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Delivery Options in Futures Contracts and Basis Behavior at Contract Maturity

Practitioner’s Abstract

This paper estimates values of the delivery options implicit in the CBOT corn futures contract.
Joint values of the timing and location options are estimated for the years 1989-97.  By
interacting the effects of the two delivery options, a potentially more accurate estimates are
obtained.  Two models are presented that rely on different assumptions about the institutional
setup of the delivery process. The first model approximates the discreteness of the three day
delivery process, while the second model relies on an assumption of immediate delivery that is
consistent with the existing literature on pricing options.  Individual hedgers can use these
models to help them make delivery decisions. When all the costs of delivery are incorporated,
true value of the delivery options can be obtained analytically.  This can then be used to
determine possible mispricing in the market as well as optimality of delivering early or delaying
delivery.  The estimated option values are used to explain the variability of bases in the
deliverable locations.  This application is useful for the exchange in evaluating hedging
performance of futures contracts with respect to the delivery options embedded in them.

Keywords: delivery options, joint timing-location option, basis convergence

Introduction

In designing a futures contract, the exchange has to make sure that the contract attracts
both hedgers and speculators to the market, at the same time preventing manipulation of prices.
These interests are sometimes in direct contradiction and a balance has to be found.  One of the
necessary conditions for attracting hedgers to the futures market is to design contract provisions
that minimize basis risk as well as minimize the possibility of market manipulation.  Delivery
options are introduced that expand deliverable supply, thus reducing the probability of a market
squeeze, but on the other hand are a source of basis risk.  The exchange has to monitor the
degree to which the delivery options reduce futures and spot price correlations.

In particular, net benefits of using a futures market as a risk management tool depend on
hedging effectiveness.  A perfect hedge can be completed if the futures price converges exactly
to the spot price at maturity; i.e., the basis converges to zero.  Complexities of delivery
specifications of futures contracts as well as arbitrage costs cause imperfect convergence.
Delivery options embedded in contract specifications introduce uncertainty about the relevant
spot price to which the futures contract will converge at maturity, resulting in basis risk.
Variability of the basis at maturity is a cost to hedgers and negatively influences hedging
demand.  Thus, from the point of view of an exchange as well as that of risk management
demand, it is important to understand price and basis behavior at contract maturity.

This paper analyzes the timing and location options jointly.  The quality option is not
included in the analysis due to unavailability of data on grades delivered.  The majority of the
literature has evaluated each option separately (Hemler, 1988, Silk, 1988, Pirrong et al., 1994).
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However, the estimates from these studies are likely to be biased as the interaction effects of the
different options are ignored.  Boyle (1989) incorporates such effects in the evaluation of the
timing and quality option in Treasury bonds.

This paper evaluates the joint timing and location option for CBOT corn futures contract
during the years 1989-97.  Similar to Boyle’s approach, the effects of the two delivery options
are interacted.  In addition, the importance of considering the institutional background of
delivery is highlighted.  Two institutional setups are considered, one that imposes a one-day
waiting period between entering the futures market and delivering and one that allows delivery
on the same day as a futures contract is entered.  We find that the possibility of immediate
delivery lowers the value of delivering early.

The estimates of the joint option values under the two assumptions are used to examine
the impact of the delivery options on basis behavior at contract month.  Delivery options appear
not to have a significant impact on basis non-convergence in Chicago, but increase the basis
significantly in the Toledo location.  The direction of the effect is robust to the changes in the
institutional assumptions about delivery.

The paper is organized as follows.  Section I presents models for calculating futures
prices with the embedded timing and location options under two institutional assumptions about
delivery.  Section II describes the methodology and data used in the estimation of the joint option
values for CBOT corn futures contract. Section III presents the empirical estimates of the joint
option values obtained under the two institutional assumptions.  Section IV uses the estimated
values to examine the role of delivery options on the basis behavior at contract month.  Section V
concludes.

I. Model

The timing option is defined here as the option that allows the short to deliver the
underlying commodity any time during the first three weeks of the expiration month.  These are
the days when trading in the currently deliverable contract persists (12-16 business days), and the
seller has the option to offset, deliver, or defer the choice.  The other type of timing options, like
end-of-the-month option and wild-card options, are not included in the current definition.  Thus,
for the CBOT corn futures contract, it is assumed that all short positions in the expiring contract
have to be closed by delivery or offset by the last trading day of the expiration month.1

The location option expands the deliverable supply by extending the set of deliverable
locations.  The short can deliver at alternative locations and receive a price adjusted according to
a given discount/premium schedule.  This option is designed to prevent manipulation due to
shortage of supply in a single market place and high transportation costs from distant markets.

