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FORECASTING CROP YIELDS WITH CONDITION INDICES

Paul L Fackler and Bailey Norwood1

A model relating crop condition indices to average yields is developed. The

model is used to motivate a crop yield forecasting model, which in turn yields

estimates of the time path of information flows into the commodity market. An

empirical assessment of the forecasting model is undertaken.

Introduction

Crop yields have a significant impact on both commodity prices and farmer income.
Growing season forecasts of crop yields are therefore of considerable interest to commodity
market participants and price analysts. For example, grain futures prices tend to be quite volatile

during crop growing seasons, with the markets being quite sensitive to weather information that
impacts the yield potential of the growing crop.

Yield forecasting can be a very sophisticated enterprise utilizing crop growth models
together with weather and geographical data. As such yield forecasts can be very expensive to
develop. It would be useful to have a simpler alternative, if it could be shown to provide

reasonably accurate forecasts. The National Agricultural Statistics Service (NASS) of the USDA
publishes weekly crop condition data for various crops and regions. The crop condition indices
estimate the percent of crop acres in each of five categories: very poor, poor, fair, good, and
excellent. Crop condition data has the potential to provide a simple, regular source of
information about the eventual realized yield and has been used for forecasting at the Food and

Agricultural Policy Resource Institute (FAPRI) using a methodology developed in Kruse and
Darnell.

This paper attempts to develop a explicit model of the relationship between the condition
indices and the average yield and to use that model to guide statistical estimation of model

parameters. The model provides not only a yield forecasting model but estimates of the
seasonality of forecast volatility, which is related to the volatility of harvest contract futures
prices. In the process, we also address a empirical puzzle that yield forecasts may increase when
the fraction of the crop in the worst condition category increases.

The paper is organized as follows. The next section discusses the nature of the crop
condition indices and develops a model that relates these to average yields. In the third section,
we discuss the implications of the model for estimation and develop an econometric model. The
fourth section discusses empirical results for winter and spring wheat, corn, soybeans and cotton.
The last section presents a summary and conclusions.

Crop Condition Reports

Each week during growing seasons the Weekly Weather and Crop Report provides
estimates of the fraction of acreage for selected crops and states in each of five condition classes.
The USDA defines crop condition classes as follows:
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Very Poor: Extreme degree of loss to yield potential, complete or near crop failure.
Poor: Heavy degree of loss to yield potential which can be caused by excess
soil moisture, drought, disease, etc.

Fair: Less than normal crop condition. Yield loss is a possibility but the extent
is unknown.

Good: Yield prospects are normal. Moisture levels are adequate and disease,
insect damage, and weed pressures are minor.

Excellent: Yield prospects are above normal. Crops are experiencing little or
no stress. Disease, insect damage, and weed pressures are insignificant.

County level estimates are reported by extension agents based on a subjective
assessment. It is not clear that agents use a consistent set of criteria to make their assessments.

Nevertheless, changes in the indices should give some indication of changes in yield
expectations at the state and country level.

For each crop/region, we assume that the condition classes represents a yield interval, and
that each interval has an average yield, y; , i= 1, " , .,5. Let Cl, C2, " .., Cs represent the fraction of

crop in the five condition classes, with the sum of the Cj identically equal to one.
Given these assumptions, the average yield can calculated as

5
average yield on all acres =Ly;c;"

;=1
This suggests a simple forecasting rule can be obtained by determining the applicable yield

weights and using a simple weighted sum of the five condition numbers. It is clear that weights
constructed in this fashion should be increasing in i.

The situation is made more complicated by the fact that the realized yield is measured in
terms of the harvested production. If some acreage is abandoned then the average should be
taken with only with respect to the harvested acreage. We will assume that some fixed fraction

of the acres in each class, A; , are abandoned. The total production is then the total number of

5 5
planted acres times Ly;A;c; , the harvested acreage is LA;c; and the average yield with

;=1 ;=1
abandonment is

5

~
y .A,c.

Lot, II

average yield = i=15 .

~A,c.£-1'1
i=1

The possibility of abandonment and hence truncation of the lower tail of the yield distribution
leads to the curious phenomenon that movement of acres from poor to very poor condition can
lead to an increase in the average yield. The intuition is that increasing the acreage in very poor
condition increases the fraction being abandoned and higher yielding acres make up a larger
percent of total acres harvested.

