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TESTING THE POSSmILITY OF PRIVATE CROP INSURANCE
AND REINSURANCE MARKETS

H. Holly Wang, Joseph L.Krogmeier and Bingfan Kel

Risk theory tells us if an insurer can effectively pool a large number of

individuals to reduce the total risk, he then can provide the insurance by

charging a premium close to the actuarially fair rate. There is a conunon
belief that only when the random loss is independent, the risk can be

effectively pooled, therefore because crop yield is not independent among
growers crop insurance market cannot survive without government subsidy.
In this paper, a weaker condition, asymptotic nonpositive correlation (a.n.c),

is presented as sufficient for effective risk pooling. US crop yield data are
used to test the hypothesis and we cannot reject that US yields are a.n.c. As
a result, private crop insurance/reinsurance markets are expected to be able
to exist.

Introduction

In the wake of the historic 1996 farm legislation, mandating a decoupling of gradually

diminishing government support from agricultural commodity price levels, the need exists for more
thoroughly understanding the altered agricultural risk environment. Recent attention has focused on
the potential role in farm income stabilization of federally-reinsured crop and revenue insurance

programs. However, well established market yield risk instruments are not available currently. The
CBOT yield futures are thinly traded, and several crop and revenue insurance programs are subsidized
heavily by the government which is subject to change. Thus, the insurance itself is risky for long-run
farm management.

Given the history of actuarial problems with federal crop insurance programs (Knight and
Coble,1997; Skees, Black and Bamett,1997; Goodwin and Smith,1995; Wright,1993) and the
renewed interest among researchers and policy makers in modem variants of crop insurance as an
income stabilization tool (Hennessay, 1997; Wang et al, 1998), it is prudent to explore if private crop
insurance and reinsurance markets can exist, what conditions are required, and whether these
conditions are satisfied in the current situation. The objectives of this research are to study the
theoretical conditions of risk pooling, to explore a weaker condition than the commonly believed
independency on the random losses, and to empirically test these conditions with US crop yield data
so as to discuss the potential for a privatized crop insurance market. Each of the objectives is
pursued in one of the following three sections, and the last section is conclusion.
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Theoretical Foundations of Insurance

The institution of insurance has evolved in modem economies as one means of risk shifting
in the face of uncertainty (Arrow, 1974). The primary function of insurance in this regard is risk
pooling. Mehr, Cammack and Rose (1985, p.32) offer the following definition, "[iJnsurance may
be defined as a device for reducing risk by combining a sufficient number of exposure units to make
their individual losses collectively predictable." In what follows, we will consider the statistical
foundations of insurance first, drawing upon the illuminating framework provided by Cummins

(1991).

Consider the following model of an insurance pool

N

=L
i=l

SN(I)

where SN is the total loss ( claims) of the pool in a given period of time, X; is the loss experienced by
the I-lh exposure unit, and N is the number of exposure units in the pool. In the context of agricultural
insurance, an exposure unit may be a particular farm or parcel ofland. In the model given by equation
(I), each individual loss is conceptualized as a random variable and the total loss experienced by the
pool is random as well. For crop insurance, the loss can be defined as a production shortfall from
some prespecified level. If, for convenience, we assume the loss distributions of all exposure units
are identical with mean ~ and variance ~, the expected total loss of the pool is:

(2) E(SN) =NIl

and the variance of the total loss of the pool is

N 1-1
Var(SN) = Ncr2 +2~L L Pif ,

1=2 i=l
(3)

where Pij is the correlation between the jth and J-Ih exposure units.

To be of much use, additional information regarding the distribution of the X;'s must be
included in the model. Elementary discussions ofrisk pooling often assume the X;'s are independently
and identically distributed (i.i.d.). While this set of distributional assumptions allow application of
the simplest version of a law of large numbers, it is unnecessarily strong and generally not realistic
(Buhlmann, 1970). Identically distributed exposure units may generally be desirable, but this
condition is by no means a necessary statistical condition for effective pooling. Cummins contends
that a more compelling argument for homogeneity as a necessary condition for insurability involves

information asymmetries between insurers and insureds. Our focus remains on the statistical
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foundations of insurance.

Similarly, independence is not a necessary condition for the application of more general forms
of laws of large numbers and thus for potentially effective risk pooling. In this initial stage of our
discussion, however, we shall begin with the simplest case, i.i.d. losses, which simplifies equation (3)
since Pij = O for all i"' j. We will then present the more realistic case, especially in the context of

agricultural insurance, in which the random losses tend to be positively correlated. A particular form
of statistical dependency needs, then, be assumed.

