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. Futures-Based Price Forecasts for Agricultural Producers and Businesses
Terry L. Kastens, Rodney Jones, and Ted C. Schroeder’

;. This study examines the accuracy of five competing naive and futures-based localized cash price

" forecasts. The third week’s price for each month from 1987-1996 is forecasted from vantage
_ points one to 11 months preceding the observed price. Commodities examined included those
relevant to Kansas producers: the major grains, slaughter steers and slaughter hogs, several
" classes of feeder cattle, cull cows, and sows. Information about relative forecasting accuracy
across forecast methods was collapsed into regression models of forecast error. The traditional
. forecast method of deferred futures plus historical basis had the greatest accuracy—even for
commodities that are substantially different from those specified in related futures contracts.
'Adding complexity to forecasts, such as including regression models to capture nonlinear bases or
*" biases in futures markets, did not improve accuracy.

Introduction

Futures prices are regularly used to construct agricultural commodity price forecasts.

Both grain elevators and livestock packer buyers forward price “off the board,” generally using a
i rmula Even commodities that are not deliverable on the underlying futures contract—such as
‘milo (grain sorghum) are often priced this way. However, if futures/cash differentials (bases) are
stable over time, gains in predictive accuracy may result from using bases which have
pp__rﬁonal as well as differential components. Further, if deferred futures prices are biased
estimates of future prices, modeling cash/deferred futures relationships may provide greater
forecast accuracy than just adjusting futures prices for expected basis.

This research examines the accuracy associated with using deferred futures prices, along
historical average bases, to predict future cash prices of various crop and livestock
‘commodities important to the Midwest. Several forecast horizon lengths, up to a year, are
considered. Futures-plus-basis price forecasts are compared to naive cash price forecasts and to

r futures-based forecasts. Simple, regression-based forecasts are also included. Regression

ysis is used to determine which factors affect forecast errors of competing models, and to test
g:h forecast methods are most accurate.

Background

Agricultural production is becoming increasingly differentiated in physical
haracteristics, time, and/or space. For example, corn is becoming segregated into several

* Assistant professors and professor, Department of Agricultural Economics, Kansas State
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classes such as high oil or high lysine, and wheat is increasingly segregated according
qualities, especially protein. Livestock are becoming increasingly differentiated, with
premiums and/or discounts associated with various characteristics. In addition, profit
maximizing cropping decisions now rely more on price projections because virtually r
constraints are imposed by the most recent farm legislation (Federal Agricultural Impr
and Reform Act of 1996)—which means the accuracy of crop price projections is bec
important. Together, these observations imply producers and agricultural businesses r
price forecasts that are more product-, location-, and time-specific.

Extension outlook price forecasts have not traditionally been product-, location
specific. Rather, they have focused on broad-based price forecasts, such as quarterly o
national commodity prices. In part, this may be because Extension models regularly i
fundamental supply/demand data that would be prohibitively expensive to obtain at fir
and space distinctions. Also, it may be due to Extension forecasters’ attempts to maxi
audience around each forecast provided. In addition, recent research has shown that E:
price forecasts have typically been less accurate than those of the USDA (Kastens, Sch
and Plain 1996). Considering that Extension regularly forecasts many of the same pric

"USDA, and that producers will demand more specific forecasts in the future, this is an
opportunity for Extension economists, who by definition are more localized than USD.
refocus their outlook efforts.

Grain and livestock businesses regularly forward price based on deferred future
futures prices are price expectations (Eales et al. 1990). Futures prices are inexpensive
and are at least as accurate as commercial and public providers of price forecasts (Just
Rausser 1981; Marines-Filho and Irwin 1995; Kastens, Schroeder, and Plain 1996). Be
they are virtually continuously available, futures prices could provide an essential com|
Extension’s development of more specific price forecasts, and in the development of sy
forecasting procedures that could be adopted by users. However, to assure timeliness,
availability, and the potential for user-development, futures-based cash price forecasts 1
simple to construct and easy to understand.

Brorsen and Anderson (1994) have challenged Extension forecasters by arguing
the efficient market hypothesis and the law of one price should be the cornerstone of ex
marketing programs” (p.90). This research builds on their challenge by embodying tho
economic concepts in procedures that can be used in real-time forecasting. Using futur
to construct cash price forecasts depends on futures market efficiency. If a futures marl
efficient then a deferred futures price will, on average, be an unbiased estimate of deliv:
price of the underlying commodity. That means a cash price forecast can be made by a
futures price for expected basis. On the other hand, tieing delivery-time basis to a biase
deferred futures price will result in a biased cash price forecast.

The futures efficiency literature is large, with diverse procedural approaches tak
diverse conclusions. Overall, the evidence favors futures efficiency. However, there is
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ency to find livestock futures inefficient than grain futures (Garcia, Hudson, and Waller

g Kolb 1992 and 1996). In some cases, most notably live cattle futures, reported
officiencies were in biases, meaning that economically significant trends persisted in futures
(Kastens and Schroeder 1995). Thus, it may be important that simple futures-based price
sting procedures allow for possible underlying biases.