The location option can be viewed as a type of quality option, where the state variables
are the spot prices in the deliverable locations, adjusted for any discounts/premia.  Thus, the
economy is assumed to have n risky assets, each asset being represented by the adjusted spot
price in each of the n deliverable locations, and one riskless bond.  Since the short will choose
                                                          
1 Actual physical delivery can occur up to the last business day of the month.
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the location where delivery is the cheapest, the location option is an option on the minimum of n
assets.  For the CBOT corn futures contract, only two deliverable locations are active: Chicago
and Toledo and n = 2.

The value of the joint timing and location option VJO is determined as the difference
between the price of a currently deliverable futures contract without the joint option, Fw/oJO, and
the futures price of the same contract with the option, Fw/JO,

)0()0()0( // JOwoJOwJO FFV −= ,
where the values and prices are estimated on the first delivery day.

Using risk neutral valuation with martingale equivalent probabilities of up, middle, and
down movements p1, p2, and 1-p1-p2, respectively, the no-arbitrage futures price without options
is a martingale
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where E~  denotes expectation under martingale equivalent probabilities and F(t;st) is the futures
price at time period t in state st.  Using the law of iterative expectations a well-known result is
obtained

))((~)(/ TSEtF toJOw = .

Assumption 1

Under Assumption 1, delivery is not allowed on the same day as the contract is entered.
A short trader has to have a pre-existing position in the futures contract to be able to close it by
delivery.  The futures price is determined by backward induction, recognizing that the value of
the contract is reset to zero every day through marking to market.  Each state of the world in
every time period is checked for optimal exercise, where the cheapest-to-deliver asset is
delivered if delivery is optimal.

For simplicity of exposition, the subscript denoting the presence of the joint option is
omitted, as well as the adjustment for location discounts/premia.  In the subsequent analysis,
Sk(.) represents the adjusted spot price in location k and F(.) is the price of the currently
deliverable futures contract with the joint option.

In an economy with two deliverable assets (spot commodity in two deliverable locations),
the futures price on the last delivery day converges to the price of the asset with the lowest price,
min(S1(T;sT), S2(T;sT)) for all sT.  On this last delivery day, no option to delay exists, and the
short position must be closed by delivery (or offset), yielding a zero cash flow.  Thus, the only
possibly non-zero payoff comes from the marking-to-market cash flow.
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11 R

sTFsTFEV TT
TT

−−== −
−− ,

yielding
));(),;(( (min~);1( 2111 TTTT sTSsTSEsTF −− =− .
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At T-1, the short has an option to deliver, offset or delay.  The short will choose the
strategy that maximizes her payoff.  The value of the futures contract at T-2 is then the expected
payoff (under martingale equivalent probabilities) from following the optimal strategy in period
T-1, plus the expected cash flow from marking to market at T-1,

]}.0 ),;1(),;1(( min);1([ {max~                             
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The value of the futures contract consists of two components – the value due to the
futures price (the term in the first curly brackets) and the value due to the timing option
interacted with the location option (the term in the second curly brackets).  The zero value of the
futures contract uniquely determines the arbitrage-free futures price at T-2,

]}.0 )),;1(),;1(min();1({max[~)};1({~);2( 121112122 −−−−−−− −−−−−−=− TTTTTTT sTSsTSsTFEsTFEsTF

Continuing the same argument inductively backward in time generates the result for the
futures price at 10 −<≤ Tt ,

]}.0 )),;1(),;1(( min);1([max {~)};1({~);( 121111 ++++ ++−+−+= ttttttt stSstSstFEstFEstF
At every time period 10 −<≤ Tt , the price is lower by the expected value of the joint option in
the following period.

Assumption 2

Assumption 2 allows delivery on the same day as a futures position is established.  The
futures price is now bounded from above, such that at any time t and any state of the world st

)).;(),;(min(),( 21 ttt stSstSstF ≤   Suppose )).;(),;(min(),( 21 ttt stSstSstF >   Then, selling an
expiring futures contract and delivering the asset in the cheapest to deliver location immediately
would yield positive arbitrage profits.

The value of the timing option VTO is again determined as the difference between the
price of a currently deliverable futures contract without the timing option, Fw/oTO, and the futures
price of the same contract with the option, Fw/TO,

)0()0()0( // TOwoTOwTO FFV −= ,
where the values and prices are estimated on the first delivery day.

Under the assumption that delivery is possible on the same day as the futures contract is
entered, the short position does not have to be pre-existing from a previous period for the short to
take advantage of the timing and location option.  The short decides between delivering at time t
in either of the two deliverable locations and holding on to the futures contract, whose value at
time t is zero.