The Weak Law of Large Numbers (WLLN) states that if we assume all random losses in the
insurance pool are independently and identically distributed with a finite mean, the realized average
loss will be arbitrarily close to the mean loss with probability approaching 1 as the size of the pool

approaches infinity.

limPr[lxN-~I<e] = 1

N~~
Vf>O

(4)

N
where .iN = ~L ~ ' and~= ~ <00, 'Vi .2

Ni=l
It would then seem that if the true mean of the loss distribution could be accurately estimated

from past loss experience; beginning each insurance period this amount (the net premium) could be
collected from every insured thus ensuring the insurance pool would have sufficient funds available
to pay any realized indemnities. This is essentially what risk pooling is all about, although as we shall
see immediately below (equation (5» it is not the whole story.

While the WLLN is an important theoretical result, it is of more practical interest to consider
insurance pools with a finite number of members. Assuming i.i.d. random losses, implying

iN -(~ , ~/N) , we can use Chebyshev's Inequality to write the following bound

<kO'/JN] ~ 1-1/k2 Vk>O ,(5) Pr[lxN- J1

i.e., a lower bound of I-lfk2 exists on the probability that the realized average loss will fall in the

interval

(~ -kO'/vIN, ~ +kO'/fN>. For some choice ofk, which makes the lower bound on the probability

given in (5) as close to 1 as we wish, the width of this "confidence" interval is determined by the

standard deviation, O'/vIN ' of the average loss distribution, and k.

2 A capital letter denotes a random variable and its lower case for a particular outcome
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In the insurance literature, the event ofan aggregate loss occurring (a realization of SN) which
is so large as to deplete the insurance fund is captured by the concept of ruin. It has been suggested
in the literature that a possible objective criterion for the management of an insurance pool is to
minimize the probability of ruin in a given time period or perhaps maximize returns subject to
maintaining a specified probability of ruin (Buhlmann). The aggregated premium surplus above the
expected value of the aggregate loss (Np under homogeneity) required to maintain a particular
probability of ruin is referred to as the buffer fund.

Thus, to avoid ruin with probability 1- .1- , the insurance fund must have a liquid buffer fund
k2

of the size kO"IN for N individuals. Since the size of the buffer fund is proportional to the square

root of N; as the size of the pool grows, the buffer fund amount allocated to each

policy kO" / IN (buffer load), decreases.

Premium rate setting is approached in various ways in the insurance literature, but the
discussion generally begins with the concept of"pure" or "net" premium (Hogg and Klugman, 1984;
Borch, 1974; Goodwin and Smith,1995). The net premium is simply the expected indemnity per
exposure unit. The gross premium, the amount paid by the insured per exposure unit in order to be
eligible for coverage, is larger than the net premium by an amount referred to as the loading factor.
We can examine the components of the loading factor by decomposing the gross premium in the
following manner

p = PN + A + L,
(6)

where p is the gross premium, p N is the net premium, A is an administrative cost load, and L is the
buffer load. Assuming identically distributed losses and that there is no deductible or cap on the
maximum indemnity, then it is clear that the expected indemnity equals the expected loss, i.e., PN =

~.

If we assume economies of scale in the administration function, then the administrative cost
per exposure unit, A, will decline as the size of the insurance pool grows. Furthermore under the

conditions above (i.i.d. random losses), the buffer load per exposure unit, L = ka/.fN,will decline

as the size of the pool increases. Thus for a sufficiently large insurance pool, the amount A + L will

not be large, i.e., the risk premium a risk averse insured must pay to obtain coverage will be small.

From our discussion heretofore, it is apparent that the critical ingredient for risk pooling is
that the variance of the average loss diminishes as the size of the insurance pool increases, thus
providing a statistical basis for predicting future losses. Furthermore under this condition, the buffer
load also declines as the pool grows larger, thus ensuring (assuming economies of scale in

administration) that the gross premium will exceed the actuarially fair net premium by a relatively
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small amount. At this point we want to know if weaker conditions of the random losses can ensure
var(XN) -O as N- ~ besides i.i.d. The section below examines one such condition, asymptotic

nonpositive correlation, which has some intuitive appeal in the agricultural context.

