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Paul L. Fackler and Yanjun Tian*

The time structure of volatility in futures prices and implied volatility implicit in option
premia is derived from an underlying model of spot price behavior. The model suggests
a number of characteristic features that should be present in observed market prices.
These features are found in soybean futures and options on soybean futures.

Introd uction

Futures and options are derivative assets whose value depends on the behavior of other ,
underlying, assets. The derivative nature of futures and options, however, is often ignored
in empirical analysis. For example, it is common to treat futures prices as if they were
an ordinary time series of observations, despite the obvious problem that futures contracts
mature. To address this problem, it is common to artificially create a continuous sequence of

prices by "rolling over" in the next nearby contract when one reaches its expiration month.

Unfortunately, using off-the-shelf times series approaches to model derivatives can result
in misrepresentation of their dynamic behavior. The alternative is to treat the behavior of
the underlying assets as primitive and exploit the implications of the derivative nature of
futures and options in modeling their time series behavior .

In this paper, we will first discuss this idea using a simple, one factor, model of a spot

commodity price that exhibits mean reversion and seasonally varying volatility. The model is
used to illustrate the implications of arbitrage relationships for the behavior of futures price
volatility and the implied volatility associated with options on futures. These implications
are examined using price data on soybean futures and options on soybean futures. Although

the simple model fails to predict some interesting aspects of price volatility, it illustrates that

the seemingly complex seasonal volatility patterns in grain futures and options can be largely

accounted for using a simple model, thereby highlighting the importance of accounting for
the timing and maturity structure of futures and options contracts. Some suggestions for
further analysis are included in the final section of the paper .

* Associate Professor and Graduate Research Assistant, North Carolina State University. Address corre-

spondence to paul-! ackler\Oncsu .edu.
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Volatility in Futures and Options on Futures

The main message of this paper is that futures price volatility and option-based implied

volatility depends on the volatility of underlying fundamental factors, especially that of the
spot price. To illustrate this idea, we use a simple model for the log of the spot price, p,
described by the stochastic differential equation

dp = K(a(t) -p)dt + O"(t)dz,

where the functions a and a are seasonal functions of time.l This process exhibits mean

reversion to a seasonally varying mean and exhibits seasonal variation in volatility. It can be

shown that this continuous process exhibits changes (in logs) that are normally distributed

with conditional mean

Et[P(t + h)] = JL(t + h) + e-/th(p(t) -JL(t)),

and variance

Vart[P(t + h)] = v(t + h) -e-2lthv(t),

where Jl and v are seasonal functions that can be derived from a and 0- .2 To provide a rough
benchmark for the models of the next section, this spot price model was estimated for central

Illinois elevator cash bids for soybeans. The seasonal squared volatility was modeled as a
Fourier series with seven terms; the resulting volatility function, o-(t), is plotted in Figure 1.

For simplicity, we assume that the futures price for a contract expiring at time T is a
function of the spot price alone (a one-factor model). If the spot process describes the so-
called risk-neutral process or if the spot price exhibits no risk premia, then the futures price
is a zero drift process (Hull):

dF = FVT(t)dz.

Using Ito's Lemma we can write

dF = O"(t)PFpdz

so the volatility of the futures price process is

p
VT(t) = a(t)Fppdz,

lThe model, with no seasonality, was used by Brennan and Schwartz and by Schwartz to model commodity

spot prices.
2Specifically, they can be shown to satisfy

a(t) = IJ.(t) + IJ.'(t)/K,

and

a2(t) = 2ltv(t) + v'(t).
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Figure 1

i.e., the volatility of the futures price process equals the volatility of the spot times the
elasticity of the response of futures to spot price changes. The zero drift condition is ensured
by setting the futures price equal to the expectation of the spot. As the spot price is
lognormally distributed, its expectation is equal to

Thus

Armed with an explicit expression for the futures price in terms of p and t, we see that

and the volatility of the futures price is

VT(t) = e-It(T-t)0"(t).
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Thus the futures price exhibits a damped seasonality in its volatility: it reflects the seasonal

nature of the volatility of the spot price, but with a damping factor that causes the volatility
to decrease as the time to maturity increases:

VT1(t) > VT2(t) for TI < T2

The damping term is a specific manifestation of a phenomenon known as the Samuelson

hypothesis. Samuelson argued that futures prices should exhibit increased volatility as they
approach their maturity date. An alternative, although not competing, hypothesis is that
volatility is related to information flows ( associated commonly with Anderson and Danthine) .
In this simple model, the idea of variation in the rate of information flow is modeled as

seasonality in spot prices. In seasonally produced crops, information flows tend to be greatest
during the growing season of the crop and hence, for fall harvested crops, spot price volatility
tends to be highest in the summer .