 For some agricultural commodities, especially grains, locational price differences are

ore important than differences between cash commodity characteristics and related futures

ct specifications. Hence, in developing futures-based cash grain price forecast procedures,
is important to test historical data from many locations. For other commodities, especially
vestock, where products vary by type of animal, weight, or sex, departures from futures contract
ecifications are especially important. Thus, in developing futures-based cash livestock price
's;asts it is important to incorporate historical data from several animal classes, weights, and

n both sexes. Finally, to be of general value, forecasts need to provide information for

us points in the future.

General Analytical Procedures

Five approaches are used to forecast future cash prices. The procedures are presented in
er of increasing complexity. The first approach, referred to as NAIVEI, uses last year’s price
ecast price in the same week this year. Formally, in a model framework, this approach
‘that the cash price for commodity i, in location j, for week w of year T, CP,;,, 1, is equal to
e cash price observed for the same commodity, location, and week in year 7-1, plus some error

4 )

iy ™ CF

wt-1 ¥ Cger- (1a)

e specification in (/a) yields a one-step-ahead forecast of price in week w of year T+, with
expectation taken # (for horizon) weeks prior to when the actual price is observed:

Ew—h[CP iJ,w,T*l] =CPwr (1b)

That w-k is not included on the right-hand side of (/b) makes it clear the price forecast for a
particular week of year 7+] is the same for all forecast horizons.

The second approach, referred to as NAIVES, assumes cash price regresses to its multiple-

ear average. However, because policy and other changes can fundamentally alter long-term
prices, the number of years considered is only five. Formally, this approach is:
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1 I
NAIVES: CP, .=~
LJ.W, S

t=T-5

CP + g

i,w,t ij,w,T ? (2a)
with the corresponding forecast specification:

t=T

NAIVES: E,_,[cP P, .. (2b)

|
g ij,w,t

i ',w,T+l]
‘J 1=T-4

As in (1b), the forecasts from (2b) are the same for all forecast horizons.

The third forecast approach (FUT. LBAS) incorporates futures and basis, with basis a fixed
level (or, differential), as in cents per bushel. Basis is defined here as cash price less nearby
futures price, implying cash price equals nearby futures price plus basis. If basis does not trend
over time, cash price can be defined as nearby futures price plus historical average basis plus
some error. As in NAIVES, five years are used to generalize historical basis information. The
formal specification is: '

t=T-1

FUTLBAS: CP,,, . = FP!], + % - FP!
1=

£y
i,w,t i,w,t ) Eijw,T >

T_
(cP (38)
T-5
where the subscript, i, on the futures price variable, FP, refers to the contract nearest in
specification to, or most likely to be used in hedging, cash commodity 7; the j is omitted because
it is assumed that the pertinent futures contract does not change across cash price locations. ‘As
for cash price, the remaining two subscripts of FP denote the week (w) and year (7). The
superscripts on FP further specify the futures contract represented. Namely, w, T specifies that
the futures contract is the nearby contract in week w of year T,

If futures are unbiased, deferred futures price provides a reasonable forecast of delivery-
time futures price. Consequently, the forecast specification associated with (3a) is:

FUTLBAS: E,,[CP,, ] = FPRTY, + % (=T (CP

Wt
s -FP”
t=T-4

ig,w,t i,w,!) . (3b)

Equation 35 reads as follows. The expectation (or forecast) taken in week w-h, for the cash price
of commodity 7 in location ; that will be observed in week w of year T+, is equal to the price,
observed in week w-A of year T+ 1, for the futures contract corresponding to commodity i that
will be the nearby in week w of year T+1, plus the respective 5-year moving average basis.
Unlike NAIVE] and NAIVES, FUTLBAS forecasts are unique for each forecast horizon—because
these forecasts incorporate current deferred futures prices.
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___The fourth forecast approach retains the ‘futures plus basis’ idea embodied in FUTLBAS.
wever, it allows more flexibility by specifying basis in /evel and proportional components.
forecast method is called F UTLPBAS. The increased basis flexibility comes about by
uming that cash price equals some proportion of nearby futures price, plus an additive
eonstant, plus an error. As with FUTLBAS, relationships in FUTLPBAS are assumed to hold
over only the most recent 5 years:

FPY +¢

PBAS: CP,,, = %1 * B st P fort = T-4,....T . (4a)

ij,w,t ?

tion 4a may be thought of as a first-order approximation of some higher-ordered underlying
/futures price relationship (without the error term).

~ Values for a;;,,r and f;;,, rin (4a) are estimated using ordinary least squares regression.

commodity, location, week, and year has its own unique regression and corresponding &
B estimates. Regressions are estimated over t = T-4 to t = T. Like FUTLBAS, F UTLPBAS
sumes unbiased futures, using deferred futures prices, along with regression estimates that are
ique across week forecasted but not across forecasting horizon, to develop horizon-specific
recasts:

iF PBAS: Ew_h[CP ',j,w,T+l] i &EJ,W,T+ ﬁi,j'w,TF i :;i;,qu . (4b)

I

"LPBAS is inherently more complex than F UTLBAS, or the two naive methods, in that
gression models must be estimated. However, because the models are not horizon-specific, the
otal number of models required are not excessive, and the potential forecasting accuracy gains
ould be large.

