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OPTIMAL STORAGE DECISIONS UNDER ESTIMATION AND
PREDICTION RISK

Tommie L. Shepherd and Jeffrey H. Dorfman®

Estimation and prediction risk are shown to influence the optimal storage decision of a dominant firm facing
a competitive fringe. The presence of risk with respect to demand estimation and supply prediction results
in increased storage by a dominant firm exercising market power in a two period profit maximization
scenario. Bayesian numerical integration is employed to derive the optimal storage decision for a
hypothetical cooperative of Georgia pecan growers facing demand estimation risk, supply prediction risk
and a combination of the two.

Introduction

The application of optimization techniques in economic decision making almost invariably
involves the use of estimated parameters. Estimated parameters are commonly accepted as the
certainty equivalent of the true parameters they represent in the decision process, ignoring any
possible biases or sampling errors (Bawa, Brown, and Klein, 1979). Typical examples in the
area of market risk management include the estimation of market supply and demand functions
of various agricultural commodities for the purpose of determining optimal pricing and storage
policies. Implicit in the use of such estimates is the presence of estimation risk, the probability
that the true parameter differs significantly from the estimate (Lence and Hayes, 1994). Demand
risk stems primarily from the variance associated with parameter estimates of the level and
elasticity of demand for a commodity and from errors in model specification. When future
conditions are relevant to some decision process, the decision maker may face prediction risk
as well. Prediction risk may be viewed as the risk which arises from forecasting a future
economic variable, since even an ideal model, correctly specified with perfectly estimated
coefficients would still have associated risk due to the stochastic nature of the variable being
forecast.

One important example of optimizing behavior in economic theory is the derivation of
optimal strategies for competing firms exercising market power. Competition among oligopoly
firms has been addressed for a variety of market structures by such noted economists as Bertrand
(1883), Cournot (1897), Bowley (1924) and Stackelberg (1952). One common thread which
runs throughout much of the oligopoly literature is the implicit assumption that all firms possess
perfect knowledge of market supply and demand parameters. It is the failure of the classical
theory to acknowledge the risk embodied in such informational assumptions and the importance
of considering this risk in the derivation of optimal competitive strategies which motivates the
following discussion.

"Authors are Ph.D. Candidate and Associate Professor, respectively, Department of Agricultural
and Applied Economics, The University of Georgia, Athens, Georgia 30602-7509.
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Optimal Decisions Under Risk

Consider a profit maximizing firm which receives utility from profits via U[r(d,y)] where
the argument w(d,y) describes profits as a function of 3 vector of decision variables d and a

d= argmax, e, Ey]a{U[T(dsY)]}
= argmax,e, IYU[W(dsY)] p(y|6)dy , (1)

where E(e) is the eXpectations operator and Y is the domain of y. The above scenario describes
the firm’s decision process, in somewhat generic terms, when it Possesses perfect knowledge

Brown, and Klein, 1979). The remainder of this discussion will assume that estimation risk

If this assumption of perfect information is violated, i.e. p(y|0) is unknown, E, 14(U) is
unknown as well and therefore (1) cannot be solved. The “classical" solution to this problem
of parameter uncertainty is to substitute a point estimate § = § (X) for the unknown parameters
0, where X represents a matrix of explanatory variables related to past observations of the states
of nature y in question. Substituting these point estimates into (1) yields,

d= argmaxde[) Eylgg-g {U[W(d!Y)]}

= argmaxse, | yUln(d,y)] p(y |6 (X))ay. )
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This approach is quite appropriately named the parameter certainty equivalent (PCE) method

awa, Brown, and Klein, 1979) due to its assumption of certainty regarding the parameters in
g. The obvioushshortcoming of this method is that it fails to take into account the risk embodied
in the estimate . Uncertainty or estimation risk about 6 may be taken into account in a logical
and systematic way by employing Bayes’ decision criterion (Winkler, 1972; Anderson, Dillon,
and Hardaker, 1977; Aitchison and Dunsmore, 1975). In its simplest form, Bayes theorem
states that a posterior distribution p(6|X) is proportional to the product of a prior distribution
p(6) which reflects one’s subjective parameter estimates independent of any observed data and
p(X|6), a likelihood function entirely dependent on observed data:

p(8|X) o« p(O)p(X|6).

