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Volatility Based Tests for Informational Efficiency
on Commodity Options Markets

Robert J. Myers, Steven D. Hanson, Jing-Yi Lai and Hong Wang’

This paper has two objectives. The first is to develop a simple, computationally tractable
procedure for estimating implied GARCH volatilities from commodity options price data. The
second is to apply this procedure to elicit implied volatilities from soybean option price data
and investigate how well the resulting volatility forecasts predict ex-post "realized" volatilities.
We find that filtering option prices through a GARCH option pricing model provides
informative forecasts of daily volatilities, but that these forecasts can generally be improved
upon using additional information available at the time the options are being priced. The
results have implications for forecasting volatility, as well as for the informational efficiency of
soybean options markets.

Introduction

This paper has two objectives. First, we construct a simple, computationally tractable
procedure for estimating implied GARCH volatilities from commodity options price data.
Previous research has used market option prices to estimate an implied GARCH volatility
process for the underlying asset (e.g., Engle and Mustafa; Hanson, Myers and Wang).
However, existing methods involve complex numerical simulation and optimization routines
which are somewhat costly because they are difficult to implement and can take a very long
time to converge. Complexity and delay limit the usefulness of these numerical simulation
routines in a number of important applications, including using implied volatility estimates
from past option price data to get a timely estimate of the fundamental value of current
options. Thus, it would be useful to have a simple, computationally tractable procedure for
estimating GARCH volatilities implied by observed commodity option prices.

The most well known procedure for estimating implied volatilities is to back them
out from the Black-Scholes option pricing formula, treating market option prices as known
and average volatility to maturity as the unknown (Black and Scholes; Black; and Chiras and
Manaster). While this approach has the advantages of simplicity and tractability, it is
inconsistent in the following sense. In order to compute the current implied volatility from
the Black-Scholes model the volatility is implicitly assumed deterministic over time. But the
resulting implied volatility estimates, together with time-series models using historical data,
suggest that volatilities are in fact time-varying and stochastic (Bollerslev; Lamoureux and
Lastrapes; Baillie and Myers; Yang and Brorsen). Some researchers have tried to overcome
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GARCH Option Pricing Models

Suppose that commodity futures prices follow a GARCH(1, 1) process:
Af, = u+ €
(1) &1Q,; ~ t(0,h,v)
h, = w + aus,z_1 + Bh,,
where Af, = InF, - InF, | is the chan

information available at ¢-1 »and €, is a random
with conditiona] variance 4, and
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that (1), or slight variations of (1), do a good job of modeling time-varying volatility in many
commodity futures price series (Baillie and Myers; Yang and Brorsen).

The GARCH option pricing model assumes that futures prices follow (1) and options
on futures are priced at their discounted expected value:!

e) P, =P [ " - Klg(pdf,

k

where r, is the risk free interest rate at date ¢, k = InK is the logarithm of the strike price
K, fy = InFy is the logarithm of the futures price at maturity, and g(?) is the density of f;
conditional on €2, (which includes f;). The standard Black-Scholes formula assumes thatg(9)
is normal. Under the GARCH model (1), however, g(9) has no closed form solution and
so the expectation in (2) is evaluated by simulating repeated realizations of the GARCH
process using Monte Carlo methods. The sample mean of the simulated option values over
all realizations is then discounted back to the present at 1, to get an estimate of the current
option price.?

Now suppose we want to use observed market option prices to estimate an implied
GARCH volatility process. Let ﬁu(m,a,ﬂ,hﬂl) denote the price of option i estimated at
time ¢ using the GARCH option pricing model conditional on parameters (w,a,B,h,,,).
Then if the GARCH option pricing model is correct we would expect P, (w,a,B,h,,,) to be
close to the observed market option price P,. This suggests that the GARCH volatility
process implied by options can be estimated by solving: ’

3) min Y Y 6,[P; - Py(w,a,pB,h, )P

“-“.p:hf.l i=1 J=t-n+1

which is a weighted sum of squared deviations between realized market option prices and
those estimated via the GARCH option pricing model. The summation / is over put and
call options with identical maturities but different strike prices. The summation over j
determines the number of previous days included in the analysis (since multiple days will
be required to identify information about how volatility evolves over time). The weights 6,
may be set to one (no weights) or each option might be weighted by some measure of its
liquidity. .

'See Myers and Hanson for an explanation and justification for using a risk-neutral
valuation formula. Equation (2) is for call options but an analogous equation holds for puts.

