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The Role of the Bid-Ask Spread in a Dynamic — Time-Varying Optimal Hedging Model.

This paper presents a manageable and effective way of nesting two popular, yet distinct
approaches to obtain optimal hedging ratios — time-series econometrics (GARCH) and dynamic
programming (DP). The nested DP-GARCH model is then compared to a DP-GARCH model
that accounts for variability in the bid-ask spread often unobserved (and hence ignored) in most
studies. Results from an empirical application using data from an importantly traded
commodity — sugar — suggest that a DP-GARCH model that incorporates the bid-ask spread
still outperforms more traditional models. Moreover, the hedging ratios are far less volatile,
and statistically different, than those recommended by the traditional GARCH methods that
ignore the spread.
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1. Introduction

The determination of the optimal hedging ratio has been the focus of much theoretical
and empirical research since Johnson (1960) and Stein’s (1961) seminal works on the subject
matter. From an empirical and theoretical standpoint, one major thrust in the literature has
been devoted to investigating models wherein there is a multi-period hedging horizon and the
optimal hedging ratio (OHR) may be updated each period. This research has relied largely on
applications of dynamic programming (DP), with empirical examples coming from Anderson
and Danthine (1983); Karp (1983); Martinez and Zering (1992); Mathews and Holthausen
(1991), Lence et al. (1993); and Vukina and Anderson (1993). These studies while being
intuitively appealing (but operationally fairly complicated) have found that the multi-period
hedging models have not resulted in significant improvements over static models from a risk
management perspective.

Another major area of research in the empirical optimal hedging literature has been the
use of time-series econometrics to model conditional variance and covariance dynamics for
cash and futures prices. The non-constancy of the variance of price changes for commodities
has received considerable attention since the issue was re-addressed over 35 years ago by
Samuelson (1965). However, it wasn’t until the important contributions of Engle (1982) and
Bollerslev (1986) in developing ARCH/GARCH models that the estimation of non-constant
hedging ratios really became popular.® Researchers employing these time-varying OHRs have
claimed that significant gains could be achieved from a risk management standpoint relative to
more traditional, basic econometric techniques. Examples include Yeh and Gannon (2000),
Haigh and Holt (2000), Gagnon et. al (1998), Kroner and Sultan (1993), and Baillie and Myers
(1991).



Like the DP approach, the time-series approaches allow for updating, but unlike the DP
approach, the time series approaches have thus far, surprisingly, been limited to determining
only sequentially updated one-period-ahead optimal hedging ratios. A recent study by Myers
and Hanson (1996) did discuss feasible ways of using various models to estimate OHRs in a
dynamic (DP) framework (including the ARCH/GARCH approaches), but unfortunately did
not present specific details nor empirical applications.

The first objective of this paper is to therefore present an operationally tractable way of
uniting the GARCH time series model approach and the DP approach for the first time. In an
empirical application, using sugar cash and futures prices, a theoretically consistent yet
realistic risk management model is developed which allows the representative trader to adjust
the optimal hedge ratio originally set in place at the start of the hedging horizon. To make the
results directly comparable to other related hedging studies it is assumed that the trader’s
objective is to minimize the variability of terminal wealth, and by employing DP recursive
relations, the OHRs are thereby derived. These optimal hedging ratios are compared to hedge
ratios developed using more basic approaches.

The second objective of the paper is to investigate whether the hedging ratios,
calculated from the competing models, are in fact statistically different from one another. To
this end the delta method (which relies on a first order approximation) is employed to derive
standard errors and hence confidence intervals around the time-varying hedging ratios. This
exercise is of interest because even though there has been a considerable amount of research on
optimal hedging there has, to date, been no study that has assessed whether competing hedge
ratios are different from one another in a statistical as well as an economic sense.