To illustrate, suppose that the yield levels defining the classes are 10,20,30,40,50 and
initially the fraction of acreage in each class is 0.20. With no abandonment, the average yield is
30. If all acres in the lowest condition class are abandoned ( A, = 0 ), the average yield on

harvested acres increases to 35. Compare this to a situation in which 40% of the acreage is in the
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worst class and no acres are in the second class. The average yield on harvested acres actually
increases to 40 even though the average yield on all acres decreases to 28.

Although we have assumed that abandonment percentages are fixed, it is likely that the
acres abandoned responds to price and hence is related to the total production, which in turn is
related to the crop condition. Given the complexity and circularity of this relationship and the
need for both a harvesting cost and a demand relationship, it was deemed expedient to use the

simpler assumption.

Forecast Error Covariance Structure

Although there are reports issued every week, the forecast errors from one week to the
next should be highly correlated. Useful estimates of the forecasting model should incorporate
information about the nature of the forecast error covariance structure. Let time t represent the
current week and t+h represent h weeks hence. Let et be the forecast error at time t, i.e. y=fr+et.
Identically, et=et+h+fr+h-fr and hence the variance of et is equal to the variance of et+h plus the
variance of the change in the forecast between t and t+h (the covariance of et+h andfr+h-fr is zero).
This has two consequences. First, the forecast error variance is declining in time. Second, the
error covariance is equal to the variance of the error in the later period:

cov(et,et+h) = var(et+h).

Let L be the error covariance matrix. It will be block diagonal with each block representing the
observations in a single year .Within a year it will exhibit a structure such that all elements
above and to the left of a diagonal element will equal that diagonal element:

vi v2 V3 ...Vn

V2

V3

V2

V3

V3

V3

v,

v,

Vn

vv v v v.n n "n 'nn

where Vi are the error variances, which must be decreasing over time.
It is straightforward to verify that R' D-l R = ~-I , where

1 -1 O ...O

O 1 -1 ...O

O O 1 ...OR=

o o 0 ...1

and D is a diagonal matrix with element (i,i)

{Vi -Vi+l i < n
d. =, .

v l=nn

Of, equivalently, D = diag(Rv) .
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Estimation

Condition data is reported for selected locations on a weekly basis throughout the

growing season. Let CjSft be the value of the ith condition index in location S, year Y and time of

year t. Kruse and Darnell assume that the condition weights differ across states only by a
multiplicative constant and that yields should be adjusted by a state specific time trend and that
deviations from expectations exhibit state specific heterskedasticity. Furthermore, they assume
that the weights on the condition indices change over the growing season. These assumptions
lead to the following estimation model:

5
YSf = {1sLWjtCjSft + AsY + a seSft

i=!
where Y Sf is the yield in location S in year Y and {1, w, A and a are parameters to be estimated.

They estimated separate models for each t, where t is measured as the week of the year in which

the condition data was reported. They also imposed the restriction that wj ~ Wj+l .

The model developed in the previous section suggests that the weights on the condition
indices can be interpreted as average yields in each condition class. If this is a reasonable
description of the meaning of the classes, the weights should not change over the season. We
also choose to estimate the model in terms of ratios of yield to trend yield. This makes it easier to
interpret the forecasts and weights. Given the assumption that all of the very poor class is
abandoned and none of the crop in other classes is, the model can be expressed

Y 5
f{1 = LXjftWj +eft ,

a + Y j=2

where

c.vx = "t
iYt 5

Lciyt
i=2

(each location is treated separately rather than pooled and hence the location subscript is
dropped). Pooling the data over time allows estimation of the error variance, here using a
polynomial approximation constrained to decrease with t. In matrix notation the forecasting
equation has the form

y = Xw+e.

The short period over which condition indices have been reported (1986-present) led us
to use a two stage estimation strategy, first estimating the yield trend using data for crop years
1960-1998 and then use the ratios of yield to estimated trend as the dependent variable in the
second stage.