In both cases, he/she receives cash flows from marking to market.  The futures price is
again determined by backward induction, recognizing that the value of the position is reset to
zero through marking to market.  Each state of the world in every time period needs to be
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checked for optimal exercise.  For all Tt <≤0 , the futures price is determined such that the no
arbitrage boundary condition holds

0]))1()((~  )),;(),;(min();([ max //
2/ =++−− t

TOwTOw
tttstTOw V

R
tFtFEstSstSstF ,

where Vt = 0 and tE~  denotes expectation under martingale equivalent probabilities.
The first term in the square brackets represents the payoff to the short if delivery occurs at time t,
and the second term is the value of the futures contract if delay is the optimal strategy at time t.
For simplicity of exposition, the subscript denoting the presence of the timing option is omitted
in the subsequent analysis and F(.) represents the price of a futures contract with the joint option.

It is again assumed that the futures price on the last day of delivery converges to the spot
price on that day, ));(),;(( min),( 21 TTT sTSsTSsTF =  for all sT.  On this last delivery day, no
option to delay exists, and the short position must be closed by delivery (or offset), yielding a
zero cash flow.  Thus the only possibly non-zero payoff comes from the marking to market cash
flow, ))(),(( min)1( 21 TSTSTF −− .

At T-1, the short has an option to deliver at T-1, yielding the payoff from delivery
))1(),1(( min)1( 21 −−−− TSTSTF , or delay delivery and obtain the marking to market cash

flow at time T.  He/she will follow the strategy that maximizes her payoff.  The futures price at
T-1 is determined simultaneously with the optimal decision to exercise, by setting the value of
the futures contract with the embedded option to zero

,0]))1(),1(( min)1((E~ )),1(),1(( min)1([ max 21
1-T211 =−−−−−−−−≡− R

TSTSTFTSTSTFVT

where R is the risk neutral discount factor.

At T-2, the short again has an option to deliver at T-2 or delay delivery until T-1 and
obtain the next period’s marking to market cash flows and the value of the futures contract at T-
1.  The condition to be checked for optimal exercise is

0)]))1()2(((E~ ),2(),2(min()2([ max 1
2-T212 =+−−−−−−−≡ −

− R
VTFTFTStSTFV T

T .

Since the value of the futures contract at any time is reset to zero through marking to market, the
futures price at any time Tt <≤0  is determined by a condition

0)])1()((E~ )),(),(( min)([ max t21 =+−−≡
R

tFtFtStStFVt .

Due to the presence of the location option, early exercise is not always optimal2.  By
allowing immediate delivery under Assumption 2, the futures price has an upper
boundary, ))(),(( min)( 21 tStStF ≤ .  This is because if ))(),(( min)( 21 tStStF > , the strategy of
selling an expiring futures contract and delivering immediately the cheapest to deliver asset
would yield an arbitrage profit of 0))(),(( min)( 21 >− tStStF .

                                                          
2 In the absence of the location option, the first payoff is always greater under martingale equivalent probabilities
and early exercise is always optimal.
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II. Methodology and Data

Methodology

Models used in the analysis assume perfectly competitive markets, no transaction costs,
and no taxes.  As we are interested in the joint value of the delivery options on the first delivery
date, the no transaction cost assumption is perhaps a reasonable abstraction.  Most small hedgers
offset their positions prior to the expiration month.  Thus, traders who potentially might make
delivery are likely those with low transaction costs.  The other two assumptions are widely used
in the theoretical as well as empirical literature on option pricing, but it is true that futures
markets become more concentrated as the last day of trading approaches.

The two underlying state variables, i.e., the spot prices in the two deliverable locations,
are assumed to follow two correlated lognormal processes

)()()()( 111111 tdWtSdttStdS σµ +=

)()(1)()()()( 22
2

2122222 tdWtStdWtSdttStdS ρσρσµ −++= ,
where dSk(t) denotes a change in the spot price of asset k during a (infinitesimally small) time
increment dt, and dWk(t) is a Wiener process with zero mean and variance dt.  kk σµ  and 
represent the drift and volatility of asset k’s instantaneous return and ρ  is the correlation
coefficient between instantaneous returns on the two assets.  This is a model with independent
shocks, reflecting the fact that the two Wiener processes are independent.

A number of authors have derived closed-form solutions to partial differential equations
for valuing European options on several assets.  Margrabe (1978), Johnson (1987), and Hemler
(1988) provide such solutions for valuing European options on maximum and/or minimum of n
assets.  To accommodate the early exercise feature of American options, numerical procedures
must be used to solve the partial differential equations.  However, when more than one
underlying asset is involved, these procedures become computationally expensive.  A discrete
approximation approach offers a potentially more efficient procedure for valuing American
options.

