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Options Portfolios in the Presence of Non-Linear Risk

Kevin McNew'

Options on futures give hedgers a way to construct a risk management portfolio which has similar properties to
the risk they face in the cash market. Of particular importance is the benefit that options provide when the cash
position value is non-linearly related to the futures price. Such a situation is particularly prevalent for grain
producers who face random cash prices and output. This study presents two methods for constructing an options
portfolio composed of different strike prices. An empirical application for regional corn production in the U.S.
demonstrates that both methods are similar in terms of risk reduction and, in some instances, provided significant
improvements from using futures.

Introduction

It is well documented that when a firm’s cash position value is linearly related to the
futures price, a futures position is useful for reducing risk. The hedge ratio, which is one of
the more popular statistics in academic futures market research, provides an estimate of the
slope between the physical (cash) position value and the futures price. Thus, a firm which
hedges in the proportion dictated by their hedge ratio will have changes in the physical position
value match changes in the futures position value in an offsetting fashion. The result is the
removal of all systematic risk, leaving only the undiversifiable basis risk (Peck).

When the physical position is not linear in the futures price, then options become a
useful mechanism for hedging (Lapan, Moschini and Hanson; Sakong, Hayes and Hallam).
Unlike the futures position value which is linear in the futures price, the non-linear payout
structure of options allows a firm to construct a portfolio which more closely matches the true
form of their risk in the physical market.

Under what conditions is the value of the physical position non-linear in the futures
price? The physical position, which is the product of the spot price and output, can be non-
_linearly related to the futures price if either the spot price is non-linear in the futures price or if
output is random. Both are prevalent for agricultural crop producers. In markets where
spatial trade is important, interregional price arbitrage bounds can lead to disproportionate
changes in prices. Thus, the relation between any two spatial prices is likely to be non-linear
(McNew) indicating that firms spatially dispersed from the futures delivery site (or price) will
likely face a non-linear relation between the spot price received and the futures price. When
output is random, as in the case of crop production, the interaction of the random spot price
and random output likely result in a non-linear relation between the physical position value and
the futures price as was demonstrated by Sakong, Hayes and Hallam.
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The presence of non-linear risk implies that options are a useful mechanism for meeting
the non-linear shape of the physical position. However, options present producers with a
number of different strike prices from which to select an options portfolio. Until now, no
guidance has been offered as to how to select a portfolio of option strike prices. In this study,
a simple approach is presented which allows producers to determine the weight of various
strike price options in their portfolio. Just as the hedge ratio gives an indication of how much
to hedge using futures when risk is linear, the slope of the function between the physical
position and futures price also guides the producer in selecting the portfolio composition.

Model

Consider a risk-averse agent which faces an uncertain value of a long cash position. To
reduce the risk associated with this cash position, the agent can use options on futures. Denote
the futures price on the option expiration date as F and the available strike prices as §,,
S,,...,S.. A put option is a contingent claim which has positive value if the futures price at
expiration is less than the strike price. Therefore, the value of the k™ put option is:

(1) v, = max(0,5,F).

The premium for each of the m put options is denoted 7, 7y,..., 7,. Let @, @ ..., Gy denote
the amount of each put option purchased by the agent. Denote as v, &, and o as the mx1
vectors of the put option values, premium prices and put option positions, respectively. Using
this notation, the options portfolio value can be expressed as:

2) V=a'(v-xn)

Assume that the firm’s risk in the cash or physical market can be represented by the
relationship:

(3) C=gF)+u

where u is a serially independent error process which is independent of F and represents
changes in supply and demand shocks to the agent’s local market. Because this is a long cash
position value then g (F)20, i.e., the value of the cash position increases with higher prices.
In full, the combination of the physical position and the options portfolio implies that the firm
has the resulting risk still present denoted as:

@)  eF)=gF)+u+V(F).

Because g(F)20 and V '(F)<0 then the cash position and options portfolio are likely to have
offsetting effects leading to more stability in the net position, e(F).



The problem of the firm is to select the portfolio of options & which reduces the risk
faced from fluctuations in the cash market value. To do so, a mean-variance framework is
assumed which can be justified as a Taylor-series approximation to the popular expected utility
methodology. Under the additional assumption that options prices are unbiased (i.e.,

E(v,) =, for all k) the mean-variance framework of this problem reduces to a variance
minimization problem and is independent of the agent’s degree of risk aversion.