The model can be estimated by first applying the operator R to the forecasting equation:

1) Ry=RXw+u
where u=Re, the error covariance of which is the diagonal matrix D discussed above.
Unfortunately, feasible GLS and maximum likelihood procedures are not useful in estimating the

elements of D, because of an identification problem that arises because Xyt -XYt+h identically sum

to one. In our reported estimates, therefore we apply OLS to (1) and utilize a heteroskedasticity-
consistent covariance matrix estimator {Davidson and McKinnon, p. 552) to compute standard
errors. 206



The conventional estimation techniques (GLS and maximum likelihood) are not
applicable to this estimation problem, however. To see why, let E represent the set of
observations at the end of each year and I be the set of all other observations. Assuming
Gaussian forecast errors, the likelihood can be written (up to an affine transformation) as

-L [lnvi -~ ] -L [ln(vi -Vi+1)- (/; -/;+1)2 ]ieE vi iel vi -Vi+1

where.fi is the forecast for the ith observation and Vi is the variance of the associated forecast
error. In as much as the forecast function can always be set equal to a constant,f, the restricted
likelihood

-~ lnv. -~)2- -~rln ( v. -v. I
LI I LI" I 1+11..
ieE ~ Vi .J iel

is feasible. This function, however, can be made arbitrarily large by making the change in the

variance arbitrarily small. Thus, paradoxically, the likelihood is maximized by using an

unconditional forecast (one that ignores conditioning information). Clearly this cannot be used as

a basis for estimating a conditional expectation.

As an alternative, consider how weighted least squares procedures selectively give

different weights to different observations. GLS procedures make these weights inversely

proportional to the variance of the observation. This prevents observations with high variance,

and hence that are expected to have large errors, from unduly influencing estimates of the

conditional mean. Given that feasible GLS methods fail in the current situation, a feasible

weighting scheme is used based on the following reasoning. The forecast error variance should

decline over the growing season and hence is taken to be a quadratic function of the time of year,

v(t). This function is estimated from the forecasts errors and the condition coefficients are

estimated using weights that are inversely proportional to v (GLS would use Rv(t) as a weighting

function). This generally will put the highest weight on the final observations of each year, but it

also uses the information in earlier periods. The next section will demonstrate that this approach

yields reasonable estimates of both wand v(t).

)1

Empirical Results

Crop condition reports have been issued since 1986 for five major crops (corn, cotton,
soybeans, spring wheat and winter wheat) at the national level and for selected states. Only the
national level is considered in this study; also winter wheat is not considered due to the
difficulties in handling the winter months when the crop is dormant. The reports are issued
weekly throughout the growing season; Table 1 summarizes the timing of the releases.

Although a large number of reports have been issued, they cover a period of only 13 crop
years. In order to reduce the number of parameters estimated, it is assumed only crops in very
poor condition are abandoned. On examination it was determined that similarly sized yield
forecast errors results for a wide range of restrictions on the harvest fraction for the very poor
class and that it could be set to zero without loss of precision. In this case the yield weight on the
very poor class plays no role in the forecast and only four parameters need be estimated.

Estimates of the four parameters using the method discussed in the previous section are
provided in Table 2. Also provided are estimates based on other estimation criteria: OLS of
Ry on RX and OLS of yon X, using both the '2~9}e sample and only the observations in E (the



last observations of each year). Heteroskedasticity-consistent covariance estimators were used to
compute coefficient standard errors in the former two cases (shown in parentheses).

It is obvious from Table 2 that the use of R to diagonalize the error structure has a
profound effect on the estimated parameters. Although OLS on the untransformed data results in
small sample errors, it does so by overfitting the data. In the case of cotton and spring wheat,
OLS resulted in weights that fell as the condition improved. Furthermore, the estimates are on
the poor condition for these crops is too low to be believable as an estimate of the average yield
in this class. Similarly, the weights estimated using the last observations of each year do not
conform to theoretical expectations.

The regressions that use R to transform the data, on the other hand, not only increase as
crop category improves, but also have reasonable magnitudes. The estimates with the time
varying weights, in particular, are quite reasonable. In addition to satisfying minimal consistency
requirements, the values range from poor condition weights of about 50% (spring wheat) to 80%
(cotton) to excellent condition weights of 130% (corn) to 145% (soybeans). Furthermore the
weights on intermediate condition classes do not cluster but are spread over the poor to excellent

range.
The usefulness of the forecast model, of course, depends on how well it forecasts. To

provide a benchmark, the forecasts are compared to forecast yields issued by the USDA in the
monthly publication Crop Production. The comparison is imperfect as the USDA forecasts are
true forecasts, whereas the forecasts from the crop condition model are in-sample. Although this
caveat should be borne in mind, there is really no other reasonable alternative given the short
time period over which condition reports have been issued. For the purposes of the comparison,
forecasts were selected for the last date before the USDA forecast was made. Plots of the
forecasts are provided in Figures 5-8, with the condition-based forecasts represented by small,
connected dots, the USDA forecasts by circles and the final yield estimates by flat lines. Root
mean square error comparisons are provided in Table 3.