A generalization of the binomial lattice framework can be used as a discrete
approximation of a multivariate diffusion process with more than one state variable.  Discrete-
time models assume that the price of an underlying asset moves in discrete jumps.  In order to
describe the process, jump sizes and jump probabilities have to be specified.  There are basically
two ways of doing this.  The approach taken by Cox, Ross and Rubinstein (1979) and extended
for n state variables by Boyle, Evnine, and Gibbs (BEG, 1989) is to fix the jump sizes and
calculate the probabilities such that convergence to the continuous diffusion process is ensured.
An alternative approach fixes the jump probabilities and determines the ensuing jump sizes (He,
1990; Amin, 1995).

BEG assume that each of the assets follows a binomial distribution, moving up or down
in every time period.  The combinations of the values thus generate 2n possible states for the n
assets after a time increment h.  For given up and down factors of movement, probabilities are
determined for the states.  However, this approach does not guarantee positive probabilities.  For
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a large absolute value of assets’ covariance, negative probabilities can arise.  Further, although
the BEG discrete approximation converges under a risk neutral probability measure, it does not
satisfy the property of complete markets.  For an economy with n risky assets and one riskless
bond, 2n payoffs cannot be dynamically replicated and options cannot be priced by arbitrage.
This makes the discrete-time model inconsistent with its continuous counterpart, in which
markets are dynamically completed by continuous trading in the n assets and the bond.

Cheyette (1988) and Madan, Milne, and Shefrin (MMS, 1989) also approximate an n-
dimensional lognormal process and establish the convergence of the discrete approximation to its
continuous-time counterpart.  However, although the MMS model does satisfy the complete
market property of the continuous model, it does not guarantee convergence of multivariate
contingent claims, such as options on the minimum of two assets.  Cheyette’s discrete
multinomial approximation does not rely on risk neutral probabilities.

The analysis in this paper uses the approach that fixes the probabilities and determines
the up and down factors such that the discrete-time process converges to the corresponding
continuous process.  A sequence of n-variate, (n+1)-nomial processes is used to approximate the
n-dimensional diffusion process for the spot prices.  The model consists of n risky assets and one
bond, which form a dynamically complete securities market.  Hua He (1990) shows convergence
of these discrete-time state price processes to their continuous-time counterparts.  That is,
individual spot price processes, contingent claims prices and replicating portfolio strategies
converge in the limit.

To satisfy the market completeness property, each random variable 21
~ and ~ XX  in the

discrete analog to the continuous solution, is allowed to take three values, ),,( 111 dmu xxx  and
),,( 222 dmu xxx  respectively, where xkj is the realization of random variable in location k in state j

= up, middle and down.  The realizations must satisfy the properties that 0)~()~( 21 == XEXE ,
1)~()~( 21 == XVarXVar  and 0)~,~( 21 =XXCov .  The resulting  system of equations has infinitely

many solution pairs.  One such pair, is )
2
1,2,

2
1( and )

2
3,0,

2
3( −− .  Thus, a two-variate

trinomial model approximates the diffusion process with two state variables (asset prices in the
two delivery locations).

Another advantage of this type of discrete approximation is its computational efficiency.
As the two correlated spot price processes are path independent, the trinomial trees recombine.
The trees do not grow exponentially and at any time t, the number of nodes is equal to
(t+1)(t+2)/2.

Convenience yield is ignored in the estimation of the option value.  Assuming a constant
riskless rate and dt =1, the up, middle, and down factors for the two assets are

2
31 111 σα ++=U

2
11

2
31 2

2222 ρσρσα −+++=U
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11 1 α+=M
2

211 2
222 ρσα −−+=M

2
31 111 σα −+=D

2
11

2
31 2

2222 ρσρσα −+−+=D

where 2

2
1

kk r σα −=  for asset k = 1, 2 .

Estimation proceeds as follows.  First, a sequence of two trinomial trees for the Chicago
and Toledo spot prices is generated.  Then the futures price on the first delivery day, t=0, is
calculated by backward induction, incorporating the interacted timing and location options as
specified in the model section.  It is assumed that the futures price on the last delivery day T
converges to ))(),(( min 21 TSTS .  Then, the futures price tree without options is generated.  The
value of the joint option on the first delivery day is obtained as the difference between the two
futures prices at the initial date 0.

Data
The value of the joint timing and location option is estimated for the corn futures contract

traded at the CBOT.  Daily data are used for each expiration month (March, May, July,
September and December) in 1989 to 1997.  The years before 1989 are influenced heavily by
price support programs and substantial government stocks and are excluded from the analysis.
Futures prices are the daily settlement prices.  Cash prices are those reported by USDA for
Chicago and Toledo terminal markets.3  The prices are reported in ranges and the midpoint is
used as a representative price.  The 90-day T-bill rates obtained from CRSP database are used as
risk-free rates.  The number of trading days in individual delivery months ranges from 12 to16.