The third objective of the paper is to investigate the role of the bid — ask spread on the
optimal hedging strategies. As highlighted by Campbell, Lo and Mackinley (1997) rather than
simply one price for the futures price of an asset-— there are in fact three relevant to a trader: a
bid price, an asking price and the transaction price. However, given that neither the bid nor
the ask are usually reported by most open outcry markets, much of the research to date has
been dedicated to establishing an accurate way of estimating the bid - ask spread (e.g., Roll
(1984), and Smith and Whaley (1994)). As such, only a limited number of research papers
have evaluated the importance of the bid-ask spread in trading activities, simply because bid —
ask data is not usually available in the market that is being studied. Results from studies that
have employed available bid — ask data have tended to suggest that ignoring the role of the
spread can indeed be costly. To cite just one example, Bae, Chan, and Cheung (1998)
demonstrated that failing to consider bid - ask spreads would lead to false conclusions
regarding the profitability of stock index futures arbitrage. It is the last objective of this paper
to therefore introduce the role of the bid — ask spread on the optimal hedging models for the
first known time.



In this study a brief overview of optimal hedging is presented, followed by the
introduction of the nested DP-GARCH that ignores the role of the bid-ask spread (model 1).
Next the role of the bid-ask spread in the nested DP — GARCH approach is discussed and a
modified DP-GARCH model (model I1) is presented. The data used in the empirical analysis
is discussed and the econometric estimation results are then presented, followed by a
presentation of hedging results, complete with a description on the development of time-
varying confidence bands around the optimal hedging ratios. Finally, the results and their
implications are summarized in the conclusion.

2. Hedge Ratio Estimation

One basic concept in the hedging literature is the notion that traders may optimally
select combinations of cash and futures positions to minimize portfolio risk. These
combinations, typically expressed in terms of proportion of cash to futures positions for an
asset, are commonly referred to as hedge ratios. One popular method of determining an
optimal hedging strategy is to employ a minimum-variance (MV) framework, where it is
assumed a merchandiser minimizes the variability of wealth associated with an expected sale.
Such a framework has proven to be the benchmark in the hedging literature for several
reasons. First, the MV hedge ratio is the optimal for exceptionally risk averse traders
(Ederington, 1979; Kahl, 1983). The MV hedge ratio is also optimal when futures markets are
unbiased. This is especially important, as such a phenomenon has been verified in several
empirical studies (Baillie and Myers, 1991; Martin and Garcia, 1981). As such, MV
methodology has been widely accepted and utilized in many previous studies partly because of
the theoretical justification of finding unbiased markets and partly because the components of
the minimum variance hedge ratio may be retrieved from variance and covariance estimates of
the underlying cash and futures prices.

To illustrate, consider a simple one period wealth function:
(1) W :(Ct- €)+bt—1(€- Ft)’

where W, is comprised of both the return on purchasing the asset at time t — 1 and selling it at
time t and the returns from hedging the cost. Here C denotes the future cash price associated
with commodity sale, a is the known cash price associated with the initial purchase, ﬁ IS
the known (short) futures price locked in at time t-1, and F, is the (long) futures price obtained
to offset the original futures transaction at time t. Also, b_, represents the OHR to be

determined. The concept of the minimum-variance hedge method is to minimize the variance
of the wealth function of the hedge portfolio. For the simple case illustrated in (1), variance of
wealth, Var, ;, may be written as

2) Var, (W) =Var(C )+bf Var(F )- 20 CodC,,F)



The first order condition for an extremum associated with (2) is, after simplifying:

Solving (3) for the OHR, b__, yields:

Cov(C,,F,
4) QJ:L

Var (F,)
which is comprised of variance and covariance estimates for underlying cash and futures
prices.

Many studies have used the rule in (4) to calculate the optimal hedge by simply
regressing changes in cash prices on changes in futures prices with historical data. The
resulting slope coefficient is then interpreted as an estimate of the OHR (Ederington, 1979;
Kahl, 1983). This is because in the simple Ordinary Least Squares (OLS) regression model,
the slope coefficient equals the term shown in (4). This particular form of the hedge ratio is
commonly known as the MV hedge ratio and has been employed in many studies including
those by Mathews and Holthousen (1991) and Lence et al. (1993).