The problem of choosing the portfolio composition under variance minimization can be
expressed as:

%) min Var[e(F))/2 = Var[g(F)]/2+ a'Var(v)a/2 + aCov[g(F),v]
o

where Var() and Cov() are the variance and covariance operators. The optimal solution to this
problem is:

6) a = -[Var(v)]'Covig(F),v].
When g() is linear and of the form g(F)=pF then the solution reduces to:

(7N o, =0 for all 1sk<m
oy, =P.

Substituting this solution into the net-profit function in (4) gives:
(8) e(F)= BF+u+p[max(S,-F)-n].

For S, sufficiently large, the only remaining risk in e(F) is the undiversifiable risk, u.! Thus,
under linear risk only the largest strike price option is needed and the hedge ratio is equal to
the slope of the relation between the cash position value and the futures price.

When g() is not linear, however, the optimal options portfolio is more complicated.
Now, one must know the covariance matrix of the put option values as well as the covariance
between the risky physical value and the put option values. Thus, not only is the stochastic
structure of the futures price important but so is the shape of the physical risk function, g().

Although, the options portfolio in equation (6) is optimal in the sense of minimizing
net-profit variability, it is also somewhat taxing to estimate and therefore implement. As an
alternative, we consider a somewhat different problem. In this problem, the agent constructs a
piecewise linear function (the options portfolio) which closely matches the non-linear risk
function, g().

! Alternatively, one could consider a short futures position in the portfolio which is a put option with infinite strike
price. As long as the largest strike price is sufficiently large enough, there is no loss in generality by not
considering a short futures position in this problem.



Formally, the problem can be specified as:

(9  min [[g(F)- V(F)IdF
oL

s.t., g(F)>-V (F).
This is a common methodology in linear seperable programming modeling (see e.g., Hadley).

The solution to this problem leads to an application of the mean-value theorem between
any two strike prices. Denote the slope of g(F) between any two strike prices, s, and Sk+1, a8
« Where

_ g(skn)"g(sk)
(10) Bk Sk+t_sl-:

The options portfolio, which is a piecewise linear function, has a slope of o, + 0y, +... +a,
when the futures prices is between the strike prices S, and S, ;. Thus, setting the slope of g()
equal to the slope of the options portfolio value gives m-equations each satisfying:

11y B, =ia,,.

Solving for the options portfolio yields:

(12) o =B, - By, for allk<m
Uy =B

Thus, the largest strike price option weight is equal to the slope of the risk function at the
highest strike price level. The remaining portfolio weights are based on the difference in
consecutive slope values and are related to the second derivative of g0).

For crop producers, they often face negative correlation between their local cash price
and crop yield. Also, local cash prices tend to be positively related to the futures price. In
this type of situation, the risk function g0 is likely to be concave in the futures price. This
implies that the option portfolio weights increase as the strike price decreases. This principle
and the relationship between the slope of the risk function and portfolio weights is illustrated in
figure 1.

Because only the slope of the risk function is required, this procedure is considerably
simpler to implement then the variance minimization rule presented above. However, whether
there is a significant loss in risk protection from using this strategy is unclear. The remainder



of this study is devoted to answering this question empirically for hypothetical corn producers
from various regions of the United States.

Data and Empirical Methodology

To determine whether options provide would be beneficial to individual corn
producers, one would prefer to have a long history of producer prices and yields. However,
such disaggregated data are difficult if not impossible to procure. Thus, this study employs
corn yield data for the largest corn producing county in each of the top ten corn producing
states in the United States based on total 1994 corn production. Twenty-two years of crop
yields, from 1973-1994, for these ten counties were collected and matched with state-average
cash prices in November which coincides roughly with the harvest period. The ten states are
reported in table 1 along with each county used for a state.

It is assumed that the options are purchased in May coinciding with the spring planting
time. Thus, the average of the December Corn futures price in May is computed, which is
denoted as f. Also, the average December Corn futures price in November (F) is used to
construct the intrinsic value of the price options, v.