Volatilities are estimated as standard deviations of the log of spot price returns during the
expiration month, and the correlation coefficient represents the correlation between the logs of
spot price returns in locations 1 and 2 during the same time period.  If location 1 stands for
Chicago and 2 for Toledo, d1=0 and d2=3 cents, since Chicago is the par location for corn
delivery.

III. Empirical Results

Assumption 1

The value of the joint option estimated under Assumption 1 averaged 2.2 cents during
years 1989-97, ranging from 0.3 to 3.7 cents (Table 1).  This value represents 0.8% of the
average futures price on the first delivery day and  105% of the absolute value of the Chicago
basis and 122% of the Toledo basis (calculated as percent of the absolute value of the basis F-S).

                                                          
3 Chicago spot market has for the last decade been practically inactive and the quoted spot prices may not be
representative transaction prices.  The central Illinois average prices may be considered more representative, but
represent a wrong location.  The problem of low quality spot prices for agricultural commodities is well-known, and
no ‘good’ spot prices are available.
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Figure 1 illustrates the seasonal movement of the joint timing and location options.  The value is
on average the highest for the post harvest month December and the lowest for pre-harvest
month July.

The negative delta effect jointly with the correlation effect dominate the vega effect, as
July is the month when spot prices and the volatility are the highest.  At harvest time and
immediately thereafter, crop size is known, and prices are least volatile. As vega ( σ∂∂ /P ) for an
option is positive, where P is the value of a put option, values of the option should decrease
during the months with low price volatility.  However, corn prices are typically at their lowest
levels in December.  The effect of the low prices through the negative delta of a put option
( SP ∂∂ / ) has an opposite seasonal effect on the option values.  For the CBOT corn futures
contract, the negative delta effect offsets the positive vega, resulting in high option values in
December.  Perhaps surprisingly, these effects appear to persist through May.

Table 1: Joint option values estimated under Assumption 1 (in cents)a

Month        
Year 89 90 91 92 93 94 95 96 97

March 3.674 1.902 3.299 2.770 3.096 2.796 3.312 1.319 1.027

May 2.557 3.230 3.367 2.841 2.857 3.071 2.917 0.697 2.086

July 0.535 0.507 2.339 1.488 2.449 1.762 2.305 0.817 0.550

September 0.347 0.621 2.740 1.889 2.707 3.115 0.987 0.419 1.516

December 1.827 3.291 2.569 2.904 3.141 2.872 2.947 1.496 3.261

a. Values are estimated for the first delivery day.

Figure 1

Assumption 2

Estimating the joint option under Assumption 2 results in lower values of the joint timing
and location options.  This is because the possibility of immediate delivery in two different
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locations makes the option to deliver early less valuable.  The value estimates during years 1989-
97 range from 0 to 0.7 cents, averaging 0.1 cents (Table 2).  This value represents 0.04% of the
average futures price on the first delivery day and 4.8% and 5.5% of the Chicago and Toledo
bases (in absolute value).

The seasonal fluctuation in the joint option values is similar to the estimates under
Assumption 1 (Figure 2), although the option value declines from March to July.  The negative
delta effect due to high spot prices in pre-harvest months dominates the positive vega effect.  The
values are the lowest for the pre-harvest month of July continuing through the transition month
of September.

Table 2: Joint option values estimated under Assumption 2 (in cents)a

Month        
Year 89 90 91 92 93 94 95 96 97

March 0.737 0.133 0.327 0.116 0.111 0.084 0.346 0.096 0.012

May 0.205 0.318 0.396 0.000 0.012 0.077 0.158 0.046 0.056

July 0 0.487 0 0 0 0.002 0.074 0 0

September 0.222 0.004 0.124 0.005 0.010 0.140 0.009 0 0.028

December 0.127 0.327 0.056 0.075 0.156 0.085 0.179 0.070 0.286

a. Values are estimated for the first delivery day.

Figure 2

IV Role of Delivery Options in Basis Convergence

The above estimates of the joint option are used to explain basis behavior at contract
maturity.  The option value captures the importance of the option for that particular month and
may be a factor in explaining basis non-convergence.  That is, the option value may help predict
basis behavior and thereby help understand basis risk.  In general, the larger the basis risk, the
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lower the hedging demand, ceteris paribus.  Heifner (1966) and Peck and Williams (1991)
analyze hedging effectiveness in terms of the predictability of the change in the basis.  Heifner
evaluates gains from basing storage decisions on predicted basis changes over various storage
intervals.  Peck and Williams focus on the effect of delivery timing, during the expiration month,
on basis convergence.  They find that convergence is better predicted on the last day of trading
than on the first day of the expiration month.