Implicit in this traditional methodology of estimating hedge ratios is the assumption that
the covariance matrix of cash and futures prices, and hence the hedge ratio, is constant through
time. Fama (1965) observed, however, that variances and covariances of asset returns are not
constant over time; that large changes in asset returns tend to be followed by other large
changes; and that small changes tend to be followed by small changes. For this reason Engle’s
(1982) ARCH model—which captures many of “volatility clustering” features observed in the
data—was originally applied to optimal hedging models (Cecchetti et al., 1988). Bollerslev
(1986) subsequently proposed the GARCH model to circumvent problems associated with the
long lags often needed to specify correctly an ARCH model. The result is that a large body of
recent research has focused on utilizing the GARCH framework to compute time-varying
(conditional) hedge portfolios. Several GARCH specifications have been proposed, arguably
the most popular being the constant correlation parameterization. Indeed, Cecchetti et al.
(1988), Baillie and Bollerslev (1990), Garcia et al. (1995), and Kroner and Sultan (1993)
employed such a framework.

To estimate time-varying hedge ratios it is necessary to model jointly the first two
moments of the cash and futures settlement prices (model 1) and the first two moments of the
cash, bid and ask prices (model Il). Focusing on model | the constant correlation model is as
follows:



DP =m+e,

© e W, ~N(@OH)

where DP =(C,F)"is a (2 x 1) vector containing cash and futures prices, (T is a transpose

operator); mis a (2 x 1) mean vector of cash and futures prices (the intercept or drift terms),
respectively; e, is a (2 x 1) vector of mean-zero, bivariate normally distributed cash and

futures price innovations; W, , is the information set available at time t — 1; and H:, where
vech(Ht):(huyt,nzyt,hﬂyt)T, IS a (2 x 2) conditional covariance matrix. =~ The constant
correlation parameterization implies that the H matrix may be specified according to:

— 2
h'x =W, +ai1e + bilhit—l

i it-1

(6) P L
h,=r (hh ) i,j=YC)2F)i?* |

it jjt

where r denotes the ij" constant conditional correlation. In general r can be time varying

(hence the t subscript), but consideration simplifications arise in estimation and inference if it
is assumed that r is constant for all t. Returning to the optimal hedging problem, it follows

that, given the (time-varying) nature of the variance-covariance matrix H. , the time-varying
hedge ratio may be expressed as:

(7) bt,1 - COV(Ft ’Ct |W1) - hlz,t ,
Var (Fr |W1) hzzv‘

where b1 is the OHR conditional on all available information at time t — 1, represented by
W,

t-1°

Several papers have focused on time-varying hedging by using variants of the Engle-
Bollerslev ARCH/GARCH approach. This body of research has focused on modeling the
cash-futures price distribution and then using the results to estimate OHRs by relaxing the
assumption that conditional variances (covariances) are time independent. For instance,
Cecchetti et al. (1988) applied a bivariate ARCH model to financial futures prices, while
Baillie and Myers (1991), Myers (1991), and Sephton (1993) applied bivariate GARCH models
to commodity prices. Park and Switzer (1995), Tong (1996), and Yeh and Gannon (2000)
compared GARCH-generated OHRs to OLS hedging strategies for stocks. Kroner and Sultan
(1993) and Lin et al. (1994) used a bivariate GARCH framework in foreign currency hedging.

3. Combining DP Hedging Models with GARCH Time-Series Techniques
Consider first a trader who wishes to optimize an objective function dependent upon
wealth at a future terminal date, and can update the futures position between the original time



period and the terminal date to incorporate new information. Assume that the trader starts
with an initial amount of wealth, which is invested in the commodity for resale and a later
date. Also the hedging decision for each purchase is made several periods prior to the terminal
date and the hedged portfolio can then be updated (modified) at each period up to that time.
Such a model builds upon the relatively restrictive dynamic model presented by Mathews and
Holthausen (1991) and Vukina and Anderson (1993) by allowing the variances and covariances
to be updated at each period using modern time series techniques. Therefore in this scenario,
the relatively straightforward DP model will be combined with a bivariate GARCH model,
which when used in previous hedging strategies (e.g., Baillie and Myers (1991), Myers (1991),
and Sephton (1993)) has been shown to significantly outperform more traditional hedging
strategies.

The DP — GARCH framework using just cash and futures settlement prices (model 1)
assumes that the price at which the commodity trader purchases the commodity in the future is
uncertain, and is consequently stochastic. The objective of the trader is therefore to pick the
optimal number of futures contracts to be locked into at each period for the trader to optimize
an objective function that is dependent on the total wealth at the future sale date. Therefore,
the trader is permitted to update the estimates of variances and covariances that are used to
generate the optimal hedged portfolio between the time that the initial hedge is placed and
when the commodity is sold in the cash market.