Because only 22 years of data are available, a joint distribution of the random variables
is assumed and its parameters estimated for simulation purposes. From this distribution,
simulation analysis is used to generate a large number of observations and perform the
analysis. Based on the individual county yields (y), the state-average cash prices (p) and the
futures prices in May (f) and November (F), the joint distribution of these random variables
was estimated for 1994 assuming joint log-normality. Log-normality is used because it allows
for skewness and non-negative random variables. To construct the mean of the price random
variables, it is assumed that futures prices are unbiased so that the expected value of the logged
futures price in November is the log of the futures price in May. The expected log cash price
is equal to the log of the futures price in May plus the average basis over the sample. For
yields, each yield series was regressed on a time trend and used to estimate the expected value
of log-yields for 1994. In full, the distribution assumptions imply:

In(p) (In(f +b)
(13) In(F) | ~ N|| In(f) D
In(y) In(d, + 6,7)

where b is the average basis for each state, t is a time trend and I is the covariance matrix of
the three random variables.

Three different strike levels are considered for the price options. These three values
coincide with the current mean of the futures price, one standard deviation below the mean,
and one standard deviation above the mean. The current price for the December 1996 futures
contract (in April 1996) is around 318 so, for concreteness, the mean futures price is assumed
to be 300. Thus, the three strike prices are S,=260, S,=300 and S,=340. Although more



strike levels could be used, a preliminary analysis indicated that when the numbe.r of strike .
levels is large, the optimal option positions are so small that it would be impractical because 0
the fixed contract size (e.g., 5,000 bushels for price options).

Based on the joint distribution of the random variables for 1994, 1,000 samples Of
1,000 observations were generated for In(p), In(F), and In(y). After making the _
transformation to non-logged values, they were used to construct the cash value (C), the option
values (v). The optimal value of e is estimated via a linear regression of the form:

(14) C=p+ov, +o,v, +a,v;+ e

where v,, v, and v, are the intrinsic value for options with strike prices 260, 300, and ?4O=
respectively. The 1,000 values of o, when averaged, give sample estimates of the variance
minimization portfolio described by (6). Hereafter, this solution will be denoted o to denote
the options portfolio which minimizes the variance of net-profits.

The second procedure makes use of the shape the risk function g(F) which descrlbcs the
relationship between the futures price and producer revenue. Although the shape of g0 1s _
unknown, it is likely to be non-linear and concave in the futures price for reasons discussed in
the previous section. Thus, a model of the form

(15) In(C) = B, + B,In(F) + B,{In(F)}* + e,

is estimated. This model, which is quadratic in the log of futures price, appears appf?P“ate
for all states based on some preliminary analysis for other specifications. The exception Was
Kansas where it was determined that the hypothesis §,=0 could not be rejected. Thus, for
Kansas, the g() function was assumed to be log-linear.

Using the estimated model for each state, the option portfolio weights were determined
by the slope of g() in between various strike prices. The option portfolio weights based on the
slope of g() are denoted as a®.

Results

Option portfolio weights are given in table 2. Both the portfolio for the variance
minimization problem (o*) and the portfolio based on the slope of the risk function (o) —
given in normalized form for each state. These values represent the amount of each option to
use for each one bushel in expected yield and are comparable to hedge ratios based on the use
of short futures positions. As a means of comparison, the hedge ratio based on 2 linear
regression of C on F is also given in table 2.

In general, the fraction of output hedged either with a futures position or a set of put
options is relatively small. For example, when using futures, the proportion of ogtp.ut hedged
ranges from 0.18 to 0.43. These low values are the result of significant yield variation. When



using options, the sum of the option positions ranges from 0.47 to 0.67 for the variance
minimization case. Although still far away from fully hedged, options do allow producers to
protect more of their expected output by being able to account for the non-linear relationship
between revenue and the futures price.

Option weights certainly vary across states. For some states—like Illinois and
Minnesota—the portfolio is composed mostly of the low strike price option with higher strike
prices having lower weights. Such a result is indicative of a great degree of concavity in the
risk function. For Indiana, lowa and Missouri, the portfolio weights are largest in the highest
and lowest strike price with little use of the strike price at the mean. Although these states do
gain some benefit from being able to account for the concave relationship, it is certainly less
distinct than for Illinois and Minnesota. The remaining states sell the middle strike price
option (i.e., negative hedge ratio). This portfolio is similar to the classic “bear spread’ (i.e.,
buy a high strike price put option, sell a low strike price put option) option strategy although
the relative weights dictate a somewhat different payout. Because the weight on the high strike
price options dominates that of the low strike price option, the result is profit that is
decreasing and less convex in the futures price. As such, these states have nearly linear risk in
the futures price.