: Where basis may be unstable or difficult to predict, and where futures prices have a
endency to be biased, it may be helpful to circumvent the concept of basis altogether, and model
ash price directly as a function of deferred futures price (not nearby). Thus, the fifth forecasting
pproach, MODFUT, is specified as:

MODFUT: CP,,, = %, ur* P ow it PP * Gy 3 IO T (52)

. MODFUT in (5a) looks a lot like FUTLPBAS in (4a), with one important difference: the
subscripts on the right-hand side include the letter 4. That means a separate model is estimated
for each price forecasted and each forecasting vantage point, w-h. The forecast specification
associated with (5a) is:

i w,T+1
MODFUT: Ew-k[CPi,j,w,T*l] - ai,j,w-—h.T * Gt‘,j,w-h, TFP:',w—h,T+l i 2 (5b)
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MODFUT involves many more regressions than does FUTLPBAS. The additional computation
time and data basing required, though seemingly small in a research setting, could be enough to
preclude real-time forecasters from using this approach. However, if forecasting accuracy gains
are large, then the additional burden may be worthwhile.

Data Used and Forecasts Developed

Weekly prices for various cash commodities and locations were collected from the first
week of 1982 through the last week of 1996. Locations selected were those relevant for
Midwestern (with focus on Kansas) producers and businesses. Commodities examined were
wheat, corn, milo, soybeans, slaughter steers, cutter cows, 7-8 cwt. steers, 4-5 cwt. steers, 7-8
cwt. heifers, 4-5 cwt. heifers, slaughter hogs, and sows. Price data were structured on the basis
of 4 weeks per month (if a month had 5 weeks the 4th and 5th week’s prices were averaged).
Nearby futures price data corresponding to the cash price series were also collected, with nearby
defined as nearest to delivery but not in the delivery month. For some commodities, deferred
futures prices were consistently available up to 11 months prior to the nearby period. For others,
they were only available for shorter time periods.

NAIVEI], NAIVES, FUTLBAS, FUTLPBAS, and MODFUT forecasts were developed for .

each commodity and location.! Because all but one method (NAIVE]) required 5 years of
historical data, all forecasts were for weeks in the years 1987 through 1996. Because of the large
volume of data, prices from only selected weeks were forecasted and only at selected horizons.
Prices were forecasted for the third week of each month in each year. The vantage points from
which these prices were forecasted (the forecast horizons) were 4 weeks prior, 8 weeks prior, and
so on, stepping back in time as long as deferred futures prices were available. Because of the
weeks selected, both forecasted periods and forecast horizons are one month apart. Missing data
were extrapolated to ease the computational burden (an appendix describes missing data
procedures and other data details). Table 1 provides a description of the cash price series
forecasted, the associated underlying futures markets, the number of forecast horizons
considered, and the total number of forecasts constructed.

Forecast Evaluation Procedures

A series of forecasts is associated with a series of forecast errors. For evaluation, the
information embodied in a forecast error series is routinely condensed into a single test statistic,
such as sum of squared errors or mean absolute error, so that competing forecasts can be
compared using their associated test statistic values. Unfortunately, this approach is limited to

' OLS was used in estimating underlying regressions for regression-based forecasts. We
recognize that potential cointegration between cash and futures prices may cause underlying parameter
estimate standard errors to be unreliable. However, cointegration is not useful in these models that are
estimated only over 5 observations (r=7-4 to t=T ) each year.
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omparisons. TO extract information of interest requires NUMETOUS pairwise
yns, making it difficult to generalize results.

1+-alternative forecast comparison approach, that generalizes large amounts of

on, collapses the information in a forecast error series into a regression model where
sror is the dependent variable. In that framework, forecast errors from competing
across time and space can be stacked, so that partial effects of interest can be isolated
propriate independent variables. For an example of this method of forecast comparison

tens, Schroeder, and Plain (1996).

o g
rec

3 ‘.'

. Because the number of forecasts examined here was large, varying across years, weeks

in the year, horizon length, location, and commodity, the forecast error regression model
roach to forecast comparison was selected. This approach considers that cash price forecast
+ a commodity are affected by forecast method, forecast horizon, time period forecasted,

ecast Error = f (method, horizon, time period,, location) . (6)

> 1,

goal of this research was to reach general conclusions about relative accuracy for

ternative cash price forecasting methods. The effect of forecast horizon on the accuracy of
npeting forecast methods is expected to vary widely. For example, forecasts using the two

‘methods are constant across horizon. Thus, it is important to specify (6) so that the effects

rizon by method, on relative accuracy, can be measured—suggesting an interaction term.

Prices for some time periods within the year, and for some locations, are likely to be inherently

‘more difficult to forecast than other times or locations. It is important to isolate these inherent

forecast accuracy differences, so that they do not mask information sought: comparing relative

-uracy across competing forecast methods. However, in order to generalize the results into

le forecast procedure recommendations, no interactions with method were considered for the

d location effects.