Thus the posterior pdf p(6|X) combines the sample information contained in X with the prior
or nonsample information. Bayes theorem then allows us to integrate out the uncertainty
embodied in 6 by employing the posterior pdf p(6 | X), allowing for a solution for expected utility
which is not conditional on a single value (estimate) of 6. Thus, the decision becomes

d = argmaxyep Eo{E, |o[U(x(d,y)]}
= argmaxep | of § yUIT(d,y)] p(y|6)dy} p(6|X)df
= argmaxgep | yYUIT(Y)I[ | op(y |0)p(6| X)dbldy
= argmaxsep | yU[(d,y)]p(y | X)dy, 3)

where © is the domain of @ and p(y|X) is the predictive pdf of y. The difference between this
and the PCE method is that the Bayesian decision is a function of all available information, both
sample and nonsample and does not depend on any unknown parameters.

‘Uncertainty in Oligopoly Theory

The simplest "classical" models of market structure begin with the assumption of a
known (inverse) demand curve of the form

P=oa-B@+q+ -+ @

where price P is dependent on the total quantity (Q = q + @ +...+ Q), of a good produced
by n firms through the parameters a and 8. Firms face the problem of maximizing profits
subject to the market structure within which they operate. Market structure may dictate that
strategic decisions be made in terms of quantities (Cournot models) or prices (Bertrand models)
for undifferentiated and differentiated products, respectively. It may also determine the degree
of market power which firms are able to exercise due to comparative advantages in technology,

experience, location and reputation.
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The extension of oligopoly theory to multiperiod decision making with an objective of
long run profit maximization was introduced by Shubik (1959) and further developed by
Friedman (1968). Cyert and DeGroot (1987) approach the oligopolist’s risk problem by means
of Bayesian decision analysis for a variety of conjectural permutations including multiperiod
decision making with simultaneous and alternating choice. The shortcoming of this approach
is the problem of infinite regress and the need for additional simplifying assumptions which
results from assigning risk to the conjectures of rival firms. Cyert and DeGroot summarize
these difficulties by referring to this as the "I think that you think that I think . . ." model.
Contrary to intuition, this amounts to assuming that a firm expects its rivals to know the values
of market parameters with certainty, but is unsure how they will respond to any particular
observed marketing strategy, when in fact, optimal competitive strategies may be derived with
certainty given demand and supply schedules, cost information and the basic economic
assumptions of profit maximizing behavior, Arguably then, a firm’s risk problem arises not
from uncertainty surrounding its competitors behavior, but from uncertainty about market
demand and/or supply parameters. B '

solving over the joint pdf P(e,8|X) as shown in (3).

In the application which follows, firms are assumed to behave as rational, risk averse
profit maximizers who receive utility from profits via

U(7) = -exp(-¢), , : ‘ 5)

where ¢ is the Arrow-Pratt constant absolute risk aversion coefficient. The assumption of risk
aversion is a necessary and sufficient basis for the inclusion of risk in the decision process since
the treatment of estimated demand and supply parameters () as certainty equivalents of the true
parameters renders the utility function irrelevant, resulting in identical solutions for profit and
utility of profit maximization.

Estimation risk is introduced into the decision process by employing the variances and
covariances which result as a byproduct of estimating demand and supply parameters. The
variances and covariances of parameter estimates may be viewed as a logical measure of the risk
associated with using the accompanying parameter estimates for decision making purposes.
Intuitively, parameter estimates which are characterized by relatively large variances may be
viewed as somewhat unreliable or "risky" approximations of the true parameters, while relatively
small variances suggest a greater degree of confidence that the estimates are reasonable
approximations of the true parameters in question.
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In the section which follows, this concept is demonstrated by application to a dominant
firm/competitive fringe representation of the U.S. pecan industry. In this example, the dominant
firm generates maximum likelihood estimates of demand and supply parameters and uses
importance sampling to integrate over the accompanying risk as shown in (3).

Application To Pecan Storage

U.S. commercial pecan production began in a few Southeastern states during the late
1800’s and had expanded substantially by the 1930’s. By 1993, Georgia growers led the nation
in pecan production, accounting for approximately 40% of total U.S. production and more than
75% of Southeastern production. Commercial growers range from small, part-time operators
with a few acres of trees to pecan plantations consisting of well over a thousand acres. Pecans
are marketed by a network of accumulators and shellers who perform the tasks of assembling,
processing, grading and storing nuts which may then be sold through retail outlets in their raw
form or to food processors for use in baked goods, candies and other confectioneries.