A Generalization: Asymptotic Nonpositive Correlation

In what follows we will explicitly relax the assumption of independence. Given the reliance
of crop yields on large scale weather patterns, the assumption of independently distributed losses is
particularly tenuous in the present context. In place of the independence assumption we will assume
asymptotic nonpositive correlation (a.n.c.). Mittelhammer (p. 266, 1996) defines an a.n.c. random
sequence as follows:

The sequence of random variables {X;}~I'where var(X;)=0';<00'v'i,is said to be

asymptotically nonp2sitively correlated if there exists a sequence of constants { at} ;= 1 such

that a, E [0,1] 'v' t, L at < 00, and
t=1

cov(x;,x;+,) ~ a,O'jO'j+, Vt>o(7)

The two conditions, at E [0,1] 'v't and E at < a), imply that an -0 as n -a) .at represents the
t=l

upper bound of the correlations between X; and X;+t. The definition implies that X; and X;+t cannot
be positively correlated when t -a) .In the context of crop insurance, the natural way to order
exposure units in a sequence is spatial so that t represents an ordinal measure of physical distance
between exposure units.

The concept of a.n.c. seems quite sensible when applied to crop losses in an agricultural
context. Under this assumption, for example, the correlation between the losses of two fields 500
miles apart will generally be less positive than the correlation between two adjacent fields. The
definition places no lower bound on the amount of negative correlation between the losses of any two
exposure units.

Assuming identically distributed losses for notational convenience, the variance of the average
loss in the pool may be written as

Var(XN) =

H-l H-i
1 (N~ +2}:::; }:::; COv(Xi'~+t» ,

i=l t=l
(8)

N2

where the X; are ordered spatially and t represents an ordinal measure of physical distance. If we

assume that losses are a.n.c. then using the relationship given in equation (7) we can place the
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following bound on the variance

(9)

-1 N-l N-;

Var(XN) ~ -(No-2 +2~E E at)
N2 ;=1 t=1

~ 2~N-l= -+-E (N-t)at
N N2 t=1

i 1 2(N-l)~
)~o- -+L..,a

N N2 t=1 t

If we take the limit as N--~ of(9), recognizing that
N

lim L at is bounded by our definition of
N~- t=l

As mentioned above, that the variance of ia.n.c., then we see that var(XN) --O as N --~
collapses as

N goes to infinity is a sufficient condition for a WLLN result to obtain (see Mittelhammer, Theorem

5.22).

Using arguments similar to those used above, we see that under conditions of a.n.c. an
insurer's relative risk (bounded from above by the square root of the bound given in (9) declines as
the size of the insurance pool grows. Similarly, the total loss will increase as the size of the pool
expands; but the buffer load needed to cover this loss will decrease with pool size.

Testing the Feasibility for US Crop Insurance

1. Testing the a.n.c assumption

Empirical analysis is conducted to test whether yields of several major grain crops throughout
US show asymptotic nonpositive correlation, ie. lim at = 0 , the pairwise correlations decrease

t~~
as the two regions move away from each other .

County level crop yields obtained from NASS from 1972 to 1997 are used in this analysis.
Three major crops, corn, soybeans, and wheat are studied. There are 2,591 counties for corn, 2,000
counties for soybean, and 2,660 counties for wheat in the US(Counties with less than 3 years of

observations are dropped. ).

These yields are first detrended by a log quadratic trend and then modeled as lognormal.
Quadratic trends are used by Miranda and Glauber, and log linear trends are used by Wang et al.
which takes care of the heteroskadestic problem. The trend parameters are estimated for each

county, and the correlations are calculated based on the detrended error terms (see (At) in appendix).
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Calculating pairwise correlations for all of the several thousand counties are too cumbersome
and not necessary .Since our interest is to test whether the correlations between two counties are
decreasing while the distance between them are increasing, we select two to three reference counties
for each crop and the correlation between the reference county and all other counties are calculated.

The reference counties for corn are Adair, lA, and Redwood, MN, for soybeans are Adair IA
and Marshall, IA, and for wheat are Sumner, KS, and Chouteau, MT. These are major production
counties whose output levels are at the top in recent years in the top producing states. An additional
county, Whitman, W A is selected for wheat because it is the top wheat producing county for soft
wheat while the other two counties produce primarily hard wheat. An additional county, Lancaster ,
p A, is also selected, because both the other two corn counties are in the heart of corn belt and there
are not many observations beyond 1200 miles away from them.