Focusing on error magnitude, forecast errors were measured as absolute values. Since the
¢ of cash price varies substantially across time and location, errors were computed as percent
eITOrS (actual less predicted, divided by actual, multiplied by 100). The end result was dependent
‘variables that are absolute percentage forecast error (APE) series. The final model estimated
separately for each commodity is:

APE

‘G, w,T,wh =a + B, NAIVEI jowTow-h " B,NAIVES, , 1w-n* B,FUTLP ‘BASj.w.T,w—h

+BMODFUT, , 1, * B;HORIZON, + BNAIVEIH, ,, 1.,-
¥ B-;NAIVESI_IL",' A BQFUTLPBAS'I{_[,W,T',W‘}! i B'5JMODFU:I‘IIJ',w.T,w-h
+B,JAN, +... ¥ B NOV,, + 521L0C.1 w4 BoLOC * &y Teh

)
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In equation 7, / represents location (1. . .J); w is the week (3, 7, ..., 47) of year T
(1987-1996) corresponding to the period forecasted (thus, the 4PE); / represents forecast
horizon length in weeks, so that w-h denotes a forecast made in week w-h. NAIVEI , NAIVES,
FUTLPBAS, and MODFUT are forecast dummies that equal 1 when the forecast was generated
by that respective method, else 0 (default method is FUTLBAS). HORIZON, is a variable equal
to h. NAIVEIH, .., through MODF UTH,,,+ ., are slope dummies equal to the product of
HORIZON),, and the corresponding forecast dummy (default is FUTLBASH). JAN,, through
NOV,, are 1 if week w corresponds to the month specified, else 0; and LOC, is 1 if the underlying
forecast corresponds to the cash price in location j, else 0.

Results

To provide a general background, table 2 shows mean absolute percentage error (MAPE)
and maximum absolute percentage error (maxAPE) by forecast method and commodity. The
minimum APE was near zero in all cases, so not reported. As judged by the average MAPE:s at
the bottom, FUTLBAS (futures plus level basis) and FUTLPBAS (futures plus level and
proportional basis) generally provide the greatest accuracy across the forecast methods. On
average, their average MAPEs and average maxAPEs are similar. NAIVE] (1-year naive) had the
second-highest average MAPE, yet an average maxAPE similar to the two futures-plus-basis
methods. Forecasts based on last year’s price, while not particularly accurate, did not diverge too
far from actual price either. The relatively more complex forecast method, MODFUT (where
cash price is modeled as a function of deferred futures price) was in the middle of the group in
terms of average MAPE, but the worst method by maxAPE. That suggests MODFUT performs
especially poorly in some forecasts, causing occasional large errors. Observing the rows in table
2 shows that MODFUT had the highest maxAPE in 8 of 12 commodities. It performed
especially poorly in the grains, where worst-case errors were consistently above 100%.

Overall, in terms of MAPE, table 2 shows that NAIVES5 (5-year naive) was generally the
least accurate forecast method. For the 6 cattle price series, NAIVES was the single worst
method for MAPE, and had the highest maxAPE for 4 out of 6 cattle series. Underlying cattle
price cycles may be to blame for diminishing the accuracy of NAIVES, causing the 5-year average .
price to repeatedly be a poor predictor of future price. The rightmost column of table 2 shows
the grains to have the least accuracy across the 12 commodities. The average MAPE for wheat,
corn, milo, and soybeans is 14.45%—contrasted with an average MAPE for the 6 cattle series of
10.88%. Slaughter steer price forecasting, with the lowest average MAPE and lowest average
maxAPE, stands out among the commodities as having the greatest accuracy. On the other hand,
with an average MAPE over 17%, sow prices are the most difficult to forecast.

Results of models explaining forecast errors are in table 3 (grains, slaughter steers, and
cutter cows) and table 4 (feeder cattle, slaughter hogs, and sows). The regression models are
used to condense information in a systematic manner and to statistically compare the accuracy of
competing methods by forecast horizon. Thus, to conserve space, coefficient estimates for binary
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nd location variables are not reported.” The models do not have particularly high
ry power, as R%s range from a high of 0.24 for 7-8 cwt. feeder steers to a low of 0.05 for

\e HORIZON estimate depicts the change in accuracy for a one month increase in
horizon for the default forecast method, FUTLBAS (futures plus level basis). All

ON estimates are significant and positive, confirming that forecasting further into the
i< Jess accurate than forecasting prices close to the present. FUTLBAS APEs increase
wi ﬂ_lgngthening horizons for grain forecasts than for livestock forecasts. FUTLBAS wheat
recast accuracy diminished 1.34% for each 1-month increase in horizon, the most among
odities. With naive forecasts, last year’s price (for NAIVEI), or the last 5-years’
price (for NAIVES), is the same price forecast for all horizons. Thus, horizon does not
accuracy for the naive models. This can be seen by noting that NAIVEIH and NAIVESH
neters are each the negative of the HORIZON parameter.

a;haauy, both naive forecast methods yield substantially reduced accuracy relative to
ult method F' UTLBAS (all NAIVE! and NAIVES estimates are statistically positive).
Yf!? this is only consistently true for sufficiently short forecast horizons. As noted,
TLBAS forecast accuracy deteriorates with increased horizon length while naive accuracy

not.. Dividing values in either the NAIVEI or NAIVES rows by same-column values in the
onding NAIVE] H or NAIVESH row yields the forecast horizon where naive accuracy

als FUTLBAS accuracy. In all but three cases, the horizon where this occurs is either
ociated with a non-significant slope dummy estimate or is otherwise greater than the

um horizon length tested. The three cases are NAIVES for soybeans (at 8.4 months),

r slaughter steers (7.6 months), and NAIVES for slaughter hogs (10.3 months).

