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Corn and Soybean Basis Behavior and Forecasting:
Fundamental and Alternative Approaches

Bingrong Jiang and Marvin Hayenga'

This basis study covers com and soybean markets across the U.S. Corn and soybean bases have
seasonal patterns, as does the relative importance of factors (storage costs, barge rates,
production levels) determining the basis. Corn and soybean basis behavior in port locations is
different than in major production areas. Though three-year-average basis forecasts are
reasonably accurate in recent years, forecasts based on a three-year-average supplemented with
additional fundamental variables or seasonal ARIMA model forecasts slightly improved basis
forecasting accuracy in out of sample tests.

| Introduction

The basis is defined as the difference between cash and futures prices. In grain
merchandising, the basis is usually defined as the difference between the local cash price and
the nearby futures price, i.e. the current price of the nearest futures delivery contract. It has
been argued by many researchers that the key to successful hedging is understanding the basis
(Garcia and Good, 1983; Hieronymous, 1978; Leuthold et. al., 1989; Karison et. al.., 1993;
Tomek, 1996; and so on ). This is because most hedging involves two opposite positions: one
in the cash market and another in the futures market. It is the difference between cash and
futures prices, together with the futures price, that determines the return from hedging and
hedging’s effectiveness in reducing risk.

Grain merchandisers and processors routinely need to accurately forecast basis to offer
forward purchase or sales contracts. Corn and soybean producers need to know the basis to
evaluate contracts offered to them, or in making hedging decisions. The Chicago Board of
Trade (CBOT,1990) asserts “Without a knowledge of the usual basis and basis patterns for
your particular community, it is impossible to make fully informed decisions about, for .
example, whether to accept or reject a given price; whether and when to store your crop;
whether, when, and in what delivery month to hedge; when to close (or ‘lift’) a hedge; or
when and how to turn an unusual basis situation into a possible profit opportunity.”(p.23)

* Authors are Graduate Research Assistant and Professor of Economics, respectively, at the Department
of Economics, Iowa State University, Ames, IA 50011
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Though basis is extremely important, there have been only few basis behavior studies
published, and even fewer basis forecasting studies (with the exception of forecasts using
simple moving averages of historical basis). The objective of this study to investigate corn and
soybean basis behavior and to improve the accuracy of basis forecasts.

This paper first reviews the theory of storage and basis studies on grain. The theory of
storage is related closely to the temporal and spatial price relationships in the grain market.
The basis of storable commodities is actually a temporal price relationship, the difference
between the current spot price and futures price. Local basis has another component of spatial
price relationship, which is the difference between a local cash price and the cash price at
Chicago Board of Trade delivery points. The previous basis studies on grain are reviewed to
assess the current state of knowledge, and identify where further contributions could be useful.

Since basis patterns differ from location to location, what is important to hedgers is the
basis at their locations. To provide some diversity in locations and to better represent the U.S.
corn and soybean market, several local markets are studied. These markets include Chicago,
St. Louis, Toledo, Gulf Coast, NE Iowa, Central Illinois, Richmond, and the Pacific
Northwest market (corn only). Seven markets for soybeans and eight markets for corn are
analyzed in this study.

Several approaches are utilized in this study to explain and subsequently forecast the
local grain basis at these markets. A fundamental structural model incorporating storage cost,
transportation costs, and regional supply and demand variables is developed to explain basis
behavior. Several forecasting techniques are used in forecasting corn and soybean basis.
These include including traditional methods such as a simple three-year-average forecasts,
structural econometric model, modified three-year average model, artificial neural networks,
time series methods such as seasonal ARIMA and state space models, and composite forecasts.
The ability of the structural model to explain past basis behavior is examined, and out-of-
sample forecast performance of these alternative basis forecasting approaches is evaluated.

Theory of Storage

The efficient market hypothesis states that prices reflect information to the point where
the marginal benefits of acting on information do not exceed the marginal costs.
Correspondingly, the theory of storage suggests that basis—-the difference between
contemporaneous spot and futures prices--should equal the cost of storage. Otherwise, there
will opportunities for profitable arbitrage between the spot and futures markets. This suggests
that basis has a predictable temporal pattern. As the cost of storage decreases as one gets
closer to delivery (maturity), the cash price will gain in relation to futures price. On the first
day of delivery at the par delivery point, cash and futures prices should be equal theoretically,
and the basis should be zero (but the basis at non-par delivery points is usually not zero
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because of transportation cost differences). Similarly, the price spread of two futures contracts
within a given crop year, at least when it is positive will not exceed cost of storage between
the two delivery months. These are the clear aspects of the theory of price of storage as stated
by Working (1949).