In general, the condition-based forecasts are about as good as the USDA forecasts early
in the season but are not competitive towards the end of the season. This suggests that the
condition reports may be most useful in providing an early signal about upcoming yields, but that
better forecasts are available latter in the growing season.

Conclusions
This study develops simple methods for generating yield forecasts from readily available

crop condition information. The approach differs from a previous effort in several ways. First,
estimates are based on data for individual regions rather than pooled across locations and the
forecast function does not change over time. The issue of abandonment is addressed, resolving
the puzzle that yield forecasts can increase when crop condition worsens.

The study raises a puzzle concerning how to estimate conditional forecasts from
information that is revised over time. It is shown that traditional GLS and maximum-likelihood
methods are inherently incapable of providing estimates of both conditional forecasts and
forecast error variances. Although the puzzle is not resolved, a workable estimation strategy is
developed that results in improved estimates relative to those obtained using ordinary least
squares. Crop condition-based forecasts compare favorably to USDA estimates early in the crop
year and may be useful as an early warning signal.
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Table 1. Crop Condition Reports: Summary Information 1986-1998

Corn Cotton Soybeans Spring Wheat

3115-6130
5128

10/14
9/1-12/15

20.8
270

4/15-7/15
6/16
10/5

9/15-12/15
16.8
219

4/1-5/31

5/21

8/21

7/15-9/30

13.9

181

3/25-6/15

5/30

10/6

8/15-11/30

19.3

251

Usual planting date
A verage date of first report
Average date of last report
Usual harvest date
Average Number of Reports
Total Number of Reports

Usual planting and harvesting dates are estimated from crop progress data.
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Poor Fair Good Excellent
Corn

0.5695
0.7101
0.6175

(0.1762)
0.6030

(0.0867)

0.6569
0.5569
0.9011

(0.0684)
0.7501

(0.0639)

1.1681

1.1542

1.0247

(0.0303)
1.0863

(0.0239)

1.2099
1.3218
1.2437

(0.0646)
1.2938

(0.0495)

OLS

OLS with last obs only

Transformed Data

Cotton

0.3148
0.3001
0.8442

(0.0762)
0.8076

(0.0808)

1.1304
1.0021
0.9666

(0.0332)
0.9573

(0.0353)

0.9637

1.0812

1.0791

(0.0244)
1.0865

(0.0249)

1.8141
1.7944
1.2855

(0.1117)
1.3310

(0.1201)

OLS

OLS with last obs only

Transformed Data

Soybeans

0.5457
0.7104
0.7976

(0.1147)
0.7542

(0.1128)

0.8069
0.7160
0.8878

(0.0492)
0.8475

(0.0426)

1.1540
1.1710
1.0553

(0.0333)
1.0703

(0.0359)

1.4085
1.4433
1.3535

(0.0942)
1.4388

(0.1006)

OLS

OLS with last obs only

Transfonned Data

Spring Wheat

0.3311

0.4514

0.5768

(0.2158)
0.4738

(0.1671)

0.9837

0.7170

0.9562

(0.0484)
0.8914

(0.0647)

1.0703

1.0555

1.0727

(0.0373)

1.1200

(0.0331)

1.0521
2.6034
1.1516

(0.1550)
1.3371

(0.2420)

OLS

OLS with last obs only

Transformed Data

210



Table 3. Root Mean Squared Forecast Errors

July 1 Aug.l Sept. Oct.l
Corn

Condition Based
USDA

NA
NA

6.3640

7.5180
7.3218

6.3870

6.1145

4.2406

Cotton

Condition Based
USDA

NA
NA

51.5720
49.5526

51.2649
38.9753

44.5990

27.3397

Soybeans

Condition Based
USDA

NA
NA

1.6407
1.5916

1.8777

1.7265

1.5753

0.8494

Spring Wheat

Condition Based
USDA

3.9454

4.2980

3.3538

2.9626

3.0361

1.0763

NA
NA
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