“See Myers and Hanson, and Engle and Mustafa, for more details on this procedure.
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of practical difficulties. First, even with a quadratic loss function the gradients of (3) are
highly nonlinear which makes optimization somewhat difficult. Second, any search
procedure over the parameter space of (3) requires re-simulating the GARCH model at
‘every iteration because each Py(w,a,B,h,,,) has to be evaluated at each prospective value
for (w,a,B,h,,). Third, to get a good estimate of the implied GARCH volatility process
we may have to sum over a fairly large number of days (large ) because it is the variation
in option prices over time that provides most of the information about the time-varying
volatility process. These three factors combined make it extremely difficult, time-consuming,
and costly, to estimate implied volatility processes in this way, Thus, attempts to estimate
implied GARCH volatilities from market option prices have, to date, been somewhat limited
in scope (see, for example, Hanson, Myers and Wang, and Engle and Mustafa).

An Alternative Approach to Estimating Implied GARCH Volatilities

GARCH models can be used to forecast future volatility paths, Assuming a
GARCH(1, 1) model, and using prediction formulas derived by Baillie and Bollerslev, the
variance of the log futures Price at maturity, conditional on information available at date
t is given by:

s
Var(fz|Q) = ¥ E ()
i=1
4)
= o T -t - —————1 =gt + ————__.__h“l(l i)
1-p 1-p 1-p

where p = a + B and h,., is the initial daily volatility at ¢ (the variance ofAf,,,
conditional on information available at ¢). Equation, (4) assumes 0 < P <1 and is a sum
of daily volatility forecasts starting at h,,, and assuming future volatility movements will be

driven by a GARCH(1, 1) model.

An approximation to the GARCH option pricing model can be obtained by assuming
that the distribution of J7 conditional on J; is approximately normal with variance given by
(4). In this case it can be shown that the option pricing equation (2) reverts to Black’s
model:?

3See Rubinstein (1976). This formula is for calls but an analogous formula holds for
puts, '
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P = er:(,_n C ln(F‘lK) .. O.SW(frln')
§ ‘ ‘/var(fT[Q,)
Kc(ln(F,/K) - o.5var(f,|n,)]

®)

where C(?) is the cumulative distribution function of the standard normal. Options can then
be priced by estimating a GARCH model from historical data and using the resulting
estimates to evaluate (4) and (5). This approximation allows for stochastic time-varying
volatility but assumes the distribution of f; conditional of Q, is approximately normal, an
assumption which is generally violated under the GARCH model. Nevertheless, Myers and
Hanson have shown that this approximation to the GARCH option pricing model predicts
soybean option prices very well, outperforming Blacks formula using historical 30-day
volatilities and, in many cases, the full GARCH pricing model estimated via numerical
simulation.

Equations (4) and (5) suggest a very simple way of generating implied GARCH
volatilities from market option prices. First, use the standard Black formula (5) to back out
an implied estimate for var(f,|Q,) from option prices P, observed at t. Second, obtain
estimates of the w and p values perceived by the market at ¢ (some alternative ways of doing
this will be discussed in a moment). Third, take the implied estimates of var(f;|Q,), », and
p and substitute them into (4) to solve for an implied estimate of h,,,. This implied
estimate of h,,, represents the markets perception of the current daily volatility of futures
price movements, conditional on information available at . Repeating this procedure over
a range of dates provides a sequence of implied daily volatility estimates, h,,,, which are
consistent with the GARCH option pricing model and conditional on information available
att. All that remains is to discuss how we might obtain estimates of the market’s estimates
of  and p at each t. Here we consider two alternative ways of doing this.

Method 1: Estimates Based on GARCH Models of Past Futures Prices

The first method is to use historical data on past futures price to estimate (1), making
sure to only include information available at date  when the option is being priced. Then
the historical estimates of @ and p = « + B are used as the market’s current perception
of these parameters at f. At the next date the latest observation is added, the estimates are
updated, and the process is repeated. This requires estimating a new GARCH model at
every ¢ but this is fairly straightforward.

Method 2: Estimates Based on IGARCH and Past Option Prices

The second method uses data from past option prices to get the market’s implied
estimate of @ and p. To do this we assume that p = « + B = 1 and concentrate an
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Forecast 1: Historical 30-Day Sample Variance

A simple sample variance of the previous 30 days of changes in log futures prices
(historical 30-day volatility).

Forecast 2: Implied GARCH Volatility Based on Past Futures Prices

The implied GARCH volatility calculated using @ and p values estimated from a
GARCH model using historical futures price data available at the time the forecast is being
made (method 1 above).

Forecast 3: Implied GARCH Volatility Based on Past Option Prices

The implied GARCH volatility calculated using p = 1 and an  estimated from past
option prices as discussed previously (method 2 above).

One obvious difficulty in undertaking volatility based tests for informational efficiency
is that "true" volatility is unobservable. Thus, there is some question as to how to best
measure the actual realized volatility that we are trying to estimate based on option
premiums. The measure of realized volatility used in this study is the ex-post, in-sample
estimates of /, obtained from a GARCH model on the underlying futures price using all -
data up to the maturity date on the option. This represents our best ex-post estimate of
what daily volatility was at each date prior to maturity.