Comparing the option portfolios from the two optimization criteria show that both lead
to very similar option portfolios—particularly for Illinois, Indiana, lowa, Minnesota, and
Missouri. However, to adequately determine how comparable to each other the two strategies
are, it is important to identify the risk reduction potential of each. To do so, the standard
deviation of net-profit for both option strategies and the futures hedge strategy were computed.
These measures of risk were compared to the unhedged revenue risk to determine how much

risk is removed from the base of no hedging for each strategy. These results are given in table
3.

Overall, the risk reduction benefits of using options or futures are relatively small.
This is because of the uncontrollable yield variability. Even though some states do have some
negative correlation between yield and price, it is less than perfect so that futures or options on
price alone remove only a small fraction of total revenue risk. However, in comparing across
strategies, it is obvious that most states do get higher risk reduction potential from using
options over futures. Indeed, even the simple rule for option weights based on the risk
function gives nearly similar risk reduction benefits to the variance minimization rule. For the
states of Kansas, Nebraska, South Dakota, and Wisconsin, the option portfolio from the risk
function is not as successful at reducing risk as a short futures position.

Final Remarks

Options have many features that producers prefer for hedging. The ability to limit your
loss and set a price floor for the product are commonly listed reasons why options are
preferred to futures for risk management purposes. Additionally, crop farmers, who can face



significant production risk, can use options to help reduce some of the non-linear risk they face
between yield and price.

Using a variance minimization rule and a simple rule based on the shape of the risk
function between revenue and the futures price, it was shown that both can lead to similar risk

reduction potential. In many regions of the country, it was shown that either strategy reduces
more risk than using futures.

Although options did remove some of the revenue risk, the strategies presented here
fell well short of removing a large portion of it. This is largely due to the risk not being
perfectly correlated with price. With the innovation of corn yield futures and options contracts
at the Chicago Board of Trade, significant improvements may exist in achieving lower risk
levels for corn farmer revenue by incorporating them in the hedging portfolio.
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Table 1. Top Ten Corn Producing States and Top Corn Producing County in Each State,

State County
lowa Kossuth
Illinois McLean
Nebraska Phelps
Minnesota Renville
Indiana Jasper
Ohio Putnam
Wisconsin Dane
South Dakota Minnehaha
Kansas Sherman
Missouri Atchison

Table 2. Option Portfolio Weights Based on Variance Minimization, the Slope of the Risk
Function and Hedge Ratios Using a Short Futures Position.

State o o', a’y af  af off Hedge
Ratio
Illinois 0.25' 0.18 0.05 0.20 0.11 0.05 0.18
Indiana 026 0.05 028 0.18 0.11 0.18 0.30
lowa 022 0.01 029 0.15 0.09 0.18 0.28
Kansas 0.18  -022 0.58 0.05 0.03 035 0.40-
Minnesota 0.24 0.17 0.06 020 0.11 0.05 0.18
Missouri 029 0.10 024 022 0.13 0.16 0.30
Nebraska 021 -0.15 053 0.12 0.07 030 0.40
Ohio 023 -0.05 040 0.15 0.09 024 0.34

South Dakota 0.25 -0.14 0.56 0.14 0.09 0.33 0.43
Wisconsin 022 -0.10 046 0.13 0.08 027 0.37

1. All values represent the proportion of expected yield to hold in each strike price. o*
denotes the variance minimization rule and o represent the option weights based on the risk
function. Strike prices are 260, 300 and 340 for subscripts 1, 2 and 3.
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Table 3. Percent Reduction in the Standard Deviation of Revenue For Each Strategy from
Unhedged Position.
State Options Based Options Based Using Futures

on Variance on Risk

Minimization Function

Illinois 2.5 2.4 1.6
Indiana 7.2 6.8 6.1
[owa 4.8 4.5 4.2
Kansas 7.0 6.6 7.0
Minnesota 2.0 1.9 1.3
Missouri 4.4 4.2 3.3
Nebraska i5.1 14.3 14.7
Ohio 7.7 e B 7.1
South Dakota 17.8 16.9 ' 171
Wisconsin 8.9 8.4 8.4
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