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The Effect of Planting on the Volitility of Grain Futures Prices
David A. Hennessy and Thomas I. Wahl’

Abstract: Existing literature on commodity futures price volatility emphasizes time to expiration
and the resolution of uncertainty. This paper stresses the supply and demand inflexibilities
arising from decision making. A decision made on the supply (demand) side makes future supply
(demand) responses less elastic. Therefore, a shock arising after a decision is made is more
effective in changing the futures price than a shock before the decision is made. The results
support the maturity hypothesis but do not conflict with the state variable hypothesis of futures
price volatility.

Introduction

The existing literature on the determination of futures price volatility does not
accommodate the possibility of production or consumption responses. In this paper we will
show that if a futures contract is of sufficiently long duration that producers may receive and
act upon evolving information, a pattern in futures price volatilities emerges as maturity
approaches. This pattern is consistent with observations on the seasonality of volatilities and
with the maturity hypothesis. However, unlike the present explanation of the seasonality
phenomenon, the state variable hypothesis, seasonality is shown to arise not from the
resolution of uncertainty but rather from increasingly constrained supply and demand functions
as settlement date approaches. Contrary to the state variable hypothesis, we show that the
resolution of supply and demand uncertainty may increase rather than decrease volatility. We
demonstrate our theory by using a rational expectations model that incorporates production
flexibility.

Since Telser suggested that futures price volatility may increase as the settlement day
approaches, there has been a vigorous theoretical and empirical debate on the issue.
Samuelson (1965) used an autoregressive price relationship to demonstrate the plausibility of
Telser's conjecture. Also, commencing with his 1965 paper, Samuelson (1971, 1973, 1976)
wrote a series of articles with the goal of reconciling the randomness of the price of claims on
assets inferred by rational expectations considerations with the economic implausibility of the
seemingly associated unbounded variation in prices. He proposed that, at the limit, as time to
maturity increases, the settlement price becomes ergodic in distribution, i.e., independent of
the initial futures price. For the futures price martingale property (Samuelson 1965) to be
consistent with the ergodicity property, it is necessary that, as time to maturity increases, the
volatility of futures price falls, eventually, to zero. Because, in its weakest form, Samuelson's
proposition holds that volatility must only eventually fall with time to maturity, empirical
investigations can never be absolutely conclusive. Rutledge tested and found only partial
support for the hypothesis that futures price volatility is monotonic decreasing in time to
maturity. An alternative hypothesis, the state variable hypothesis (Stein, Richard and
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Sundaresan), exists. The most persuasive version is that proposed by Anderson and Danthine
in which volatility is high at times when much uncertainty about fundamentals is resolved and
low when little uncertainty is resolved (Anderson). The two theories are not necessarily
incompatible in that the ergodicity assumption can be interpreted as the restriction that as time
to maturity increases, knowledge about fundamentals becomes impossible and so no
uncertainty can be resolved.

Anderson suggested that the heterogeneities are seasonal in nature. He tested time series
data for wheat (two exchanges), corn, oats, soybeans, soybean oil, live cattle, silver, and cocoa to
find strong support for seasonal effects even for the nonagricultural commodities. He found
weaker, but still statistically significant, support for the maturity effect. Choi and Longstaff also
identified a seasonality structure in the volatility of soybean futures prices. Kenyon et al.
identified a similar seasonality structure for corn and soybeans, while Milonas arrived at similar
results in his study of the decomposition of the futures price heteroskedasticity. He ascribed the
source of seasonality to the resolution of supply and demand uncertainty (as per Anderson and
Danthine) and to the depletion of inventories as harvest approaches. In all these analyses grain

futures price volatility tended to be high in the late spring and summer and low in the late fall and
winter.

In this paper we propose a model that emphasizes the importance of production or
demand flexibility. This factor has not been considered in the literature, though presumably
Samuelson would include it in his "ultimate economic law" (1976, p. 120) that gave rise to his
adherence to the ergodicity assumption. Our model is compatible with both the maturity and
the state variable hypotheses and may explain more satisfactorily the observed patterns in the
volatility data. The main body of this is paper comprised of two sections. In the first the
theoretical model is developed for both discrete and continuous time flexibility. In the second
section the model's implications are tested.

The Model

Following the approach of Black, we assume that the futures price follows geometric
Brownian motion,

(1) -dFi = o dt + 0.dz,

“where F = futures price,

op = drift parameter,

og = diffusion parameter, and
zp = standard Wiener process.