It would not have been surprising to find naive distant-horizon forecasts to be more

e than futures-based forecasts for commodities that are undeliverable or substantially

ed from the specifications in the underlying futures contract (for example, cutter cows).
ver, it is unexpected that naive forecasts at longer horizons are as accurate as futures-based
sts for soybeans, slaughter steers, and slaughter hogs. For hogs it could be explained by
ting that in 10.3 months a lot can change in hog production to negate futures-anticipated

ofits associated with hog feeding. That is, futures information 10 months prior to slaughter
ay be no more reliable than some simple long-run measure, such as naive price. Even for

ter steers, with a feeding period of 4 to 5 months, production decisions may be

stantially altered in 7.6 months. These findings for livestock are consistent with conclusions
oontz, Hudson, and Hughes (1992). No explanation immediately emerges for soybeans.

; 2 A total of 64 cash price locations were considered in grain price forecasts (wheat, 23; corn, 1
ilo, 17; soybeans, 13). Among the 60 related location dummies, 21 had parameter estimates significant

ie 0.05 level. Among the 132 total monthly dummies (12 commuodities times 11 months), 82 were
gnificant at the 0.05 ievel. Non-reported parameter estimates are available from the authors.
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However, Kenyon, Jones, and McGuirk (1993) have noted that futures forecast accuracy has been
especially poor for soybeans, and especially since 1973—due partly to yield uncertainty.

Forecasts that characterized basis in a regression of cash price on nearby futures price,
FUTLPBAS, were not more accurate than the default method, FUTLBAS, where expected basis
was the simple 5-year historical average level basis. For two commodities, corn and milo,
FUTLPBAS performed worse. Nor did FUTLPBAS gain in relative accuracy over FUTLBAS as
horizons lengthened (none of the FUTLPBASH estimates are significant). Thus, nothing was
gained by including a proportional component to basis. The simple deferred futures plus level
basis forecast method was more accurate.

MODFUT forecasts were based directly on regressions of cash price on deferred futures,
not relying on the concept of basis. That increased complexity (a separate regression model is
required for each horizon, point forecast combination) did not improve accuracy over the default
FUTLBAS model. For one half of the commodities (wheat, corn, milo, soybeans, slaughter hogs,
and sows) MODFUT resulted in statistically less accurate forecasts than FUTLBAS. MODFUT
did not gain in relative accuracy over FUTLBAS as horizons lengthened. For one half of the
commodities (corn, milo, slaughter steers, cutter cows, 7-8 cwt. steers, and 7-8 cwt. heifers)
accuracy relative to FUTLBAS actually deteriorated with longer horizons (see the positively
significant MODFUTH estimates). Thus, for corn and milo, MODFUT starts less accurate than
FUTLBAS at short horizons and becomes increasingly less accurate as horizons lengthen.

Soybeans are somewhat anomalous. MODFUT forecasts at short horizons are less
accurate than FUTLBAS counterparts. Model-predicted APE is 1.77 greater (1.9536-0.1791).
Yet, beyond 10.9 month horizons (1.9536/0.1791), MODFUT soybean forecasts are more
accurate than FUTLBAS counterparts. Earlier it was noted that, beyond horizons of 8.4 months, ’
NAIVES soybean forecasts are more accurate than FUTLBAS counterparts. Why did the default
approach, FUTLBAS, forecast so poorly at distant horizons? Neither NAIVES nor MODFUT
depend on basis, but FUTLBAS does. Therefore, one possibility is that basis is less predictable
for soybeans than other commodities. However, a broad look at basis variability (not shown)
does not confirm that. For example, taking the standard deviation of weekly basis over 1987-
1996 for each location, dividing by the average nearby futures price for the same time period, and
averaging the quotients across all cash price locations, results in soybean basis variability that is
3% of futures price. Yet, comparable computations for wheat locations results in 4% basis
variability.

As noted, the soybean anomaly does not appear to lie in difficulties with the cash/futures
relationship. Rather, it has to do with difficulties in predicting delivery-time futures using
deferred futures, as suggested by Kenyon, Jones, and McGuirk (1993). In an exercise where
nearby soybean futures were treated as the only cash price series, forecast accuracy results were
similar to those displayed in table 3. In short, deferred futures are merely poor predictors of
eventual nearby futures when time gaps are large (favoring NAIVES). Furthermore, biases in
distant soybean futures persist long enough that historical regressions of nearby on deferred
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futures can capitalize on them (favoring MODFUT).

The default forecast method, FUTLBAS, which uses deferred futures price plus historical
basis, is typically superior to other methods reported in tables 3 and 4. Among the 210 horizon-
by-commodity combinations for NAIVE] and NAIVES, only 6 of those combinations involved a
naive forecast that was superior to FUTLBAS. The case was even stronger for comparisons
involving more sophisticated futures-based forecasts. Among the 210 horizon-by-commodity
combinations for FUTLPBAS and MODFUT, only 1 of those combinations (MODFUT for
soybeans at a 11 month horizon) involved a sophisticated forecast that was superior to
FUTLBAS. Together, these results make a strong case for using deferred futures plus historical
basis for forecasting future cash commodity prices—at least among the relatively simple forecast
methods considered here. Even where commodities are substantially different from those '
specified in futures contracts, using a related contract to aid forecasting appears beneficial. !
Virtually nothing was gained by assuming futures market biases (inefficiencies) are systematic
enough to be picked up in historical regressions of cash price on deferred futures price.