The centroid latitude and longitude of each county are obtained from GIS System. These
spherical references are then transformed into plain coordinates using ArcInfo, so that the distance
equation, dij = J{x;-X)2 + (y;-y)2 where xi andy; are the coordinates for county i, can be applied.

The correlations between the reference county and any other counties are then ranked by the
corresponding distance between them from the nearest to the farthest. These relationships are plotted
in figure 1 through 8 for each crop/reference county. Each dot in a particular graph represents the
correlation between the reference county and a county that is d miles away, d is on the x-axis. The
pattern is clear for all the eight cases that as the counties are farther away from each other, the crop
yield correlation tends to get smaller.

Because the correlations lie between [-1,1] are not strictly decreasing with distance, we are
interested in finding the central tendency and the converging speed. The converging speed affects
the actuarial soundness of insurance and the necessity of reinsurance. A flexible central tendency
function is estimated with MLE assuming normal errors:

1- b1

p=+b +u
--h- 1(10)

where p is the vector of correlations, d is the corresponding distance, u is error vector assuming iid
standard normal, and bs are parameters. This functional form is flexible in the sense of allowing the
trend to be either increasing or decreasing, either concave or convex, and converging point to be
either positive, zero or negative. The converging point is bh if b2 and b3 are positive, and the
correlation is one when distance is zero. The estimators are reported in table I, and the fitted curves
are also plotted in figure I through 8 correspondingly.
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Table I. Estimation of Correlation Tendency

Corn So~beans Wheat

Adair Lancaster Redwood Adair Marshall Whitman Chouteau Sumner

bj 0.230 -10.001 -0.167

(1.447)* (-0.147) (-0.306)
0.0003 0.0064 0.0005

(0.170) (0.170) (0.253)
1.549 0.3354 1.237

(1.339)* (2.242)** (1.547)*

-0.300

(-0.536)
0.0023

(0.325)
1.064

(1.560)*

0.046

(1.097)
0.0002

(0.116)
1.875

(1.092)

-0.128

(-1.751)**
0.00005

(0.132)

1.905

(1.439)*

0.053

(0.942)
0.0005

(0.166)
1.793

(1.456)*

b2

bJ

Note: The numbers in parentheses are t-statistics, and ** means significant at 5% while * means

significant at 10%.

310

-0.317

(-0.638)
0.0025

(0.314)
1.088

(1.557)*



.-.~':,05

:~~~~.:::::.~:~~.::~:~:~~.

0

..;:;;~.~~.:..:~:::;.:~;.:~:
...

..: ,

~,;::..:,~:.-:1: ,~~ ;;"~::-,

,...;-,~-".;.:,':

.,
fc

-:'--'--!':4~.:
~.5

0 600 1200
Dlsla",e (mles)

1000 2400

Figure 5 Soybean Yield Correlation,Marshall, IAFigure 6 Wheat Yield Correlation, Whitman, W A

,

'.~~:.;..r~;;;~:.~:~.~~.,;:

0.5 ..

x.:.:~~;...~:.~,~:., ...:.~
..\'..."'f... ,'. ,..., ".~ ..c.~ ;.. .

0

.~~~\::~,,~.-O.~

0 400 WO 1200

Di.t~ce O:nies)

1000 2000 0 400 000

Dist.,ce (!11...)

1200 1600

Figure 8 Wheat Yield Correlation,Sumner, KSFigure 7Wheat Yield Correlation,Chouteau, MT

The tendency is either approaches to zero or even a negative number for all crops and
reference counties selected except for com-Adair, whose converging point is 0.23. One reason to
explain the positive converging point is that there are not many observations beyond 1000 miles from
Adair. The negative converging point does not strictly conform with the a.n.c. theorem, however,

N
it is better to serve the purpose ofhaving lim L at bounded from above.

N-~ t=l

2. Converging speed

A practical concern is how "fast" the sequence converges to zero. The converging speed will
suggest how large a geographical area has to be included in the pool in order to reduce the risk faced
by the insurance company to an acceptable level. An alternative way to ask this questions is for a
given geographical region, how much the pooled risk would be reduced compared to individual risk.
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The last line in equation (9) indicates if all individual yields are identically distributed-
( N-l

..! + ~ L a is the upper bound of the proportion that variance of the average loss account
N N2 t=l t

for the variance of the individual loss. This proportion, denoted by a, is a critical number for risk
pooling. If a is significantly smaller than I, we can claim the risk pooling is effective, and a low
premium loading can be acceptable by both insureds and insurers using the Chebyshev's inequality.
U sing the estimated correlation p based on each reference county as an approximation to a, the a
levels are estimated and reported in table 2.