Georgia’s pecan industry benefits from a significant comparative advantage in producing
and marketing its crop relative to other states primarily due to the large number of mature
orchards which were planted earlier in this century (Allison and Epperson, 1978). Orchard
establishment and renewal is a long term investment, with improved (commercial) tree varieties
requiring about five years to produce their first, small crop and ten years or more to reach
maximum bearing potential (Hubbard, Purcell, and Crocker, 1988). An additional advantage
of Georgia’s early entry into the pecan industry is the accompanying development of marketing
and processing infrastructure which are now firmly established. Georgia’s pecan industry has
the potential to maintain this comparative advantage well into the future as existing orchards are
renewed and expanded with new, improved tree varieties (Ikerd, 1985).

Despite it’s comparative advantages in production and marketing, Georgia's pecan
industry faces a number of potentially serious problems. Chief among these are the erratic
yields and large year to year price swings which result from adverse weather conditions as well
as from the alternate bearing characteristics of the trees themselves. A second marketing
problem faced by growers is a serious lack of adequate storage facilities suitable for pecans.
Unrefrigerated, in-shell pecans may be stored for only a short period of time before they begin
to deteriorate. Refrigerated storage facilities extend the period of time which in-shell pecans
may be stored to approximately one year, but are prohibitively expensive for most if not all
growers at the present time. Hubbard, Purcell and Ott (1987) report no refrigerated storage
among growers surveyed. A third major threat to Georgia’s pecan industry is that of increasing
competition from growers in the Southwestern United States, primarily those in Arizona,
Arkansas, Louisiana, New Mexico, Oklahoma and Texas (Texas A&M University, 1986) and
from Mexico. As extensive plantings in the Southwest during the late 1980’s approach bearing
age, a potentially burgeoning supply of pecans threatens to depress prices and eliminate many

small growers.
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This combination of problems threatening Georgia’s pecan industry results in the inability
of growers to consistently produce profitable crops. Widely fluctuating year-to-year profitabilit
is of primary concern to pecan growers, particularly those for whom pecan sales comprise :
large percentage of farm income. The Southeast Georgia Branch Experiment Station’:
experimental farm management unit at Midville, Georgia reported that its pecan Crops were
profitable in only 11 out of 24 years from 1963 to 1986 (Perry and Saunders, 1987). Of the 1-
years in which crops were unprofitable, 11 are included in the data set used here for estimatior
purposes. Of these 11 unprofitable growing seasons, 4 are associated with low alternate bearing
years and 7 are associated with the resultant low prices which accompany high alternate bearing
years.

Due to the prohibitive expense of refrigerated on farm storage facilities and competition
from peanut growers for commercial storage space, growers are currently restricted to short-
term, non-refrigerated storage of their crops. The feasibility of developing refrigerated storage
facilities for pecans as a means of achieving consistent profitability by smoothing out year-to-
year supply fluctuations is currently being investigated. A methodology for evaluating the
economic feasibility of such facilities in the presence of estimation and prediction risk is
presented in the following section.

Model Selection And Specification

The large percentage of total U.S. pecan production attributed to Georgia growers leads
to the selection of a dominant firm/competitive fringe representation of the U.S. pecan industry.
The primary assumption of this market structure is the ability of the dominant firm to exercise
market power, in contrast to the firms comprising the competitive fringe, who assume the role
of perfect competitors or price takers.

In light of the perfectly inelastic short run supply of pecans and the long lead time
required to expand production, as well as the relatively homogeneous nature of the product, it
is assumed that the dominant producer may exercise market power by controlling the quantity
of nuts offered for sale through storage from high production to low production years. Georgia
producers are thus modeled as a (hypothetical) risk averse marketing order (grower cooperative)
with seasonal storage capabilities which behaves as a dominant firm facing a competitive fringe
comprised of all other U.S. pecan growers.

This proposed grower cooperative (dominant firm) will solve a two-period utility of profit
maximization problem in which its pecans may be stored for one year. Fringe firms are
noncollusive, individually producing small percentages of total production and thus lacking
market power. The dominant firm is assumed to be risk averse, receiving utility from profits
via a negative exponential utility function as shown in (5). The Arrow-Pratt constant absolute
risk aversion coefficient, ¢, is expanded by Babcock, Choi and Feinerman (1993) to derive