The effect of the time-to-maturity term is illustrated in Figure 2, using an estimated
speed of mean reversion parameter, /'i, = 0.82, and the spot price volatility function from

Figure 1. Soybean futures contracts mature every two months starting in January (there is

also an August contract that we ignore). The volatility functions for the six contrac:ts clearly

display the Samuelson effect: at any given time, volatility declines with time-to-maturity.

Furthermore, in spite of the strong summer spot price volatility, it is possible for volatility
of a given contract to be higher at other times. The May contract volatility function, for

example, peaks at expiration. Furthermore, nearness-to-expiration at the peak of spot price
volatility makes the July contract especially volatile at expiration.

The same approach can be applied to the seasonal pattern of implied volatility exhibited
by the premia for options on futures. The simple model of spot prices results in lognormally
distributed futures prices. The Black-Scholes model with deterministically time varying

volatility is the appropriate option pricing model for this process. It is well known that the

volatility applicable in this version of the Black-Scholes model is to use the averagE~ variance
over the remaining life of the option (Cox and Rubenstein, p. 212). For simplicity, assume
that the option expires at the same date, T, as the futures contract matures. Then the

implied volatility of the option is given by

IT(t)

The effect on options implied volatilities is far more complicated due to the smoothing
effect of time integration, as is illustrated in Figure 3. The January and May contracts

display little variation in implied volatility over the season. This is because the summer
period high volatility is averaged together with lower volatility periods latter in the life of
the contracts. July and September, on the other hand, display strong upward movements
in implied volatility because the increasingly short time periods over which the average is

taken are also increasingly volatile.
The interaction of the seasonal and contract maturity effects in implied volatility is quite

complicated, in spite of the fact that it is based on a rather simple behavioral model. It is
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Figure 2

important to remember that these patterns are all derived from the parameters of the spot

price volatility function of Figure 1 and the speed of mean reversion parameter, /'i,.

Empirical Results

The previous section suggested several empirical hypotheses. First, it suggests that the

volatility of futures prices at a specified time of year will decline as the time to maturity

increases. Second, futures contracts expiring early in the crop year (November through

March) are expected to exhibit volatility that increases rapidly during the early life of the

contract and then levels off or even declines. The contracts that expire late in the crop

year (May through September) have relatively flat volatility early in their life and that rises

sharply as the contract matures.

The implied volatility on options is more difficult to characterize. Ignoring the July

contract, the implied volatility curve for each new contract lies below that of its predecessor ,

starting with the September contract. The curves also exhibit a progressive flattening out

going from September to May. The July contract's behavior is quite different, beginning its

life at a quite low level and ending at the highest level of any contract.

To examine whether these characterizations hold in actual markets, we first examine fu-

tures price volatility using a sample of weekly soybean futures prices for the period N ovember ,
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Figure 3

1974 to March, 1998. A separate function is estimated for each of the six contract months

(the August contract is again ignored), with the time pattern of volatility represented by
a cubic spline function of the time to maturity with eight evenly spaced breakpoints on
the interval [0,1.25].3 Thus the absolute weekly changes in the logs of futures prices were
regressed on the time to maturity using a cubic spline with eight evenly spaced breakpoints.
The estimated functions, VT(t), are plotted in Figure 4.

The figure, although clearly messier than Figure 2, displays similar features. The Samuel-
son effect is present in the sense that the nearest to mature contract is generally the most

volatile at any specific point in time. Furthermore, the magnitud~s of the volatilities are

roughly similar, even though computed using very different metho,ds and data.4 Perhaps
the most striking difference between the constructed and the estimated volatility curves oc-
curs near the maturity of the contract. With the exception of July, all of the contracts
exhibits a marked decline in volatility in the month prior to delivery. Although some market
microstructure explanation relating to liquidity effects may explain this, we leave it as an

3The September contract consistently traded for a shorter period and the spline endpoints were adjusted

accordingly.
4The use of absolute changes rather than squared changes led to a slight downward estimated relative to

the spot price based model.
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interesting puzzle.
If this end of contract effect is discounted, the basic shapes of the curves are as suggested

above. The Samuelson effect, however, appears to be quite a bit weaker than the simple
model would suggest. Furthermore, there appears in the curves an indication that there are
old crop/new crop effects that the simple model does not account for. The summer months
are volatile primarily because of weather news that influences production projections for
the crop to be harvested in the fall. This suggests that new crop contracts would be most
effected by the weather shocks and that old crop ( J uly and September) contracts would be
affected to the extent that current storage decisions are altered in response to the shocks.