Empirical studies have found that it is not uncommon to have the basis to be less than
the full cost of storage, and even negative retums for storage (spot price is higher than futures
price) are possible. Several studies have been offered to explain this discrepancy between
theory and empirical evidence. The popular explanations for the failure of the theory are
convenience yield and risk premium. Supporters of convenience yield include these classical
papers: Kaldor (1939, 1940), Working (1948, 1949); and Telser (1958). The risk premium
literature can trace back to Keynes (1930). The most recent studies show that theory should
not have been rejected, because the analyst’s misconception or mis-measurement of the
concept led to its rejection (Wright and Williams 1989; Brennan et al. 1997; and Benirschka
and Binkley 1995).

Grain Basis Studies

Besides various studies dealing with the theory of storage, there have been few
empirical studies related to the basis behavior and basis forecasting of grain. Heifner (1966)
set up a prediction equation for both cash price change and basis change, which stated that the
change variables over a particular interval are a function of the basis at the beginning of the
interval. Kenyon and Kingsley (1973) predicted the harvest time basis at planting time and
compare the performance of this harvest time forecasted basis with other historical average
basis estimates in the hedging effectiveness. Martin, Groenewegen and Pidgeon (1980)
modeled the factors affecting corn basis in Southwestern Ontario over Crop years from 1962 to
1976. Kahl (1982) focused on the change corn basis patterns from the sixties to seventies in
Chicago. Garcia and Good (1983), based on the theory of carrying charge, analyzed the
factors influencing the Illinois corn basis for the period from 1971 to 1981. Powers and
Johnson (1983) studied Wisconsin corn basis during the storage season from 1978-1980.
Taylor and Tomek (1984) developed a simple model to forecast the November corn basis in
Batavia, New York. Brorsen et al. (1985) investigated dynamic price relationships of corn,
sorghum, and soybeans in different locations. Both price relationships across space and among
commodities in the same location were studied. Kahl and Curtis (1986) analyzed various
factors that influence the magnitude and variation of a grain surplus area (Illinois) and a grain
deficit area (North Carolina). Hauser, Garcia and Tumblin (1990) evaluated alternative
soybean basis expectation (forecast) models and how basis expectations play a role in
measuring hedge effectiveness. Thompson, Eales and Hauser (1990) investigated the
relationship of spatial grain (corn and soybean) basis changes between cash market locations in
the North Central region and explained how cash price is linked to other cash market prices
and futures price. Naik and Leuthold (1991) empirically tested the components of the corn
basis using cash prices for East Central Illinois elevators and CBOT futures prices. Karlson,
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Anderson and Dahl (1993) analyzed the role of futures markets in corn marketing decisions.
In a recent paper, Tomek (1996) outlined a simple model of price level and basis behavior
based on supply and demand of storage. : '

Structural Basis Behavior Model

Basis at a location involves two price relationships: (1) delivery point cash and futures
price relationship, and (2) local and the delivery point cash prices relationship. The first
component is a temporal price difference which, according to the theory of storage, should
equal to storage return ( or price of storage). The second component represents spatial price
difference. The law of one price suggests that it will be equal to transportation cost between
two locations. That is, the basis can be viewed as the sum of storage return and transportation
cost. The price of storage (par delivery point basis) is determined by both the supply of
storage and the demand for storage. Tomek’s (1996) supply of storage equation expresses the
price of storage is a function of opportunity cost, direct storage cost and convenience yield,
and the demand for storage equation shows inventory is a function of relative demand for

- consumption over two periods, production and the price of storage. A reduced form for the

price of storage, derived from these two equations, shows that the price for storage is a
function of production, opportunity cost, relative demand in two periods, direct storage cost,
and convenience yield. Given the transportation cost, basis, the sum of storage and
transportation costs, is affected conceptually by storage and transportation costs, production
and stocks, and local economic conditions such as local grain consumption, and constraints of
storage and transportation capacities.