Within this continuous time framework we partition time into n intervals; the interval [z(1), T]
~When no production response is possible, [t(2), t(1)) where one factor can be altered to
5{;change production, and so on to [0, t(n)) where n factors can be altered to change production.
'We propose the Cobb-Douglas production function

LT
(2 Q= k]‘! Tey
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where Qr= output quantity,
Joy = = level of input i chosen at time t(i),
k, = production constant of proportionality, and
f(i) = flexibility = elasticity of output response to input I.

We assume that futures price and physicals price at maturity are identical,

®3) | Fr =Py,

where Fp = futures price at settlement time T, and
P; = physicals price at settlement time T.

The demand equation is considered to be iso-elastic,

4) Qyr = kdd"rFT'e:

where Qg r = output demand at harvest time,
¢ = stochastic demand shock evaluated at harvest,
ky = demand constant of proportionality, and
€= bsolute elasticity of demand.

Here ¢, evolves according to geometric Brownian motion,

(5) % = a,dt + g,dz,,

where = drift parameter,
= dlf?uswn parameter, and
¢ = standard normal Wiener process.

Because of the iso-elasticity, this specification of how demand evolves is consistent with the
futures price following geometric Brownian motion. Let the acres planted decision be the
production decision closest to harvest. Now, given the acreage decision (i.e. over [t(1), T]),
the sole determinant of the futures price is ¢r. Information on its eventual value is obtained
by observing ¢, evolve. We will first solve the problem over [t(1), T]. Here J at time t(1),
J.1y» has been chosen. Supply is fixed at

(6) Q,r = kJg,

where k, is a short-run constant that may depend on long-run factor choices. The futures
price, F,, depends only on ¢,,

@) F, = F(¢,).

An [to expansion gives

E o5 ia—F - 0.

®) = =
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This equation must satisfy the boundary. condition

Q -le
it

arising from equation (4). But by market clearance, and assuming no storage, supply equals
demand. Therefore,
-l/e

7
Ko Jxay

ky$r

(10) Fy = [

Solving (8) subject to (10) and the boundary condition that if the futures price ever becomes
zero then it remains at zero thereafter, we get

0.5(1-€)0y(T-1)

11 x kd e /e ¢ -f1)fe &2
(11) : Ft—? L Ty ©

This equation encapsulates the dynamic relationship between F, and ¢, over the interval [t(1),
T]. It can be shown that

(12) gy = €?0r.

To see this, log both sides of (10) and then take the variance of both sides. Thus, the volatility
of futures price is constant over [t(1), T]. The acres planted decision, represented by J 1)
only contributes to determining the level of the futures price in the interval. We now step
back into the interval [t(2), t(1)). In this case because the input choice at t(1), J «1)» has yet to
be made, we must solve an equilibrium model endogenizing the intervening input decision.

As shown by Feder et al. in the absence of production uncertainty the production choice will
be given by equating the (discounted) futures price with marginal cost, )

(13) Eige el = NIC,

where MC = marginal cost, and
r = the discount rate.

This is because, in the presence of futures markets, speculation through altering the futures
contracts position does not incur the production costs associated with speculation through
altering the production position. To go further, we maximize over the production choice J,
Prior to t(1), output is no longer exogenous because the planting decision has yet to be mad(c.
To endogenize we look at the discounted profit function,

(14) PV[n] = Ftu)e'r['r‘t(l)]ks]:}ll)) -wJ

1y
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where PV = present value operator,
n = profit, and
w = input price index.
Optimizing over J,, we find

1-f1)

1
f(l)ksF e-r[T“r(l)] e [EE
(15) Jt(l) B [ (1)

w

Substituting into (11), evaluated at t(1), and solving for F), we find

EORD RTIY.
k (W) - | ( __(e_e)“_‘ +1_"§%

W) - N «1)® "
(16) R O)

) [T-=(1)]

= T =
= Bl el

where y = [1-f(1)]/[f(1)+ €-f(1)€], and B and D are the obvious substitutions. Thus, we see
that while F, has a diffusion described b% volatility 0,2/ €? in the time interval [t(1), T], the
diffusion is described by volatility y* 0" in the interval [t(2), t(1)). This is because no
decisions are made in the interior of this interval. Note that y = 1/€ when f(1) = 0; that is
when there is no production flexibility in the [t(2), t(1)) time interval either. Differentiating
y with respect to f(1), we find

8y - 1 < 0.

(17 df(1) [f(1) +e-R1)e]?

Thus, because f(1) > 0, the inequality y < 1/€ must always hold. This verifies, for these
functional forms, the conjecture that volatility after the planting date exceeds that before the
planting date. The underlying reason is that long-run elasticities always exceed short-run
elasticities, and price variability is inversely related to the ability to respond, ex-ante, to
available information.