Figure 4

To examine the hypothesis concerning option-implied volatilities, we used a sample of

weekly option premia for the period 1985 through 1998. We first computed the at-the-money
implied volatility for call options by linearly interpolating the implied volatilities for the two
strike prices that bracket the current futures price. These are regressed on the time to

maturity for the option using a cubic spline with four evenly-spaced breakpoints. Estimates
for each of the six contract months are displayed in Figure 5.

Here the patterns are quite consistent with those of Figure 3. The overall decline and
flattening of the curves from the September contract to the May contract is present. This
conclusion is especially valid if the end-points of the curves are discounted. The behavior
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Figure 5

at the end point seems to be highly sensitive to exact sample used and to the order of the

approximation. It is likely that liquidity is very thin during these periods and hence the
implied volatilities are likely to be noisier than during their most actively traded periods.

The behavior of the July contract is especially noteworthy. It behaves in precisely the
curious fashion predicted, starting quite low and rising steeply as it nears expiration. Given
the simplicity of the spot volatility based model, it is surprising and gratifying that it is
supported so well by the data.

Discussion and Conclusions

Futures and options are derivative assets that reflect information about the dynamic
behavior of the fundamental factors from which they derive their value. It is important,
however, to recognize that the maturity structure of futures and options has important
implications for how that information is reflected in price behavior. For example, a fairly
common practice in futures price analysis is to create a continuous series of prices by rolling
into the next contract month at each delivery date. Standard time series methods are
then applied to the constructed series. Even our simple model suggests, however, that the

correlation of the spot and futures price is increasing in the time to maturity. An important
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implication is that estimates of optimal hedge ratios, which depend on the variance of the
futures price and the covariance of the futures with a specific local cash price, should account
for when the hedge is placed and when it is lifted in relation to the contract maturity date.

The empirical results presented clearly illustrate that the effects of seasonality and con-
tract maturity are important elements in understanding commodity price volatility. Futures

price exhibit the Samuelson effect that, ceteris paribus, volatility tends to decrease with

time-to-maturity, although the effect is not particularly strong in the soybean market. The
effect of time averaging on implied volatility is also illustrated clearly in the soybean mar-

ket and provides an explanation for the complicated seasonal patterns exhibited by implied

volatility.
The simple one-factor model, however, is clearly fails to capture important aspects of

volatility in the soybean market. Some fairly straightforward remedies suggest themselves.
First, the model of the underlying factors influencing futures prices is too simple. Schwartz

demonstrated that a one factor model did not capture the behavior of futures price term
structure in the oil and copper markets nearly as well as two and three factor models which
included not only the spot price but also stochastic convenience yields and stochastic interest
rates as additional factors. The Schwartz model is still a Gaussian model and it would be

reasonably straightforward to extend the current analysis to such a model.
Several facts, however, suggest that the Schwartz model will be incapable of modeling im-

portant features of futures and options prices. First, there is considerable empirical evidence
for ARCH/stochastic volatility effects in futures prices. Second, implied volatility exhibits

considerable variation that appears to be neither seasonal nor related to time-to-maturity.

Third, implied volatilities in options on commodity futures exhibit a curved (generally up-
ward sloping) relationship as a function of their strike price. A Gaussian model always

produces the flat smile of the Black-Scholes model and hence cannot capture the smile ef-
fect.

These facts suggest that the use of stochastic volatility models, which are known to

produce smile effects, should be examined. These model are non-Gaussian and complicate
the analysis because futures volatility becomes dependent on stochastic state variables. Of

course, it is precisely this dependence that provides the increased richness of these model
that makes them attractive.

It may also be fruitful to take the spot price as endogenous and make the primitives of
the model be economic fundamentals such as shocks to demand and to the expected harvest.
In this way the recognition that the relationship between spot and futures prices depends on

whether a harvest occurs before the futures contract matures could be explicitly accounted
for. This would formalize a link to the rich literature on the price behavior of storable

commodities (e.g., Williams and Wright, Ng and Pirrong).
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