The tests are based on three different types of regression. The first is of the form:

9 h, =y, + 'Ylh-n *n,

where A, is our "realized" GARCH volatility estimated using the full sample, and h, is a
forecast of 4, conditional on information available at date £-1. The i subscript refers to the
three different forecasts outlined above (i = 1,2,3). If h, is a good forecast of 4, then we
would expect §, =0, §, = 1, and a high R? indicating a large amount of the variation in
h, can be explained by k,. Thus, results from estimating (9) will provide a general idea of
how well the different volatility forecasts are performing.

The second set of regressions take the form:

(10) h, - h, = X 5 +E

where X, is a set of information available at £-1. Since the volatility forecast error
h, - h, should be orthogonal to all information available at -1 then informational
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efficiency would imply & =0. Again, we use the alternative volatility forecasts as ﬁ,. For
the information set X, , we could use alternative forecasts of 4, conditional on information
available at f and/or other relevant information, such as futures price realizations at ¢-1
and prior dates.

The final regression is an encompassing equation that includes all three of our
volatility forecasts:

(11) h, = Ay + Ahy, + Ayhy, + Ayhy, + ¢,

This essentially provides optimal forecast weights on each of the available forecasts. If the
implied volatility forecasts have minimal and insignificant weight then this would imply
market inefficiency.

An Application to Soybean Options

To investigate the efficiency of daily volatility forecasts implied by soybean options
prices we used daily data on the futures contract maturing in July 1990 obtained from the
Chicago Board of Trade data base. To calculate the "realized" ex-post daily volatility at
each date over the contract life we estimated a GARCH(1, 1) model using futures price
data beginning one year prior to maturity and ending at the maturity date. Results from this
full in-sample estimation are reported in table 1 and indicate that time-varying volatility is
present, and that it is captured well by a simple GARCH(1, 1) model. The estimated
degrees of freedom parameter for the ¢ distribution was found to be very large, indicating
that the errors are very close to being conditionally normal. Thus, we assumed conditional
normality when estimating the GARCH model. Notice that the « and P estimates in table
1 have relatively high asymptotic ¢-ratios, and that they sum to 0.998, which implies the
process is approximately IGARCH. In-sample estimates of h, from the model in table 1 are
used as our ex-post "realized" volatility for evaluating all volatility forecasts.

To construct volatility forecasts using data available at some date ¢ (prior to maturity)
we used the three forecasting methods outlined above. That is, we computed historical 30-
day sample variances of past changes in the logarithm of futures prices; implied GARCH
volatilities using futures data available at f to estimate the market’s perception of @ and B;
and implied GARCH volatilities assuming IGARCH and using option prices available at ¢
to estimate the market’s perception of w. The implied volatility to maturity at each date
(used to estimate the implied GARCH volatilities) was backed out of Black’s model (5)
using daily trading volume to weight current option prices with different strike prices.

We began making forecasts six months prior to the option’s maturity date and
stopped making them five days prior to expiration. This is to avoid any problem that might
be caused by low liquidity for options traded a long time from maturity, or by maturity
effects as the maturity date is approached. Forecasting ability of the three alternative
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volatility forecasts was investigated by running each of the regression models discussed
above.

Results from the first set of regressions on general forecasting performance are
provided in table 2. All three forecasts contain useful information about realized volatility
but forecast 2 (the implied GARCH volatility assuming IGARCH and using past option
prices to evaluate w) performs best, explaining 73% of the variation in realized daily
volatilities. In contrast, forecast 1 (historical 30-day sample variances of past changes in the
logarithm of futures prices) explains 69% of the variation, while forecast 3 (the implied
GARCH volatility using past futures prices to estimate @ and P) explains only 66%.
Standard errors and ¢-ratios in table 1 must be interpreted with caution because, under
IGARCH, the volatility forecasts and realized volatilities may be cointegrated, and it is well
known that standard errors from cointegrating regressions are biased.

For the efficiency tests we examined the orthogonality condition for each forecast
error using the other forecasts and past futures price changes as the relevant information
set. Futures price changes are used, rather than price levels, because we would expect the
forecast errors to be stationary and futures prices to have a unit root. Thus, we want to take
first differences of the futures price variable to induce stationary. Under IGARCH we
might also expect that the volatility forecasts themselves have unit roots and are
cointegrated. Thus, the efficiency test regressions may have a stationary dependent variable
(forecast errors) and nonstationary explanatory variables that are cointegrated (the
alternative forecasts). In this case the coefficients of interest can be written so that they
only depend on stationary variables and Sims, Stock and Watson have shown that
conventional estimation and inference methods can be applied.