Table 2. Estimation of Risk Pooling Effect

Corn

Adair Lancaster Redwood

So~beans Wheat

Adair Marshall Whitman Chouteau SumnerCounty

N
a

Ja

2591

0.75

2591

0.78

2591

0.61

2000
0.43

2000
0.29

2660
0.12

2660

-0.13

2660
0.18

0.87 0.88 0.78 0.66 0.54 0.35 N/A* 0.42

* Because a is negative, the squared root is not applied.

When the whole country is included in the pool, the variance of the average loss is less than
18% of the variance of the individual loss for wheat, less than 43% for soybeans, and at most 78%
for corn.

3. Premium loading

Since the premium loading for each insured is L = kO"v'ii from the Chebyshev's Inequality.

If the insurer's critical probability of ruin is 10%, k = 3.16, the 0" can be calculated by equation (A2)

in the appendix. Given the average standard deviations of exponential error term ( eJ are 0.24, 0.20,
and 0.33, and the variance of the log residuals (02) are 0.10,0.06, and 0.15, standard deviation of
yield (0") are 23%, 19%, and 30% of their mean level for wheat, soybeans, and corn respectively.
This indicates pooling all individual losses can reduce the risk to 30% or below. The premium
loading are then calculated as 28%, 36% and 76%.

These premium loadings for wheat and soybeans are reasonable, while too high for corn. The

main reason for this inefficient risk pooling is that the corn producing region in the Mid-West is small

relative to soybeans and wheat. There will not be many participant for corn yield insurance beyond

that region even though the insurance is offered nationwide. However, in reality, the insurance

company is not restricted to any single crop, selling multiple crops and serving larger area will reduce

the premium loading in general.
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In summary, we expect the existence of a private reinsurance market with minimum

government involvement, where the risks are traded at the national level ( or international level) at
which yield losses for various crops and regions are hardly correlated. In addition, the yield risks can
also be pooled over time because annual yield losses are believed independent. In this case, the
premium loading will be reduced by the square root of the number of periods. Thus, multi-year
contracts may also help to facilitate the insurance market.

Conclusion

We have reviewed the statistical foundations of insurance in this article, and demonstrated that

a necessary condition for effective risk pooling is not the independency, but a weaker condition,

asymptotically nonpositive correlation for the loss variable. While the former condition does not hold

for agricultural yield, which leads to the common belief that private market for crop insurance is

doomed to fail (Miranda and Glauber,1997), we conduct empirical tests for major US grain yields for

the latter condition.

The results indicate the possibility of private agricultural insurance markets, if the

insurance/reinsurance markets can cover the whole country .Our contention is not that the effect of

government intervention is necessarily negative, but that the possibility of a private agricultural

insurance and reinsurance market is not precluded by the statistical nature of agricultural production,

and this possibility should not be dismissed out of hand.

These results may help alleviate the government's pressure of assuming total responsibility
of providing crop insurance. Further research in feasibility investigation of new market products is
needed to diversify the crop insurance portfolio.
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Appendix

Using a quadratic trend model with a lognormal error term, lny'=a+pt+yf+e" where Yt are
random yields, 0, p and 'Y are parameters, et are iid random error terms, and assuming et-N(O, t52 ), the
mean and variance oflog yield areE(lnY)=a+pt+yf, and Var(lnY)=t52, respectively.

First, we introduce the procedure to calculate correlations between the yield levels of any two
counties in the following:

Since y t = e a+ pt+'ytl e et, we can denote the trend by J.lt = ea+ Jk+')12 and the exponential error

by &1. Using superscripts indicating a particular county, Y/ = ,II: e: .y; = ,II: e: the correlation

between county 1 and 2 are:

Corr(Y/ ,Yr2 ) = Corr(}l{e{ ,}l;e;)

-E(}l{ e{ -}l{ )(}l; e; -}l; )

-~(}l{ e{ -}l{ )2 ~(}l; e; -}lt2 )2

E(e{ -l)(e; -I)-

-R=-i1./j;f=-i1
= Corr(e{ ,e;)

1 2
= Corr(eet ,eet )

Second, we introduce the way to express yield standard deviation as a proportion of yield
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