
Pork 0.532 -0.308 0.777 -0.282 -0.188 -1.032
(1.382) (0.124) (0.247) (0.153) (0.334) (0.470)
Chicken 4.176 -0.283 - —0.282 0.495 0.069 -0.517
(2.756) (0.154) (0.153) (0.367) (0.402) (0.335)
Turkey 3.450 -0.816 -0.188 0.069 0.934 1.796
(0.966) (0.351) (0.334) (0.402) (0.246) (0.462)
Note: Values in parentheses are asymptotic standard errors.
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TABLE 5

Comparison of Price and Scale Flexibilities: Dynamic
IAIDS and First-Difference TIAIDS Models

BFQ , PKQ CKQ TKQ Scale

Dvnamic Model

Beef P: -0.710" 0.079 -0.016 -0.004 -0.652"
' (0.055) (0.042) (0.013) (0.005) (0.088)

Pork P: -0.199" -0.887" -0.149" -0.041" -1.275"
(0.052) (0.064) (0.016) (0.008) (0.096)

Chicken P: -0.661" -0.516" -0.640" 0.089" -1.727"
(0.160) (0.088) (0.058) (0.043) (0.242)

Turkey P: -0.614" -0.510" 0.351" -0.865" ~1.638"
(0.229) (0.124) (0.162) (0.136) (0.312)

First—Difference Model

Beef P: -0.776" -0.075" -0.060" ~0.134" —-1.046"
(0.044) (0.033) (0.030) (0.053) (0.069)
Pork P: -0.296" -0.937" -0.176" 0.069 -1.339"
(0.096) (0.125) (0.064) (0.137) (0.154)
Chicken P: -0.483" -0.476" -0.702" 0.232 -1.430"
(0.157) (0.190) (0.260) (0.232) (0.281)
Turkey P: 0.817 2.534 1.630" -0.198 4.782"
(1.508) (1.710) (0.730) (0.977) (1.490)

Note: Values in parentheses are asymptotic standard errors. An asterisk

indicates the flexibility exceeds twice its standard error.
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TABLE 6

Estimated Eigenvalues of the Antonelli Matrix for the Dynamic and
First-Difference JAIDS Models at the Sample Means, 1960-1993

Eigenvalues
Al AZ A3 AL Prob.
Dynamic: -0.0001 -0.0275" -0.0668" -0.3278" 1.0000

(0.0048) (0.0036) (0.0089) (0.0256)

First-Difference: 0.0038 -0.0024 -0.0797 -0.2689" 0.1813
(0.0381) (0.1010) (0.0481) (0.0989)

Note: Values in parentheses are asymptotic standard errors. "Prob." denotes the
estimated probability that the Antonelli substitution matrix is negative
semi—definite when evaluated at the sample means. An asterisk indicates

the estimated eigenvalue is significantly less than zero at the 0.01 level.
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Figure 3. Testing the Dynamic Structure of the Model

Alternative Hypothesis:

- Dynamic Specification

Fourth-Order
Autoregressive Model
LnL = 1887.58
Chi-Square = 247.81
D.F. =39

\
\

L

First-Order
Partial Adjustment
Model
Ln L = 1876.04
Chi-Square = 224.72
D.F. = 36

V

Static
IAIDS Model

Ln L = 1550.72
Chi-Square = 886.46
D.F. =48

%
/
Vs

Maintained Model:
Dynamic Specification
LnL = 1999.95

147