‘ The forecast method FUTLPBAS, where basis involved both level and proportional

* components, was never statistically more accurate than the simpler FUTLBAS method (for corn
and milo it was statistically worse). In general, tables 3 and 4 show that it was difficult to
statistically distinguish the forecasting accuracy of FUTLPBAS from that of FUTLBAS. Thus, in
real-time forecasting, there is little reason to expend the extra effort in constructing regressions of
cash price on nearby futures.

An interesting question revolves around MODFUT. Why was that method typically less 1
accurate than FUTLBAS? After all, MODFUT accounts for persistent biases that may be present
in the underlying futures market, and should not be unduly hampered if biases are not present.
Furthermore, it should simultaneously account for cash prices that are consistently below futures
(that is, basis). However, the relatively large maximum APEs reported for MODFUT in table 2
suggested this method forecasts some prices especially poorly. Regressions could impose too
much structure on the data. That is, the relationship between a futures contract’s current price
and its price several months prior may be highly unstable. This points to an age-old problem of
empirical economists: How can historical data best be generalized for making future decisions?
Or, how can the real-time forecaster be restrained from making too much of historical data?
There is, of course, no simple answer. Here, at least, combining the concept of futures efficiency
with the simplest of models, the mean (of 5-year historical basis), resulted in more accurate
forecasts of cash commodity prices than did using more complex models involving regressions.

Conclusions
This study examined the accuracy of five competing naive and futures-based localized
cash price forecasts. The third week’s price for each month of 1987 through 1996 was forecasted

out-of-sample from vantage points one to 11 months preceding the observed price. Commodities
examined were wheat, corn, milo, soybeans, slaughter steers, cutter COws, 7-8 cwt. steers, 4-5
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CWL. steers, 7-8 cwt. heifers, 4-6 cwt. heifers, slaughter hogs, and sows. Locations selected w
important to Midwestern producers and businesses. Only simple-to-construct forecasting
methods were considered—methods that could easily be adopted for real-time forecasting by
practitioners, producers, and businesses. Naive methods involved one-year lagged price and
most-recent 5-year average price. Futures-based methods involved the traditional deferred
futures plus historical basis (the most-recent 5-year average), deferred futures plugged into the
estimates from a regression of cash price on nearby futures (assumes basis has both proportior
and level components), and deferred futures plugged into the estimates from a regression of c:
price on deferred futures (captures persistent futures trends and historical cash/futures
relationships directly in a model).

Information about relative forecasting accuracy across forecast methods was collapsed
into regression models of forecast error. Results supported the traditional deferred futures plu:
historical basis method. That method was either statistically more accurate or not statistically
less accurate in 413 of 420 commodity-by-forecast horizon combinations. Even for commodit
substantially different from those specified in related futures contracts, such as cutter cows or «
cwt. heifers, the added sophistication of regression models was not merited. Although
considering other forecast methods, or other historical data lengths, may have altered
conclusions, the best models were those that used the economic principle of futures market
efficiency along with one of the simplest models—the mean of historical basis. The implicatic
is that forecasters would do well to provide historical localized basis values directly to produce
and businesses, and instruct them to simply add current deferred futures.
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Appendix: Additional Data Details

A number of missing data points were approximated to expedite computations. Futures problems were limited to
feeder cattle, where a few missing points would have precluded considering horizons beyond 14 weeks. Thus, in
weeks 23 and 24 of 1983, January 1984 feeder cattle futures were not yet trading and were replaced with
corresponding averages over 1982, 1984, 1985, and 1986 (only used in forecast model initialization). In week 19 of
1992 the January 1993 feeder cattle futures, which was not yet trading, was assumed to be 0.987 times the week 22
price (when it was trading), which was the same proportion observed in the November 1992 contract over the same
time span.

For cash series, missing data problems were more severe, although typically less than 2% over the entire 1982-1996
time period for a particular commodity in a location, and typically less than 1% for the period forecasted, 1987-
1996. Missing data were filled in using proportional changes in corresponding nearby futures prices before and
after the missing points. For example, if 2 cash price in week 2 were missing, but weeks 1 and 3 were present, then
the cash price was the average: [(week 2 fut/week 1 fut * week 1 cash)+(week 2 fut/week 3 fut * week 3 cash)]/2.
If contiguous cash prices were absent, the adjustment process was iterated until convergence within $0.00001. In
one case, cutter COW prices, missing data were severe during the forecast initialization period (1982-1986), where
72% of the data were missing. However, during the period forecasted (1987-1996) only 0.6% were missing.
Consequently, because we wished to be consistent in both series length and in procedures, we used the same
missing data computations. We recognize that this may introduce error in the cutter cow price forecasts, at least
early in the 1987-1996 time period.

Hog futures contracts changed exclusively to lean hogs with the February 1997 contract. This involved 4 weeks of
nearby futures in December 1996, as well as the deferred futures prices associated with the various forecast
horizons. To be consistent with the preceding data, prices for the lean hog contract were converted to old contract
equivalents by multiplying by 0.74.