¢ = ¢(p,h) = In[(1 + 2p)/(1 - 2p)] /h. _ (6)
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Equation (6) shows ¢ is a function of a probability premium (p) and of the gamble size (h). The
gamble (h) size is taken to be the mean difference in profits which could have been realized ex
post between optimal storage and no storage scenarios over the data set used. The dollar amount
assigned to h was $70,377,000. When the chance of winning or losing risky wealth h is a fair
gamble, the probability premium p measures the increase in probability above 1/2 that a risk
averse agent requires to maintain a constant level of utility equal to some certain amount of
wealth obtainable if the gamble is not taken. The probability premium p was set to .2, which
leads to a risk premium & of .38 where

®(¢,h) = In[.5(e*" + e*")/¢h. (7)

The risk premium associated with p is thus approximately 38% of the gamble size h, indicating
a moderately though not excessively high level of risk aversion. The derived CARA coefficient
¢, defined above in equation (6) equals .000012, which is well within the bounds of those c1ted
1in previous literature reviewed by Babcock et al. (1993).

In order to solve its storage problem, the dominant firm requires three key pieces of
information which must first be estimated. These are the demand curve for pecans and the
supply curve for its own production and that of its collective competition. Demand estimation
for pecans has been investigated by a number of researchers. Fowler (1960) estimated the U.S.
farm level price of pecans as a function of the quantity of pecans produced, per capita disposable
income and time for the years 1922-1956. Epperson and Allison (1980) estimated a similar
model for the years 1960-1976, with the exceptions that a population term was included and a
double log specification was used. Shafer and Hertel (1981) employed stocks of nuts other than
peanuts as a proxy for pecan stocks to estimate price as a function of production, per capita
disposable income and the quantity of nuts in storage. Blake and Clevenger (1982) estimate
pecan prices as a function of production, net change in the stock of all nuts, per capita income,
exports and per capita consumption. In 1971, a time series of regional cold storage holdings
became available (USDA, Regional Cold Storage-Annual Summary 1979-1983) which Wells et
al. (1986) uses to demonstrate the impact of seasonal storage on pecan prices.

The desire for a concise and parsimonious model of pecan demand suitable for the
methodological application performed here leads to the selection of

USP = B, + B,MKTQTY + B,DISPINC + ¢ (8)

where the §;’s are parameters, USP is the deflated U.S. season average price of pecans,
MKTQTY is total marketable quantity; the sum of total U.S. production and total U.S. cold
storage holdings of pecans, DISPINC is inflation adjusted per capita disposable income and e
is an error term. The data covers the time period from 1973-1993. U.S. price and production
data is from Agricultural Statistics (1972-1995). Cold storage estimates are from Regional Cold
Storage-Annual Summary (USDA) and population and income figures are from the Statistical
Abstract of the United States (1972-1995).
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The pecan supply model for the dominant firm (Georgia growers) is specified as a fir
order integrated AR( 1) process;

AGAQTY, = Yo + AGAQTY,, + u, 9

FRNGQTY, =T, + I'FRNGQTY,, + I,LINTRND + u, (10)

where the I'’s are parameters, FRNGQTY is Competitive fringe production, LINTRND
Teépresents a positive linear trend and u, is an error term.

favorable growing conditions over several consecutive seasons, which SErves to interrupt the
alternate bearing cycle. It may also be attributed in part to maturing orchards which are
continuously realizing increased bearing potential. In either case, this result highlights the
difficulties involved in forecasting Georgia’s pecan Production and the risk inherent in employing
these methods to forecast future production. The competitive fringe supply mode] is found to
exhibit the alternate bearing pattern, evidenced by the negative coefficient on lagged production.
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Table 1. Parameter Estimates

Demand Georgia Production Fringe Production
Intercept -31.66 1847.42 187057.5
(21.5) (7565.0) (18042.7)
MKTQTY -0.00029
(.000063)
DISPINC 0.0165
(.0028)
AGAQTY : -0.813
(.214)
LINTRND 6022.88
(921.4)
FRNGQTY,, -0.7786
, (.124)
R? .640 432 .754
obs. 21 21 21

Standard errors in parentheses.

(Geweke, 1988). Twenty thousand random draws are generated from the estimated joint
distribution of the demand curve parameters conditional on the estimated covariance matrix of
the parameters. This allows the draws to be generated from a normal distribution instead of a
multivariate t-distribution. The proper likelihood function value is calculated and saved for use
as the importance weight to correct the resultant undersampling of the tail areas. Twenty
thousand draws are also generated from the forecast distributions of production for Georgia and
the states representing the competitive fringe. The competitive fringe production forecast draws
are taken from a normal distribution which has a variance incorporating both the sampling error
of the parameters and the additional error variance associated with a prediction; that is,

QF(nul = N(QF[+1= Xt+1EI‘X't+1 o OJF)’

where X = [1 FRNGQTY LINTRND], L, is the estimated covariance of the fringe production
equation coefficients, and o’ is the estimated error variance.