All previous basis behavior studies (Martin et al. 1980; Kahl 1982; Garcia and Good
1983; Powers and Johnson 1983; Kahl and Curtis 1986) used models based on this general
approach, though the actual data used in estimation were quite different. These studies were
conducted in early 80s’, and they were confined to one or two markets. They studied basis in
Ontario, Chicago, Illinois, Wisconsin, and Illinois and North Carolina, respectively. There
have been significant changes in grain marketing since then. '

According to the law of one price, one major component in spatial price difference is
transportation cost, yet this is not well captured in previous studies. Only Garcia and Good
(1983) used barge rates on the Mississippi River. Powers and Johnson (1983) used a trend
variable in the place of transportation cost, Kahl and Curtis (1986) took U.S. rail rate index as
the transportation cost variable, and Martin et al. (1980) did not include a transportation cost
variable. Four out of the five fundamental basis models discussed above used a single
equation approach, and OLS in estimating the basis equation. Grain markets may be well
integrated, and cash prices in different locations may interact with each other. A system of
equations approach may capture market behavior better. Kahl and Curtis (1986) found that
Seemingly Unrelated Regression outperformed Ordinary Least Squares.
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Corn and soybean nearby basis behavior of several grain markets across the U.S. will
be studied in this paper, taking into account the regional price interrelationships. This basis
behavior study can also provide more updated study on corn and soybean basis, as basis
patterns have changed dramatically since most of the previous studies were done in the 1980s.

Empirical model

The basis behavior model is estimated contract by contract for both corn and soybean.
The following equation is an example of the empirical model being estimated for Northeast
Towa corn:

(EQ. 1) BS_nia; = o + By*RP_nia; + Bs*BR_nia; + Ps*CN_nia; + PB4*EX_nia; +
ps*AUC_G; + Pe*TIM;,
= ; = Mar., May, Jul., Sep., and Dec.
Table 1. Variable Definition
Variable Definition

BS_nia Nearby corn basis of Northeast lowa
RP_nia Storage cost of Northeast Towa (Prime interest rate * Northeast Iowa corn cash
price) | |

BR_ nia Barge rate for Northeast Towa, St. Louis barge rate is used

CN_ nia Ratio of corn production and storage capacity for the states around Iowa
EX_nia Export volume through Mississippi River

AUC_G Animal units consuming grain ’

TTM Time to maturity, measured by months before futures contract expires

The study utilizes monthly time series data from January, 1980 to December, 1995."
Futures prices for corn and soybeans from January, 1980 to April, 1996 were generously
provided by Chicago Board of Trade. The settlement prices are selected as the futures prices.
The nearby future prices (NBFPs) are compiled from the futures prices of all the contracts.
For any month (either delivery or non-delivery month), the current futures prices of next
closest futures contract are taken as this month’s nearby futures prices. Monthly corn and
soybean cash prices for various market locations are all from the USDA. Other series that are
obtained from USDA include barge rates for shipping points on the Mississippi, Illinois and
Ohio Rivers, comn and soybean monthly export volumes by ports, and animal units consuming
grain. Prime interest rate is the prime rate charged by banks on short-term business loans
from the Annual Statistical Digest and Federal Reserve Bulletin. Soybean monthly crush
volumes? are from U.S. Bureau of Census publication, Fats and Oil.

! Since weekly cash price time series are not available for some Jocations or back to the 1980s, therefore
monthly data is used in this study.

21 is for soybean basis model
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A stacked model, which stacks all contract models together (with appropriate slope and
intercept dummy variables for each contract or each month), is used to test for seasonality and
to test whether SUR can improve the model fit. The nested F-test statistics reject the null
hypothesis that seasonal dummies, either contract or month, are zero in most of the market
equations. Similar results are found for the soybean equations. This suggests that both corn
and soybean basis have seasonal pattern. Though the stacked model with seasonal dummies can
capture the seasonal basis patterns, estimation by contract or month® will be more appropriate.
This is because the Goldfeld-Quandt tests show that variances of the contract models are not all
equal. Contract by contract modeling results in a higher R-Squares and lower RMSEs on average.
Therefore, the basis behavior model is estimated contract by contract for both corn and soybean
models. There are five corn basis models for each of the eight markets and six soybean basis
contract models for each of the seven selected markets.*