Results from the efficiency tests are reported in table 3. As expected, forecast 1
(historical 30-day sample variances of past changes in the logarithm of futures prices) is not
an efficient forecast. Errors in these forecasts are significantly correlated with the two
implied GARCH volatility forecasts, suggesting that the information in the implied GARCH
forecasts can be used to improve over forecasts based on historical 30-day sample variances.
Furthermore, the Durbin-Watson statistic suggests significant serial correlation in forecast
errors which is inconsistent with optimal prediction. These results are expected since we
already have considerable evidence suggesting that historical variances do not do a very
good job of predicting future volatility.

On the other hand, the implied GARCH volatility forecast 2, which uses GARCH
models based on past futures prices to compute the implied volatility, performs much better.
In this case none of the information variables are significant at the 5% level, although the
historical sample variance (forecast 1) has a ¢-ratio of 1.861 and the Durbin-Watson test still
shows evidence of serial correlation. These results suggest that forecast 2 performs much
better than forecast 1 but that there still may be information available which could improve
forecasting performance. Results for implied volatility forecast 3, which assumes IGARCH
and uses past option prices to compute the implied volatility, clearly suggest that it is an
inefficient forecast. Both of the other forecasts 1 and 2 contain information which is
significantly correlated with the forecast errors from forecast 3, suggesting that using such
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information would lead to improved volatility forecasts. Furthermore, the Durbin-Watson
statistic also suggests serial correlation which is inconsistent with optimal forecasting.

To further investigate the issue of forecasting performance we estimated optimal
forecast weights for the three forecasts and report the results in table 4. The estimates
suggest that the three forecasts combined can explain about 80% of the total variation in
realized volatility, and that most of the weight is given to forecast 3. This should have been
expected given that forecast 3 had the highest R? in table 1. Nevertheless, the other
forecasts do contribute to an improved forecasting performance (R? increases by an
additional 7 percentage points once forecasts 1 -and 2 are added to the model). This is
consistent with the efficiency tests suggesting that forecast 3 is not efficient (information
from the other forecasts improves forecasting performance). The ¢ values in table 4 should
be interpreted with care because, if the underlying volatility process is IGARCH, then the
estimation is a cointegrating regression and will generate biased standard errors.

Overall, the results suggest that daily volatility forecasts obtained by filtering option
prices through a GARCH option pricing model contain a lot of useful information about
future realized volatilities. Nevertheless, it would appear that the implied GARCH volatility
forecasts are not fully efficient because additional information available at the time options
are priced can be used to improve forecasting performance. There are several possible
explanations for this result. First, it could be that the GARCH option pricing model used
to filter the implied volatility forecasts is incorrect and any "inefficiency" is simply a result -
of having the wrong option pricing model. This problem is inherent in all efficiency tests
of this type. Second, it could be that the sub-optimal forecasting performance of the implied
GARCH volatilities is statistically significant but has small economic value. The question
of how the market would value any potential improvement in volatility forecasts has not
been addressed here and must await further research. Third, it could be that improved
volatility forecasts are obtainable and do have economic value but that, because of
transaction costs, imperfect information, or other constraints, are not being incorporated into
the market’s assessment of volatility. Unfortunately, studies such as the one conducted here
shed little light on which of these explanations is correct.

Concluding Comments

This paper has developed a simple, computationally tractable procedure for
estimating implied GARCH volatilities from commodity options price data. The method
assumes that the distribution of the log futures price at maturity, conditional on information
available today, is approximately normal. In contrast to Black’s model, however, daily
~ volatility varies stochastically and follows a GARCH process. Estimates of the market’s
perception of the underlying GARCH process can then be used to elicit the current
volatility implied by option prices. We present two ways of getting the market’s perception
of the underlying GARCH process, one from a simple GARCH model estimated using data
available at the time the option is priced and the other assuming IGARCH and using past
option prices to estimate the drift parameter .
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The implied GARCH volatilities were then examined to assess how well they
predicted ex-post realized volatilities, as measured by an in-sample GARCH model
estimated using all data up to the maturity date. In an application to soybean option prices
it was found that filtering market option prices through the GARCH option pricing model
provides an informative forecast of realized volatility. Nevertheless, the results also suggest
that the implied GARCH volatility forecasts could generally be improved upon by using
additional information available at the time the options are being priced. This is a
precondition for market inefficiency but does not necessarily imply it because the underlying
GARCH option pricing model may be incorrect, or the improved forecasts may have no
economic value once transaction costs and/or risk premia are taken into account.
Nevertheless, the analysis remains useful because it provides a simple way to elicit implied
GARCH volatilities from commodity options price data, and evaluates the extent to which
these forecasts are consistent with estimates based on time series analysis of the historical
data.
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