267




Tablel. Cash Price Forecast Description. Forecasts are for third week in each month, 1987-1996.

Cash Number of Futures Forecast
Commodity* or location Market® Horizons (months)  Total Forecasts
Wheat < KCBT Wheat L .8 110,400
Comn 11° CBOT Corn Y 72,600
Milo 17 CBOT Corn (S ‘112,200
Soybeans 13+ CBOT Soybeans 1 sy 11 85,800
Slaughter Steers Western Ks. Direct CME Live Cattle 1,..,9 5,400
Cutter Cows Sioux City, lowa  CME Live Cattle (P 5,400
7-8 cwt. Steers Dodge City, Ks. CME Feeder Cattle 1..,6 3,600
4-5 cwt. Steers Dodge City, Ks. CME Feeder Cattle | P 3,600
7-8 cwt. Heifers Dodge City, Ks. CME Feeder Cattle | [ 3,600
4-5 cwt. Heifers Dodge City, Ks. CME Feeder Cattle 1,456 3,600
Slaughter Hogs St. Joseph, Mo. CME Live Hogs - 6,600
Sows St. Joseph, Mo. ' CME Live Hogs 1, capdik 6,600

* All grain prices are for Wednesday (or Thursday if no market on Wednesday). Slaughter steers, hogs, and sows are
weekly averages. Other livestock prices are market day prices.

b All futures prices are Wednesday’s close (or Thursday if no market on Wednesday).

¢ All grains share these Kansas markets: Colby, Dodge City, Emporia, Garden City, Great Bend, Hutchinson, Kansas
City, Pratt, Scott City, Topeka, and Whitewater.

4 Other Kansas wheat locations: Andale, Beloit, Concordia, Hays, Hoxie, Liberal, Marysville, Russell, Salina, St.
Francis, Wellington, and Wichita.

¢ Other Kansas milo locations: Andale, Beloit, Hays, Liberal, Salina, and Wichita.

f Other Kansas soybean locations: Andale and Beloit '

& Total forecasts are obtained by taking the number of forecast methods (5: NAIVEI, NAIVES, F UTLBAS,
FUTLPBAS, and MODFUT) times the number of weeks forecasted each year (12, or one for each month)
times the number of years forecasted (10) times the number of locations (for wheat, 23) times the number of
horizons considered (for wheat, 8).
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able 2. Mean and Maximum APE’s by Commodity and Forecast Method, 1987-1996.

Forecast Method
Average by
NAIVEI NAIVES  FUTLBAS FUTLPBAS MODFUT Commodity

'MAPE: 20.25 18.99 10.73 10.89 12.95 14.76
maxAPE: 77.42 54.42 57.83 57.53 132.00 45.84
MAPE: 19.33 18.48 11.58 12.32 1523 15.39
maxAPE: 79.56 104.39 58.89 66.94 107.50 83.46
MAPE: 20.43 20.03 12.47 13.13 16.39 16.49
maxAPE: 73.17 95.56 72.45 65.25 133.20 87.93
Soybeans MAPE: 15.42 11.51 9.41 9.15 10.29 11.16
maxAPE: 54.48 32.36 84.93 79.16 142.32 78.65
'Slaughter MAPE: 6.87 9.67 5.82 6.35 7.98 7.34
Steers maxAPE: 20.78 30.17 19.47 22.75 49.17 28.47
Cutter MAPE: 12.60 18.74 11.22 10.77 13.96 13.46
Cows maxAPE: 59.62 85.00 6727 66.89 82.36 72.23
7-8cwt.  MAPE: 9.57 15.47 6.12 5.83 8.15 9.03
Steers maxAPE: 28.80 53.43 24.05 2429 59.99 38.11
4-5cwt.  MAPE: 12.19 19.73 10.87 9.19 9.87 12.37
Steers maxAPE: 53.22 8161 5181 46.05 50.39 56.62
7-8cwt.  MAPE: 9.80 16.51 16.75 6.76 9.02 9.77
Heifers maxAPE: 29.76 64.23 27.34 2211 57.98 4028
4-5cwt. MAPE: . 13.07 22.01 11.64 9.29 10.64 13.33
Heifers maxAPE: 53.95 94,04 58.39 39.38 54.62 60.08
& Slaughter ~MAPE: 15.84 12.76 10.22 10.45 13.32 12.52
Hogs maxAPE: 49.73 56.37 65.95 65.30 79.35 63.34
* Sows MAPE: 20.93 18.90 13.66 14.17 18.94 17.32
maxAPE: 79.02 89.21 103.75 104.02 117.96 98.79

Avg.by  MAPE: 14.69 1690 10.04 9.86 12.23

Method  maxAPE: 54.96 70.07 57.68 54.97 88.90
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Table 3. Selected Parameter Estimates for

Determinants of Absolute Percentage Errors Associated with Forecast

Models for Grains, Slaughter Steers, and Cutter Cows, 1987-1996.*
' Forecast Error Models :

1 . Slaughter Cutter
Estimate Wheat Comn Milo Soybeans Steers Cows
Intercept 5.2614" 7.7412™ 9.3694" 4.4593" 2.75317 9.5092"