The presence of the location option affects the price dynamics of the contract’s bases.
Garbade and Silber (1983) demonstrate that the addition of a new location increases hedging
effectiveness at that location, but reduces the hedging effectiveness in the original delivery point.
Pirrong, Kormendi and Meguire (1994) examine the effect of the location option embedded in
the CBOT corn and soybean contracts on hedging effectiveness in different locations.  They
show that adding/expanding a location option may actually improve hedging effectiveness, with
an asymmetric impact in different locations.

All the above studies treated delivery options separately and additively, omitting the
interaction effect between the options.   As a result, evaluations of the impact of delivery options
on basis behavior are likely to be biased.  Our analysis should achieve a more accurate
assessment of the impact of the options on basis behavior, as it uses the estimates of the joint
value of the delivery options.

Basis Model

Theoretical models of futures prices assume a single expiration day T and perfect
convergence of the futures and spot prices on this date.  For any date t < T, the futures price in
perfect and frictionless markets equals

))(()(),( tTcyretSTtF −+−⋅= ,
where c is storage cost, and F(t,T), S(t), r and y are as defined above.  This is a result of a cash-
and-carry no arbitrage argument.  Delivery options add value to the short and result in a lower
futures price

)()(),( ))(( tJOetSTtF tTcyr +⋅= −+− ,
where JO(t) is the value at time t of the timing option.  Thus, basis at time t is a function of the
interest rate, convenience yield, storage cost, time to maturity and the timing option.  Separate
estimates are obtained for the Chicago and Toledo bases according to the model

)(
)(

)(
),( ))((

tS
tJOe

tS
TtF

k

tTcyr

k

+= −+−

for k = 1,2, where JO represents the value of the joint option.  The following loglinear model is
estimated for each location basis using OLS,

eIntRateFS
S
JOLnDLnB

k
i iik +++++= � = 321
4

10 )( βββαβ ,

where Bk is the basis in location k, D’s represent contract month dummies and JO is in turn
defined using the values of the joint option estimated under Assumption 1 and 2, respectively.
FS is the futures spread defined as the difference between the price of the deliverable contract
and the next nearby and stands as a proxy for convenience yield.  IntRate is the riskless rate.  The
models are also fitted linearly, with observed basis as a function of JO/Sk.
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Empirical Results

The estimated values of the joint option are used in regressions of Chicago and Toledo
bases behavior.  The models help explain how the degree of convergence in different delivery
locations vary across delivery months and years and what role the delivery options play in bases
non-convergence.

Coefficient estimates from the regressions using the estimates of the joint option value
without convenience yield are presented in Tables 3 and 4.  The results suggest that the delivery
options have a significant effect on the Toledo basis but not on the Chicago basis.  A 1%
increase in the joint option value increases the basis in Toledo by 2.6%.  The impact on the
hedging effectiveness in the Toledo location is thus negative.  Although the R2 for Chicago basis
is still relatively modest, it compares favorably with other attempts to model basis behavior at or
near contract maturity (Leuthold, 1979).  The model explains better the variation in the Toledo
basis, with R2 of 64% for the full model and 62% for the reduced model.

Table 3: Chicago basis behavior using joint option estimated under Assumption 1

Log model Linear model
Full modela Reduced modela Full modela Reduced modela

Constant -0.025(-1.5) -0.027 (-1.8) 0.996 (107.7) 0.991 (127.1)
D1 (Mar) -0.007 (-1.4) -0.007 (-1.3)
D2 (May) -0.007 (-1.4) -0.007 (-1.4)
D3 (Jul) -0.005 (-0.9) -0.005 (-0.9)
D4 (Sep) -0.007 (-1.2) -0.006 (-1.1)
Futures Spread -0.113 (-2.0) -0.111 (-2.1) -0.134 (-2.5) -0.128 (-2.6)
Interest Rate 0.056 (0.5) 0.050 (0.5) 0.072 (0.7) 0.062 (0.6)
Joint Option -0.004 (-1.1) -0.003 (-1.0) -0.363 (-0.6) -0.323 (–0.6)

R2 50% 32% 36% 36%
a. Numbers represent regression coefficients and t-statistics (in the brackets)