Estimation Results

Corn contract models

: The model explains about 50-80% of the corn basis variation There are seasonal
variations in size and significance of estimated coefficients throughout the year. Storage costs
are usually negative and significant only in the early storage season (for contracts March and
May), except in Northeast IA, Central IL and Gulf Port where storage costs are also
marginally significant (at 10% level) for July and September contract models (see Table 2).
Barge rates are mostly significant in the months of May, June, September, October and
November. That makes sense because the upper Mississippi River is closed in some of the
winter months due to ice and in few summer months with low water level or flooding. Comn
production relative to storage capacity is an important factor only for the months right after
harvest (from December to February), and it does not affect corn basis significantly after that.

Corn exports only have significant coefficients in two port markets: Pacific NW and
Richmond. Animal Units Consuming Grain is more important in Pacific NW than other
markets. December contract models have the most significant AUC_G coefficients. Time to
maturity matters from December to February for all eight markets.

Soybean contract models

The mean R? of six soybean contract models ranges from 0.5 to 0.8. There are also
noticeable differences in significance and magnitude of the coefficients for the same variables
-across the soybean contracts. Storage costs affect the soybean basis in every market right after
harvest season (November and December), and does not influence the basis in May and June
when the demand for storage is much less (see Table 3). Barge rate coefficients are

* The number of observation is a problem for estimating the basis model by month, therefore, we only
focus on contract model in this study.

4 The soybean futures contract August and September are combmed into a single contract model since
each of them covers one month for nearby basis and there in not enough observation for a good estimation.
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significantly different from zero mostly in May, July and November contract models. Most of
the significant production coefficients are in the March and May contract models, which
suggests that the size of the new crop impacts soybean basis from January to April.

The demand factors results are mixed. Soybean crushing generally has coefficients that
are inconsistent with expectation. Animal units consuming grain, not significant in general,
has both positive and negative significant coefficients. Export volume does not affect soybean
basis significantly throughout the year. Time to maturity variables are significant in the
January contract model for all markets (except Northeast Towa) and in other contract models
for some markets.

Table 2. Number of significant coefficients with expected sign in each contract model for eight
corn markets

Contracts
Variables March May July September December
; Total number of significant coefficients

Storage cost  ; 5 3 1
Transport cost 1 7 2 6
Production 7 ¥ 2
Export 1 1
AUC G 1 1 1 4
TT™ 8 2

Number of significant coefficient at different significance levels
Storage cost 6,6,7 45,5 0,0,3 0,0,3 0,0,1
Transport cost _ 0,0,1 3.6,7 112 6,6,6
Production 3.7 - 0,0,1 0,1,2
Export 0,1,1 0,1,1
AUC_G 1,11 111 1.1:1 2,4,4
TTM 8,8,8 0.2.2

Note: The three numbers represents the mumber of coefficients significant at 1%, 5% and 10% significance levels,
respectively.

Basis Forecasting Models

Several forecast techniques were utilized in prior studies: a basis change model’
(Heifner 1966; and Kenyon and Kingsley 1973), which considers that basis change over a time
interval as a function of initial basis; a structural econometric forecasting model (Taylor and
Tomek 1984; and Strobl etc. 1996); a seasonal ARIMA technique (Strobl etc. 1996); and a

5 This model, also called basis convergence model, is not used in this paper because it is not appropriate
to analyze basis convergence over the nearby basis.
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simple naive forecast model (Hauser et al. 1990). The naive model basis forecast has typically
been the previous year’s basis, the average of last three years’ basis, or the basis is forecast as
a function of price spread between the two nearest futures contracts or the time to expiration of
the futures contract (Hauser et al. 1990). Since the naive model based on previous three years’
average basis is very popular, it will serve as the standard for comparison for the more
sophisticated forecast models outlined below.