Draws for the distribution of the Georgia production forecast are made in a manner
analogous to the method used for the fringe with one exception. An informative prior is placed
on the Georgia production model in the form of a truncated uniform providing support only for
values above 20 million pounds. This restriction seems reasonable in light of the near failure
of the 1992 crop which still amounted to 30 million pounds, the smallest in over 20 years.
Thus, any draw below 20 million pounds is discarded, and a new draw is made to replace it.
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actual draws made to correct for the bias caused by drawing from normal rather than Student-f
distributions. The Storage scenario with the highest expected utility is then selected as the
optimal quantity to store in the presence of estimation and prediction risk.

This procedure wag repeated for three other scenarios in order to separate the effects of
demand and supply uncertainty on the final solution. In one, only demand parameters were
assigned uncertainty, while supply forecasts were taken as their parameter certainty equivalents.
In another, demand barameters were accepted as certain while only supply forecasts were treated
as risky. Finally, the traditional risk neutral (risk oblivious) solution was obtained by setting
both demand and supply parameters to their certainty equivalents. Results are summarized in
table 2 where PCE denotes the use of parameter certainty equivalent estimates and PER
Tepresents the use of parameter estimates which incorporate estimation/prediction risk.

The objective of Storage is to increase income by shifting sales from the present time
period to some future time period. Storage is an effective means of accomplishing this if
production falls in the inelastic portion of the demand curve during the first time period and in
the elastic portion during subsequent time periods, thus increasing the probability that unit

results in an elasticity estimate of -.72, which falls well below the revenue/gross profit
maximizing point of unit elasticity (-1.0). In the second period of the no storage case, the
relatively small quantity of nuts marketed leads to an elasticity estimate of -2.03, this time
falling substantially above the desired point of unit elasticity. Under a storage strategy based
on PCE estimates (34,700,000 1bs. stored), the price elasticities for periods 1 and 2 are found
to be -.90 and -1.59, Tespectively, indicating a move towards unit elasticity in each period.
Finally, under a storage Strategy based on parameters characterized by estimation and prediction
risk (78,400,000 Ibs. stored), price elasticities are nearly identical to unit elasticity at -1.19 and
-1.20 for periods 1 and 2 respectively. The achievement of exact equality between these
elasticities is prohibited by the discounting of second period utility. :
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Table 2. Optimal Storage

Supply
PCE PER
PCE 34,700,000 1bs. 76,900,000 Ibs.
Demand
- PER 34,900,000 Ibs. 78,400,000 1bs.

PCE = Parameter Certainty Equivalent Estimates
PER = Prediction and Estimation Risk Inclusive Estimates

Table 3. Ex Post Revenue.

7 Quantity Stored Ex Post Revenue
No Storage ' 0 LBS. $180,917,460
PCE Storage 34,700,000 LBS. $194,475,350
Storage with Demand Risk 34,900,000 LBS. _ $194,514,130
Storage with Supply Risk 76,900,000 LBS. $192,662,640
Supply and Demand Risk 78,400,000 LBS. $192,228,550
Conclusions

A significant increase in expected gross profit is realized under all of the storage
scenarios relative to that of no storage, however, only negligible differences are found to exist
between the various storage scenarios themselves. The extremely flat nature of the underlying
profit function, as indicated by small changes in expected gross profit over a wide range of
potential storage decisions, suggests a rather large margin of error associated with determination
of optimal storage decisions. In fact, the optimal storage decisions for the prediction risk only
and prediction and estimation risk cases actually result in slightly lower expected profits than
the parameter certainty equivalent case for the 1994 crop year due to the models tendency to
under estimate production.

In conclusion, the substantial increase in expected gross profits attributable to storage of
Georgia pecans from 1993 to 1994 offers support for further investigation into the development
of refrigerated storage facilities as a means of exercising market power in the risky and
increasingly competitive pecan industry. The inclusion of estimation risk in the decision process
is shown to increase the optimal quantity of pecans stored only slightly, while the inclusion of
prediction risk is shown to have a relatively large effect on the optimal storage decision.
Expected gross profits, however, are found to vary little over the range of storage decisions
considered, indicating a wide margin of error in selecting the appropriate storage strategy.
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