Table 4: Toledo basis behavior using joint option estimated under Assumption 1

Log model Linear model
Full modela Reduced modela Full modela Reduced modela

Constant 0.158 (6.8) 0.159 (7.2) 0.991 (78.8) 0.988 (87.0)
D1 (Mar) -0.010 (-1.3) -0.010 (-1.4)
D2 (May) -0.008 (-1.1) -0.008 (-1.2)
D3 (Jul) -0.004 (-0.5) -0.002 (-0.2)
D4 (Sep) -0.013 (-1.6) -0.013 (-1.7) -0.008 (-1.5)
Futures Spread -0.153 (-1.8) -0.170 (-2.2) -0.117 (-1.6) -0.126 (-1.8)
Interest Rate -0.253 (-1.6) -0.248 (-1.6) -0.278 (-1.9) -0.306 (-2.2)
Joint Option 0.026 (5.3) 0.028 (6.1) 4.421 (6.0) 4.353 (6.1)

R2 64% 60% 68% 65%
a. Numbers represent regression coefficients and t-statistics (in the brackets)
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Seasonal dummies are in general insignificant.  The seasonal component of the basis
seems to be picked up by the seasonality of the option values or other variables.  Also, the signs
on the interest rate and futures spread in the Toledo basis model are not consistent with theory.

Results listed in Tables 5 and 6 show that both the significance and the direction of the
delivery options effect are robust to using estimates under Assumption 2.  The options are
insignificant in explaining the basis behavior in Chicago and significantly influence the
convergence of the basis in Toledo.  The magnitude of the effect in Toledo is now decreased and
a 1% increase in the joint option value under Assumption 2 increases the Toledo basis by 0.5%.
This is the result of the overall lower values for the joint option under Assumption 2.

Table 5: Chicago basis behavior using joint option estimated under Assumption 2

Log model Linear model
Full modela Reduced modela Full modela Reduced modela

Constant -0.006 (-0.4) -0.009 (-0.7) 0.991 (146.9) 0.987 (168.0)
D1 (Mar) -0.007 (-1.3) -0.006 (-1.2)
D2 (May) -0.007 (-1.3) -0.007 (-1.4)
D3 (Jul) -0.004 (-0.6) -0.005 (-0.8)
D4 (Sep) -0.005 (-0.8) -0.005 (-1.0)
Futures Spread -0.158 (-3.2) -0.157 (-3.3) -0.149 (-3.3) -0.141 (-3.5)
Interest Rate 0.079 (0.7) 0.064 (0.6) 0.118 (0.9) 0.107 (0.9)
Joint Option 0.000 (0.2) 0.000 (0.3) -1.483 (-0.4) -1.516 (-0.4)

R2 35% 31% 35% 31%
a. Numbers represent regression coefficients and t-statistics (in the brackets)

Table 6: Toledo basis behavior using joint option estimated under Assumption 2

Log model Linear model
Full modela Reduced modela Full modela Reduced modela

Constant 0.097 (3.7) 0.086 (3.4) 1.053 (87.7) 1.045 (95.5)
D1 (Mar) -0.011 (-1.2) -0.015 (-1.6)
D2 (May) -0.003 (-0.3) -0.005 (-0.6)
D3 (Jul) 0.005 (0.4) -0.006 (-0.5)
D4 (Sep) -0.017 (-1.7) -0.020 (-2.1)
Futures Spread 0.052 (0.6) 0.038 (0.4) 0.080 (1.0) 0.080 (1.0)
Interest Rate -0.749 (-3.5) -0.734 (-3.5) -0.830 (-3.7) -0.858 (-3.7)
Joint Option 0.005 (2.2) 0.004 (2.3) 16.121 (2.4) 16.960 (2.5)

R2 43% 33% 44% 35%
a. Numbers represent regression coefficients and t-statistics (in the brackets)

As noted earlier, the estimated option values have no explanatory power for the
variability of the Chicago basis.  Moreover, Toledo spot prices are typically lower than Chicago
prices, even after adjusting for the discount for delivery in Toledo.  Thus, the data imply that
most deliveries should occur in Toledo, which is inconsistent with the actual delivery patterns.
On average, 71% of deliveries took place in Chicago.  Alternatively, in 78% of the expiration
months during the years 1989-97 the percentage delivered in Chicago was more than that in
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Toledo.  These seemingly illogical results are probably related to the quality of the Chicago
prices and ‘unobservability’ of full costs of delivery.  With respect to the data, Chicago is a
relatively inactive spot market, and the reported prices are perhaps not representative of
transactions’ prices.  When Central Illinois spot prices are substituted for the Chicago series, the
resulting option values do have a significant explanatory power in the basis equation.  However,
these option values are not for the Chicago location.  In other words, the variability of the option
value, based on Central Illinois prices, is helpful in explaining variability of the associated
Illinois basis, but these estimates cannot be interpreted as representing the true joint location-
timing option values for Chicago and Toledo delivery.