For simplicity, we follow Anderson and Vukina (1993) by considering a three-period
problem, t — 2, t — 1, and t which is the delivery date. Three periods before the sale of the
commodity, after the cash position has been established, the trader decides on the initial futures
position that covers the trading period between period three and period two, b , (the (S)

indicates the use of just the futures settlement prices). The futures position then evolves in the
sense that the quantity hedged in the next period, b may be different than the quantity

(S)t-17
hedged in t — 2. The following period, t, the trader closes out all outstanding futures positions,
and sells the cash commodity, and collects the proceeds. Hence from the perspective of the
current period, t — 2, we can define wealth at the terminal date t, W,, as:

8) W =(1+1)(-C_,)+@+r)(F,- F )b, , +(F

(S)t-2 1

Ft)l)(s)t—l +Ct b
Variable C_, is the initial (known) price at which the exogenously determined cash commodity
is purchased; and C, is the stochastic cash price at which the commodity must be sold at the

end of the three periods. ﬁ is the (known) futures price available at the initial time period that
the decision is made; F_and F, are the stochastic futures prices in the respective periods; ris
the one-period risk-free interest rate; b_ ,and b_  are the hedging ratios that capture the

(S)t-2 (S)t-1

quantity of futures sold (bought if negative). The terminal monetary wealth W reflects the fact



that the trader’s futures account is marked to market, meaning that all profits and losses related
to the futures positions are realized each period.

Given the wide spread acceptance of the MV hedge ratio, and given that we wish to
compare the results in this paper with previous related papers, it is the objective of this paper
to first derive a dynamic version of the myopic MV hedge ratio. Introducing time-varying
variances and covariances and then employing DP techniques to solve for the optimal hedging
ratio does precisely this. So to remain consistent with the optimal hedging literature, we
suggest that at each decision date, the trader first decides the quantity to be hedged in order to
minimize the variance of terminal wealth, given the cash position. The trader’s objective at the
initial time period, t — 2, is to calculate the hedge ratio, b, that minimizes the variability of

(S)t- 2
terminal wealth:

(9) Minvar, ,(W,).

The general solution to this problem is obtained through backward induction in a
manner similar to that employed by Mathews and Holthausen (1991) and Anderson and
Danthine (1983). Therefore, in order to find the hedge ratio that would be used at time t — 2,
b the trader must estimate the hedge ratio that would be employed the following week, t —

(S)t-21
1. Following Mathews and Holthausen (1991), we work backwards, so the trader estimates
the hedge ratio that would be used the week prior to the cash sale, b in order to minimize

(S)t-17
the variability of wealth. The conditional variance of the wealth (and suppressing conditioning
information notation for ease of reading) associated with that week is therefore:

Var_ (W) =Var_[(L+r)(-C_)+@+r)(F_, - F )b, +(F.- F)b.., +C]
=by, Varxrl(Fx ) +Varx,1(Cx )_Zb( Covxrl(Cx ’Fx )

(S)t-1

(10)

S)t-1

After obtaining the first order condition for an extremum, and then solving for the
optimal hedging ratio we are left with precisely the same hedge ratio presented in equation (7).
Therefore, the hedge ratio is simply comprised of the one step ahead forecast of the cash and
futures settlement price covariance divided by the one step ahead forecast of the futures
settlement price variance. Substituting the expression for b_ . into the wealth expression (10),

(S)t-1
we can find the variance of wealth at the initial trade date.”? Therefore, in the initial period
(two periods prior to the eventual cash sale) the trader minimizes the variability of terminal
wealth relevant at that date:



Varx—z(\Nz) zvarx—z(1+ r)(_ a) + (1+ r)(ﬁ' Fr—l)b(S)r—z + (Ft—l - Ft)b(s)t—l + Cx
=@+r)*b’, Var (F,)+b Var (F. ) +b’ Var (F)+Var,(F)-

(S)t-2 (S)t-1 (S)t-1
(11) 2(1+r)bg, b, Var ,(F ) +21+r)b, b, .Cov (F ,F)-
2(1+ r )b(S)t— ZCOVX— 2 ( Ft—l 1 Ct ) - 2l)(25)1—lcovt— 2 (Ft—l 1 Ft ) + 2b(S)X—ICOVt— 2 ( Ft—l’ Ct )

- 2b,,,Cov_,(F.C).