Table 3. Number of significant coefficients with expected sign in each contract model for
seven soybean markets

Contracts
Variables January March May July Aug&Sep November
Total number of significant coefficients
Storage cost 7 9 ;. 3 4
Transport cost 1 4 — 3 3
Production 1 4 4 2
Export
Crushing 2 ) 1
AUC_G 1 1
TT™ 6 2 2 1 2
Number of significant coefficient at different significance levels
Storage cost 5,6,7 535 1,22 0,2,3 44,4
Transport cost 0,0,1 2,3,4 6,6,6 2,2,3 1,33
Production 0,0,1 0,1,4 2,44 1,2,2
Export _
Crushing ‘ 1,2,2 1,22 1,1,1
AUC G - 0,0,1 0,1,1
TIM 6,6,6 222 0,2,2 0,1,1 0,1,2

Note: The three numbers represents the number of coefficients significant at 1%, 5% and 10% significance levels,
respectively.

Three-year-average plus model

If you assume that basis is seasonal and stable over years, the last three year’s basis for
a particular month will be a good forecast of basis for the same month this year. Though it is
easy to use, this approach does not take into account any current market information.
Therefore, it is hypothesized that this naive model forecast could be improved if current
market information is added to that model. That is the three-year-average plus model:

(EQ.2) BS, = f (3AVG,  Total Supply,, Exports, DM,) , i =1, ..., 9, 11, and 12,
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where 34VG is average basis of previous three years at the same month, DM; are monthly
dummies variables from January through December (except October), Total Supply and
Exports are USDA supply and export estimates.

Fundamental forecast model

The traditional approach is to forecast the independent variables individually and then
insert the forecasted independent variables into the estimated model to derive the basis
forecast, EQ.3 is an example for Northeast Iowa comn basis forecasting model:

Q3 BS_nia] = a; + f*RP_nia’+ fy*BR nia;’+ py*CN_nig; T+ By*EX_nig;’+
p5*AUC_G;'+ fg*TIM;”,
j = Mar., May, Jul., Sep., and Dec.

where i represents market, the superscript f stand for forecasted value, and the Greek
characters are estimated coefficients from the behavior model. Appropriate forecast models
(usually simple time series techniques such as moving average model) for these independent
variables have to be determined first, or forecasts available at the time such as USDA
production projections can be used as the forecasted values (see Table 4). These are the
ancillary forecasts which usually introduce additional errors into the forecasts.

Table 4. Methods of ancillary forecasting

Variables Methods used to obtain ancillary forecasts

Prime interest rate  Naive model (equals t-1 PIR)

Barge rates ARIMA model

Production _ Regression model and USDA WASDE (the relationship between state

and US productions is identified by simple regression, then the
coefficients from the regression and WASDE of US production are
used to calculate the state corn and soybean forecasts

Storage capacity Naive model (equals to last year’s capacity)

Soybean crushing ~ Previous three year average

AUC G It is known for the same crop year and naive forecast for next crop
year
Exports Previous three year average
Cash prices Previous three year average
Seasonal ARIMA model

Though the fundamental approach to basis forecasting has appeal, ARIMA time series
methods may produce better forecasts. Theoretically, time series techniques have some
advantages over econometrics modeling (Jenkins 1979). Others, such as Strobl et al. (1996),
cited practical reasons for preferring time series forecasting methods over econometrics
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forecasting model. The general form of the seasonal ARIMA model,
SARIMA(p,d,q)(P,D,Q);, is:

EQ04)  ©n(B)8,B-BI(1-BIBS, = 0o(5)6,Bla

where B is the backshift notation, s is the seasonal period (observations per period, here it is 12
months), the (p,d,q) are orders of autoregressive, differencing and moving average terms,
respectively, and (P,D,Q) are the orders of seasonal counterparts corresponding to (p,d,q). The
Greeks, ¢, 0, @, and ©, are the coefficients for regular autoregressive terms, moving average
terms, seasonal regular autoregressive terms, and seasonal moving average terms, respectively.

State Space Model -

In this paper, the approach proposed by Akaike (1976) will be used. One reason for
this selection is that a procedure called STATESPACE, which follows Akaike’s method, is
readily available in the SAS program. This approach utilizes Kalman filters to compute the
optimal estimates. It also allows for the maximum likelihood estimation of the unknown
parameters in the model, which is done by prediction error decomposition.

The general state space form (SSF) applies to a multivariate time series Y,.