The option model, using the Chicago and Toledo spot prices, captures the fact that
Toledo appears optimal for delivery, i.e., the estimated option values are internally consistent
with the model and the available data.  The data, however, do not reflect some factors (costs) that
influence options values and delivery decisions.  As Peck and Williams point out, the demand for
various commercial uses of corn (livestock feed, processing, and exporting) likely is larger in
Toledo than in Chicago; i.e., the opportunity costs of delivering in Chicago are likely smaller
than in Toledo.  An important function of corn stored in Chicago is delivery in futures contracts;
corn located in Toledo has more alternative uses.  If so, this is not captured by the data and the
model we are using.

Also, the assumption of competitive markets is probably not fully met.4  Those firms
short futures positions in the delivery month likely own corn in certified-for-delivery locations
that they own; thus, it is relatively inexpensive for them to make delivery.  For one major firm,
Chicago was probably the cheapest-to-deliver location.  If, for instance, a firm owned corn in
Chicago, not Toledo, but nonetheless wanted to make delivery in Toledo, they would be
obligated to buy corn in Toledo, possibly pay to have it inloaded to a certified warehouse, and
then pay 0.15 cent per bushel per day storage cost (CBOT rule 1056.1).  The 0.15 cent cost is
equivalent to 4.5 cents per month, while typical commercial storage charges for the 1989-97
period were about 2.7 cents (in elevators not certified for delivery on the contract).  Clearly, the
cost of delivery in Toledo would have to be sufficient to cover the storage costs in certified
warehouses in Toledo, a cost that exceeds common commercial rates.

Further, if a firm short futures does not own corn in a certified warehouse in either
deliverable location, then they face the additional costs of transporting and inloading the grain
into the approved-for-delivery location.  These costs are unobservable and not accounted for in
the model.  In this case, however, it seems likely that it would be less costly to transport corn to
Toledo than Chicago.  Also, as mentioned above, the Chicago price series may not capture the
transactions’ prices for firms to purchase corn for delivery in Chicago.

                                                          
4 As of July 1, 1996, only two locations were certified for delivery in Chicago, each owned by a major grain
merchant.  Three firms owned facilities in Toledo.  One firm, Cargill, owned certified delivery facilities in both
Chicago and Toledo.  Thus, they presumably could have made delivery in either location.  This suggests that the
notion of a lower opportunity cost of delivering corn in Chicago may be an important, but difficult to estimate,
factor in determining location of deliveries.
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V Conclusions

The value of the timing option jointly with the location option is estimated for the CBOT
corn futures contract for all expiration months during years 1989-97.  Two institutional
assumptions are used to obtain the value of the option.  Assumption 1 allows delivery only on the
next day after entering a futures contract and in this sense aims to simulate the discreteness of the
actual delivery process.  Assumption 2 is consistent with the one frequently used in the literature.
It allows delivery on the same day as a futures position is established.  The institutional
assumptions lead to different estimates of the joint option values, the values being smaller under
Assumption 2.  This is because the possibility of immediate delivery in combination with the
location option lowers the value of delivering early.  This result highlights the importance of
taking institutional arrangements into account.

The value of the joint option under Assumption 1 averaged 2.2 cents over the years 1989-
97, constituting 0.8% of the average futures price on the first delivery day.  On average, the joint
option value is lowest during the months of July and September.  July is characterized by the
highest price levels as well as by relatively high price volatility.  The resulting low option values
demonstrate that the delta effect dominates in the delivery options implicit in the CBOT corn
futures contract.  The dominating delta effect persists through September in spite of decreasing
price levels and decreasing volatility.

 Allowing immediate delivery under Assumption 2 in combination with the location
option reduces the value of delivering early and results in lower estimated option values.  The
joint option values estimated under Assumption 2 averaged 0.1 cent over the years 1989-97.

The joint option has low explanatory power for basis variability in Chicago.
Delivery options significantly explain basis non-convergence in Toledo.  Results indicate that the
option increases the Toledo basis by 2.2% on average and thus decreases hedging effectiveness
in this location.  However, the results have to be interpreted with caution.  Low quality of spot
price data (mainly for the Chicago terminal) as well as inadequate data on ‘true’ costs of delivery
make interpretation of the results difficult.  Using the narrow concept of costs allocates a
disproportionate percent of deliveries to the Toledo location.  The option values capture this by
reflecting the variability in Toledo basis to a higher degree than the one in Chicago.  If there
exist transportation and other costs of delivery that eliminate the advantage of delivering in
Toledo versus Chicago, the option values and consequently basis regression results may be
biased.
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