The variance at time period t — 2 is a function of several variances and covariances; the hedge
ratio that is used at timet - 2, b (the operational hedge ratio); and the expected hedge

(S)t-2 7

ratio to be used the next time period, b, , (the forecasted ratio). Taking the first order

condition of equation (11) and solving for the optimal first-period futures position (the OHR)
gives:

— Covx—z(Fx—l’Cx) + b(S)t'1 gl_ COV‘VZ(F“FH)B

(12) (S);t-2
(1+r)var12(|:11) (1+ r) e Vartl(Ftl) 0

This hedge ratio might be viewed as the sum of an inter-subperiod hedge ratio plus the
discounted next period hedge ratio weighted by a small positive weight if
Cov_,(F,F_ ) <Var_(F.). However, if the futures market in question can be shown to have

little or no systematic bias, in the sense of Martin and Garcia (1981), then all terms remaining
after the first term on the right hand side of each optimal hedging ratio disappear. This is so
because if a futures market can be shown to be unbiased (the price series is represented by a
martingale) then the hedge ratio at each time period can be shown to be independent of all
other hedge ratios.® This implies that if we have unbiased futures markets, the optimal hedging
ratios developed within the DP framework differ because of the discount rate, and by the
timing of the forecasts of volatility, but are independent of any future hedge ratios.

4. Bid-Ask Spreads and the DP-GARCH model

According to Campbell, Lo and Mackinley (1997) there are three futures prices
relevant to the trader, a bid price, an asking price and the transaction price, not just the
settlement price often used in empirical research. Therefore even though the bid and ask price
represent prices related to the same commodity, they may not be perfectly correlated and
should not be treated as such. Recent research by Gagnon, Lypney and McCurdy (GLM)
(1998) employed a trivariate GARCH system allowing for time-varying covariability between
related prices (that were not perfectly correlated) in a portfolio. They discovered that
significant gains in hedging performance may be enjoyed by modeling the prices jointly in a
portfolio compared to individual strategies. Moreover, further gains may be achieved simply
because significantly fewer futures contracts would be recommended in the portfolio approach
thus reducing commission charges on the futures contracts. It is an empirical question as to
whether the ‘portfolio’ of bid, ask and cash prices yields similar results to that achieved by
GLM (1998), and so it is to this that we know turn our attention to.



In introducing the bid and ask prices into the analysis we continue to concentrate on the
three trade hedging model. It is assumed, as it was in model I, that in period t — 2 the trader
decides on the initial futures position, b, , (the (BA) indicates that the hedging ratios have

been developed using the bid and ask prices). However, now instead of going short at the
settlement price recorded by the exchange, the trader must go short at the bid price which can
in some instances be much lower than the settlement price, particularly in thinly to moderately
traded markets (see data section). The futures position then evolves, (like the case presented
for model 1) in the sense that the quantity hedged in periodt -1, b may be different than

(BA)t-17
the quantity hedged in t — 2. The next period, t, the trader closes out all outstanding futures
positions, by offsetting the futures position by going long at the asking price rather than the
settlement price (model 1). The trader would then sell the cash commodity, and collects the
proceeds (if any) from the hedge. Hence from the perspective of the current period, t — 2, we
can define wealth at the terminal date t, W,, as:

(13) W =(1+1)(-C_,) +(1+1)(B_, - A.)bu,.+(B..- Abg,..+C..