(EQ.5) Y. =GX +W +4d ‘ (Observation or measurement equation)
X1 =FX +V, +¢ - (State or transition equation)

where all the variables are in matrices or vector forms. Y,, Wi, d, are w x 1 vectors; X;, Vy, ¢
are v x 1 vectors; G, is a matrix with dimension of w x v and F,isvxv. W, and V, have
means of zero and variances of R,, and Q,, respectively, and covariance of Si. W,, d;, Vi, Cy,
R, Q. S: are system matrices. If these matrices do not depend on time, the model is said to be
time-invariant or time-homogeneous. :

Artificial Neural Networks (ANN or NN)

Artificial neural networks have been applied in various scientific fields with successes.
However, it is not until recently that it began to be applied in financial and economic studies.
Several authors tried to relate neural networks to standard statistical approaches (Azoff 1994;
Cheng and Titterington 1994; Kohzadi et al. 1995; Hill et al. 1994). Others have compared its
performance with statistical approaches (Hill et al. 1994; Kohzadi et al. 1995; Dasgupta et al.
1994 Kuan and Liu 1995; Kaastra and Boyd 1995; Grundnitski and Osburn 1993; Uhrig et al.
1992; Hamm et al. 1993; Claussen and Uhrig 1994; Kohzadi et al. 94).
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The ANN could be an appropriate model to forecast local grain basis. The true model
generating the observed price series is uncertain. The data driven property of the ANN could
find the hidden patterns in the series. The interactions among several markets across the
country and between cash and futures markets are probably nonlinear in nature, which ANN
can handle with its nonlinear mapping. As Kohzadi et al. (1995) stated, many price series
were found to be non-random and nonlinear, not the typically assumed random and linear.

Forecast Performance Comparison

All the forecasts by various forecasting models discussed above are compared to
forecasts of the simple bench mark 3-year-average model, and to each. Four different criteria
measuring the accuracy of forecasts are used®: mean absolute error (MAE), root mean squared
errors (RMSE), two Theil’s U statistics (or Theil’s inequality coefficients. Mean absolute
error (MAE) calculates the average of absolute values of the forecast errors, root mean square
error (RMSE) is the square of the average if the squared values of forecasts errors, and the U
statistics are defined as the square root of ratio of the mean square error of the predicted
(percentage) change to the average squared actual (percentage) change. The formulas for these
criteria are: ‘

1
MAE = FZilAi - P
1
RMSE = J'T?}:i(Ai il Pl)z
" =J(T/n°)>:.-(AAi - AP)
g (1/n°)% A&

where P and A represent predicted and actual values, respectively, Ad; = 4, - A;;and AP; =
P;- A or M; o (A; - Aj_J)IA;_J and AP,' = (Pi - A;_I)IA;_J, and no is the number of pen(ﬂs
being forecasted.

All the measures will be zero for perfect forecasts, larger values indicate poor
forecasts. There are some differences among these forecasting accuracy measures. The RMSE
penalizes model with large prediction error more than MAE does. Therefore, MAE is more
appropriate when the cost of forecast errors is proportional to the absolute size of the forecast
error, while RMSE is more appropriate to situation in which the cost of the error increases in
accord with the square of the forecast error. The U statistic, either calculated in absolute
changes or percentage changes, will reflect the model’s ability to track turning points in the
data (Greene). When U = 1, the forecast is as good as no-change forecast (AP = 0). For U

6 The Henriksson-Merton test is also calculated, the results are consistent with othér measures.
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> 1, the forecast is less accurate than the simple forecast of no change. The following
discussion focuses on the RMSE since it is the most popular measure.

Table 4.5 shows the number of times the particular forecasting method has the lowest
RMSE’. There are 5 sets of 1-12 months ahead forecasts for each market and 8 markets for
corn models (7 for soybean models), therefore there will be total of 40 RMSEs for corn and 35
for soybean. The RMSE averages are calculated for forecast period of 1-12 month ahead, and
also for three shorter periods: 1-4, 5-8, and 9-12 months ahead (defined roughly as short term,
intermediate term, and long term forecasts, respectively).