We now introduce the concept of residual cumulative volatility. This is the
instantaneous volatility integrated with respect to time remaining until maturity. In Black's
model it is homogeneous linear in time, UFZ (T - t). In this model it is continuous,
homogeneous, piecewise linear in time,

(18) OFL(T-t) = (é - (y? —-:—Z)Lﬂn] 0}(T -1),

where L_,, = 1 when t < t(1), and zero otherwise. Merton (1973) has shown that the Black
and Schoies model remains valid if the volatility is a function only of time. This is true also
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of Black's options on futures model. After planting, while the rate of diffusion increases, the
amount of cumulative diffusion that has occurred is continuous. Substituting into Black's call
valuation model, we arrive at

C(F,E,T-t) = e "™Y[FN(d,) - EN(d,)],

F! 2
19) i

O, (T -1)%

d, = d, - o5 (T-1)*?,

where N(.) is the cumulative normal distribution function and E is the strike price.

Introduction of inventories makes the problem dynamic in the inter-year sense.
Samuelson (1971) showed the problem to be one requiring a dynamic programming solution.
The ability to substitute intertemporally will reduce the volatilities so if the commodity (or
product if the problem is posed as concerning a share in an industry adjusting to demand
dynamics) is non-perishable, then equation (19) represents an upper bound on the value of the
option. The impact of flexibility in determining the magnitudes of volatilities should not be
affected much by the existence of inventories.

We now consider how a sequence of ex-ante supply decisions affects the volatilities.
Let the last round of supply decisions involve variable costs, the second last round involve
capital decisions, the third last involve region-wide applied research and so on. Let the
technology be as described in equation (2) above. Returning to the expression y = [1-
f(1))/[f(1)+ €-f(1) €] and noting that in the final time interval op = 0,/ €, we can iteratively
continue the mapping to find
futures price volatilities at earlier stages of production. For example if there are countably

infinite stages of production and if f = f(1) = ... = f(i) V i, then
1 - fol
i (20) o2, = ( f)“’,
{ " (nf + € - fe)?

where ci,n = futures volatility just prior to the n' last production decision. At the limit, as n
goes to infinity, volatility recedes to zero as suggested by Samuelson's ergodicity postulate. In
general, for the f(i) strictly positive but not all equal, it is easy to show that ogn is monotonic
Increasing in n. To show that there exists a sequence of decreasing flexibilities such that
volatility recedes to a strictly positive number is a trivial exercise in real analysis. To discern
whether a given technology structure (i.e., a given sequence {.., f(i),.. }) is compatible with
ergodicity is a problem in the theory of sequences and series. No sequence, the infinite sum
of which is finite, is compatible.

If all the f(i) are equal to a constant, f, and if adjustment is assumed to occur not just at
one or countably many time points, but continuously, then f may be considered the constant
elasticity of adjustment, and
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a _ (1- f)0¢
BTt KT -~ 1) » € = fe

21

In this case the residual cumulative volatility, obtained by integrating with respect to time, is

. (1 -6y 1 1

2 -
(22) {om-ldt e T

T B PTG S P T TR St

At the limit, as T goes to infinity, this is

o 2
2 N (1 - fog
(23) { Op._dt = p

i.e. residual cumulative volatility is decreasing in demand elasticity and in f, but increasing in
variability of the demand shock.

Agricultural futures market uncertainty is frequently caused by post-planting weather
uncertainty. The reasoning applied to the demand side above applies equally well to the
supply side. However, as there would then be no one-to-one correspondence between the
input decision and output, applying production rule (13) to obtain a closed form solution
wouldlbc problematic. Closed form solutions can be obtained if additional assumptions are
made. :

Testing the Flexibility Hypothesis

An obvious economic instance of reduced flexibility occurs when farmers make the
crop acreage allocation decision. For the principal crops in the US, planting must occur in a
fairly well defined time interval. After planting, the producer has very limited influence over
the ultimate crop size. Given the high liquidity of US corn, soybean, and wheat futures
markets, a comparison of pre-planting and post-planting volatilities would seem an ideal test of
the flexibility hypothesis.