(0.2555) (0.3550) (0.3032) (0.2127) (0.4165) (1.0818)
Forecast dummies; default is futures plus basis method, FUTLBAS
NAIVEI 15.5642" 13.3189" 13.1984™ 11.2415™ 3.0725" 2.9346
(0.2555) (0.3629) (0.2909) (0.2127) (0.4870) (1.2648)
NAIVES 14,2967 12.4735™ 12.7951° 7.3268" 5.8709"" 9.0836"
(0.2555) (0.3629) (0.2909) (0.2127) (0.4870) (1.2648)
FUTLPBAS 0.3060 0.9174° 0.8457" -0.0358 0.7244 -0.0368
(0.2555) (0.3629) (0.2909) (0.2127) (0.4870) (1.2648)
MODFUT 2.5961"" 1.43607 2.3809" 1.9536™ 0.9408 0.3143
(0.2555) (0.3629) (0.2909) (0.2127) (0.4870) (1.2648)
HORIZON Y.3413" 0.9288" 0.87327 0.8716" 0.4045™ 0.3121°
(0.0358) (0.0378) (0.0303) (0.0222) (0.0612) (0.1589)
Forecast/horizon interactions
NAIVEIH -1.3413" -0.9288" -0.8732" -0.8716™ -0.4045" -0.3121
(0.0506) (0.0535) (0.0429) (0:0314) (0.0865) (0:2248)
NAIVESH -1.34137 -0.9288" -0.8732" 8716™ -0.4045" -0.3121
(0:0506) (0.0535) (0.0429) (0.0314) (0.0865) (0.2248)
FUTLPBASH -0.0326 -0.0288 -0.0309 -0.0376 -0.0399 -0.0837
(0.0506) (0.0535) (0.0429) (0.0314) (.0865) (0.2248)
MODFUTH -0.0823 0.3695™ 0.2572" -0.1791™ 0.2440™ 0.4840°
(0.0506) (0:0535) (0.0429) (0.0314) (0.0865) (0.2248)
No. of Obs. 111400 ) 72600 112200 85800 5400 5400
Mean of d%:. z
var. (MAPE) 14.7612 15.3880 16.4892 11.1574 7.3404 13.4572
R? 0.1362 0.0781 0.0814 0.1105 0.1182 0.0502

* Significance at the 0.10 and 0.05 levels denoted by *
‘models included 11 monthly dummies. i

and **, respectivelﬁi Standard errors are in parentheses. All
Grains m e

odels included these numbers of location dummies: wheat,

22; corn, 10; milo, 16; soybeans, 12. Livestock series each have only one location.
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: able 4. Selected Parameter Estimates for Determinants of Absolute Percentage Errors Associated with Forecast
els for Feeder Cattle, Slaughter Hogs, and Sows, 1987-1996."

Forecast Error Models
i Slaughter
 Estimate 7.8 cwt. Strs. 45 cwt. Strs._7-8 cwt. Hirs.  4-5 owt. Hits. Hogs Sows
ercept 2.6497" 8.3366" 3.4652" 9.0451" 3.7200" 6.9678"
(0.7154) (1.1322) (0.7562) (1:2110) (0.6827) (1.0368)
Forecast dummies; default is futures plus basis method, FUTLBAS
6.1302" 3.0554° 5.7775" 3.6503° 9.2055" 10.9587"
(0.8481) (13322) (0:8964) (1.4356) (0.7941) (1.2059)
12.0306" 10.5915" 12.4840™ 12.5862" 6.1281" 89361
(0.8481) (13422) (0.8964) (12356) (0.7941) (1.2059)
0.3740 -1.6356 0.3381 223562 0.1795 484
(0:3481) (1.3222) (0.8964) (14356) (0.7941) (1.2059)
0.3789 23676 0.6018 -2.6824 3.3053" 3.6804"
(0.3481) (13422) (0.8964) (1.4356) (0.7941) (12059)
0.7666" 0.4955° 0.7799" 0.6352° 0.5966" 0.6147"
(0.1540) (02437) (0.1628) (0.2607) (0.0828) (0.1257)
recast/horizon interactions
0.7666" -0.4955 -0.7799" -0.6352. -0.5966" 0.6147"
(0.2178) (0.3447) (0.2302) (0.3686) (01171) (0.1778)
-0.7666" -0.4955 0.7799" -0.6352 -0.5966™ 0.6147"
(0.2178) (0.3447) (0.2302) (0.3636) (0.1171) (0.1778)
0.0950 0.0141 -0.0938 0.0009 0.0084 0.0056
(02178) (0.3447) (0.2302) (0.3686) (0.1171) (0.1778)
0.4700° 0.3897 0.4751" 0.4810 -0.0334 0.2677
(0.2178) (0.3447) (0.2302) (0.3686) (0.1171) (0.1778)
3600 3600 3600 3600 6600 6600
) 9.0291 12.3682 9.7699 13.3308 12.5183 17.3198
0.2389 0.1190 0.2220 0.1413 0.1138 0.0918

* Significance at the 0.10 and 0.05 levels denoted by * and **, respectively. Standard errors are in parentheses. All
‘models included 11 monthly dummies. Livestock series each have only one location.
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