Table.5 Number of times the forecasting models have the lowest RMSE

Forecast Forecasting Models *
Periods 3YR 3YR+ ARIMA USS MSS2 MSS7 SBBM NFD SCG_COMP
5 Corn
1-12 6 4 6 2 4 4 1 8 0 5
1-4 . 7 8 0 3 0 2 8 4 1 7
5-8 ENEEE Socleb RN P O | B R e RN
9-12 8 0 3 4 3 3 1 7 6 -
Soybean

1-12 3 11 9 1 1 2 1 1 1 5
1-4 5 5 7 1 3 1 3 1 2 7
5-8 6 12 2 1 2 - 0 4 2 3 3
9-12 A 9 8 1 2 4 0 3 1 5

2 The forecasting models are simple 3-year-average, 3-year-average-plus, seasonal ARIMA, univariate state space,
2-crop multivariate state space, 7-market multivariate state space, structural basis behavior, neural network with
NFD algorithm, neural network with SCG algorithm, and a composite forecast, respectively.

® The number with 0.5 indicates the lowest RMSE is shared by two models.

In general, in forecasting corn basis for eight locations, the three-year-average-plus
(3YR+), artificial neural network with noise-feedback descent (NFD) learning algorithm, and
composite forecasts (COMP) perform as well or slightly better than the three-year-average
forecasts (3YR). For 1-12 month ahead corn basis forecasts, the artificial neural network with
NFD has the largest number of lowest RMSEs; the second best models are the simple three-year-
average and seasonal ARIMA model (each has the lowest RMSE 6 times), closely followed by the
composite model. The structural basis behavior forecasting model (SBBM) and three-year-
average-plus models outperform other models (each with 8 times of the lowest RMSE) in the
short term (1-4 months) forecasts. The univariate state space model is best for the
intermediate term forecasts, and no models beat simple three-year-average model in long term

7 Detailed RMSE and other statistics are available up request.
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forecasts (though both neural network models come close). The multivariate state space

: models, both 2-crop (MSS2) and 7-markets (MSS7), do not perform well in corn basis

{ forecasting. Improved forecasts have a fraction of a cent up to less than 2 cents per bushel off
the RMSE, which is approximately equivalent to the standard error of the forecast at the means.
For some large volume grain merchandisers, that may be worth the added effort to develop, and
update their forecast procedures, but for many it will not be worth while.

For soybean basis forecasts, the three-year-average-plus model, seasonal ARIMA
model and the composite forecasts generally outperform simple three-year-average forecasts.
The three-year-average-plus model is the best according this criterion for 1-12, 5-8 and 9-12
month ahead forecasts, while seasonal ARIMA and composite forecasting models outperform

all other models in the short-term soybean basis forecasts, and also perform well for other
forecasting periods.

Conclusions

The results of basis behavior models for both corn and soybeans generally consistent
with previous studies. Nearby basis patterns exhibit seasonal patterns, and the relative
importance of the variables affecting basis variation varies seasonally. For example, storage
cost primarily is important in the early storage season. Barge rates significantly affect corn
and soybean basis in the spring and fall. When upper Mississippi river is closed during the
winter, the grain basis in St. Louis and Gulf Ports respond differently to barge rate changes
compared to other times of the year. Production is an important factor only for months during
and immediately after harvest. Demand factors have mixed results in this study. Export
volumes usually have little effect on local basis levels. Basis behavior also differs between
production locations and port locations. Significant basis convergence is found in this nearby
basis from Decembet to February for corn and November to December for soybean. No
evidence suggest that basis behavioral factors are different between delivery and non-delivery
markets in the primary production areas. '

Basis forecasting results shows that the simple three-years-average forecast method can
be outperformed by alternative models, even though it is still a reasonably good forecasts when
basis variation and seasonal pattern are stable over years (such as in recent years). Overall )
comparisons show 3-year-average-plus and seasonal ARIMA models fare the best in our out of
sample tests. Other more complicated approaches, like the state space and structural
econometric models, have inconsistent performance. For example, the structural behavior
model performs very well in 1- 4 month ahead corn basis forecasting, but not for longer term
forecasts. But there is room for improvement in the simple ancillary forecast procedures we
used. In conclusion, 3-year-average-plus and seasonal ARIMA models are most practical and
much easier to use than other alternative models, and they slightly outperform simple 3-year-
average forecasts. But, do the costs of developing and maintaining the improved forecast
procedures outweigh the potential benefits? Perhaps large scale grain merchandisers, grain
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marketing consultants with multiple clients, or extension grain marketing specialists serving
many clients may find such efforts worthwhile, while others will not.
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