To test the flexibility hypothesis, we analyzed daily U.S. corn, soybean and wheat
futures prices over the January 2, 1985, to March 1, 1994, period (table 1). The first contract
following harvest was used, and the series rolled over at expiration to the corresponding
contract for the following year. Indicator variables were used to represent planting decisions.
However, the fall planting decision for winter wheat could not be analyzed because winter
wheat generally is seeded more than a year prior to contract expiration, and futures price data
prior to planting was not consistently available. Winter wheat suffers from winterkill the
extent of which is not known with certainty until spring replanting. Hence, an April-to-

'For example, if individual output bears a log-log relationship with aggregate output, then
quantity uncertainty can be symbolically mapped into price uncertainty. In this case the solution is
virtually identical to the demand side uncertainty solution presented above. The proof is available
from the authors upon request.
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September indicator variable is used for both winter and spring wheat. May-to-December and
May-to-November indicator variables are used for corn and soybeans, respectively, to reflect
later planting dates.

For a given month the annualized volatility is calculated as

(24) o} = 365 Var[Log(F,;,/F,;, )]

where F,; is the futures price for contract j in day t of month i. To synchronize with futures
contract expiration dates, months are shifted to end on the eighth last business day. Using
these five series, a seemingly unrelated regression system was estimated using the specification

(25) O?J =0 + oD+ E,

where D is one between spring planting and contract expiration and zero otherwise, and £ ; is
the stochastic error term. The results are presented in table 2 below. The t statistics are in
brackets. As can be seen, the volatilities all increase after spring planting. Surprisingly, the
winter wheat volatilities are just as responsive to spring planting as the spring crop volatilities.
A positive but weaker response had been expected because inflexibility is built into production
at fall planting. However, it appears that the replanting effects are strong for winter wheat.
Figures 1 and 2 depict the results. In figure 1 corn and soybean volatilities rise just after
planting, fall in mid-season, and rise again toward harvest. The residuals to our specification
may be explained by the Anderson and Danthine state variable hypothesis. In figure 2 (the
wheats) volatilities rise after spring planting, spike in June, and increase again towards
expiration. Again, the volatility might be explained by the state variable hypothesis.

Summary and Conclusions ,

The intent of this paper is to reconcile the two main theories of the time pattern of
futures price volatilities. While our theory agrees that a pattern that could be termed seasonal
can arise, it tends in general to support a modified version of Samuelson's maturity
hypothesis. While we do not deny the possibility of heterogeneous volatility arising out of the
resolution of supply and demand uncertainty, our model emphasizes the flexibility, or quasi-
fixity, of supply and demand. Even though our model has been structured so that uncertainty
is resolved uniformly over time, volatility is not uniform over time. Indeed, if one considers
the resource allocation decision to be a resolution of uncertainty, volatility is seen to rise upon
resolution of supply uncertainty rather than fall as suggested by the state variable hypothesis.
Were the source of uncertainty on the supply side rather than the demand side, the same
qualitative result would pertain. For example, flour millers would fix ex-ante the amount of a
less variable factor they wish to employ over the coming season and any subsequent,
unforeseen supply and demand shocks will meet against a less elastic demand curve. Further,
volatility is seen to be a decreasing step function with respect to time to maturity.

Aggregating over different decision dates, we arrive at a monotonic decreasing function, in
accord with Samuelson's maturity hypothesis. Our results complement the conclusions of
Ant.:lerson and Danthine. Whereas they look at a situation where all production and demand
decisions except the market clearing "decision" have been made, this paper considers the effect

of decision-making on volatilities. While our approach explains the trend component, their
approach explains the non-trend component.
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.Tab'le 1: Description of Data and Variables

Contract
Crop Indicator Variable Expiration
Corn, Chicago Board of Trade 1: May-December December
0: Otherwise
Soybeans, Chicago Board of Trade 1: May-November - November
0: Otherwise
Hard Red Winter Wheat, Chicago Board of 1: April-September September
Trade 0: Otherwise :
Soft Red Winter Wheat, Kansas City 1: April-September September
0: Otherwise
-Hard Red Spring Wheat, Minneapolis 1: April-September September
0: Otherwise
Table 2: System Regression Results
Contract 0y o,
Corn, Chicago Board of Trade 0.0288 0.0584
(2.39) (3.90)
Soybeans, Chicago Board of Trade 0.0274 0.0522
(2.52) (3.63)
Hard Red Winter Wheat, Chicago Board of Trade 0.0270 0.0580
(2.69) (4.06)
Soft Red Winter Wheat, Kansas City 0.0230 0.0533
(2.31)
(3.75)
Hard Red Spring Wheat, Minneapolis 0.0172 0.0584
(1.71) (4.11)

Faosi =8.12  Adjusted R* = 0.116
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Figure 1. Time patterns of corn and soybean volatilities.
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Figure 2. Time patterns of wheat futures volatilities.
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