All variables are as previously defined except B_, which is the futures bid price available at the
initial time period that the decision is made. B_ and A are the stochastic futures bid and ask
prices in the respective periods; and b, ,and b_ . are the hedging ratios that capture the

(BA)t-2 (BA)t-1
quantity of futures sold (bought if negative). Again, we suggest that at each decision date, the
trader decides upon the quantity to be hedged in order to minimize the variance of terminal
wealth, given the cash position. We maintain this methodology even though a mean-variance
methodology (see Haigh and Holt, 2000 for example) may be more appropriate in the case of
the bid-ask model because the expected return is likely to be negative, and so may alter the
hedge ratio slightly.* The solution is once again obtained through backward induction so in
order to find the hedge ratio that would be used at timet -2, b the trader must estimate

(BA)t-2 7
the hedge ratio that would be employed the following week. The conditional variance of the
wealth associated with that period is:

Var (W) =Var_[@+r)(-C_,)+@+r)(B_,- A )b, ,+(B.,- A)b,, , +C]
=b2,, Var_(A)+Var, (C,)-2b,,..Cov(C,A) '

(BA)t-1

(14)

BA)t-1

After obtaining the first order condition for an extremum, and then solving for the optimal
hedging ratio we are left with: b, . :Q\)/L%A;?), which is composed of the one step ahead
arl

forecast of the cash and futures asking price covariance divided by the forecasted variance of
the futures asking price.



Substituting the expression for b .into the wealth expression (13), we can find the

(BA)t-1
variance of wealth at the initial trade date. Therefore, in the initial period the trader minimizes
the variability of terminal wealth relevant at that date:

Var (W) =Var, (1+1)(-C_,) +(1+1)(B_, - A )b, . +(B.- A)b,, ,+C
=(1+r)’2,, Var (A ) +b, Var (B ) +b., Var (A)+Var (C)-

(15) 2(1+r)b,, .b....Cov ,(A,,B,)+21+r)b,,. .b....Cov (A, A)-
2(1+r)b,, .Cov ,(A,C)- 20, Cov (B, A)+2b, Cov (B

- 2b_Cov_,(A.C).

BA)t-1 ,1’Cx)

If the ask price can be shown to be unbiased then taking the first order condition for equation
(11) and solving for the optimal first-period futures position leave us with:

(16) b _ Cov,_,(A,P) _{_b(BA)t,1 éCOVt,Z(BH,A,l)_
(BAY- 2 (1+r)Vart72(A,1) (1+r)g Vartrz(p\rl)

u
1{;.
a

In this case, the second term on the right hand side of equation (16) may not disappear simply
because the bid prices and ask prices may exhibit different behaviors in the short run
particularly in thinly to moderately traded markets (see data section for a more complete
explanation). So only if Cov_,(B_,A_,)=Var_,(A.,) we are left with a weighted initial hedge

ratio, (the first term on the right-hand side) where the next period hedge ratio, b, , does not
effect the current period hedge ratio b

(BA)t-2 "
have reason to believe that the next periods hedge ratio will effect the current period hedge
ratio.

As this may not be the case every time period, we

To implement the DP-GARCH framework, regardless whether we focus on model | or
model 1, a specification must be chosen for the time-varying covariance matrices. Multi step
ahead forecasts of relevant variances and covariances can then be derived from the underlying
bivariate GARCH model (Model 1) and trivariate GARCH model (Model I1).> Based upon
residual diagnostic tests (see econometric estimation results presented below), each series is
specified as a simple martingale process, thereby satisfying the assumption of unbiased
markets.® Because of the constant correlation structure (presented in equation 2) is,
parsimonious in parameters, and is relatively easy to estimate, it is employed here. Estimating
the hedge ratios therefore involves choosing an appropriate discount rate and estimating the
relevant variances and covariance forecasts at each date. In the ensuing analysis this discount
rate is set throughout at 10%, and we continue with the three-period hedging scenario as in the
example.
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5. Data

On November 27" 2000 the open outcry system used for most of LIFFE’s commodity
products was replaced by the electronic trading system, LIFFE CONNECT™. Therefore
trading in LIFFE’s Cocoa, Coffee, Wheat, Barley, Potato and BIFFEX all ceased to be traded
in an open outcry format after that date. As such, all bid/asks and transaction volumes are
now easily available on a real time basis. Sugar, on the other hand, has always been traded on
the electronic trading system, and so a more complete history of all closing bid/asks and
transaction volumes are available. This unique LIFFE data set, which was made available
through the order transit and trade registration system, therefore facilitates an accurate
empirical research on the microstructure of futures markets.

Daily closing futures prices (bid, ask and settlement) for white sugar traded at LIFFE
were collected from Bloomberg International covering the period 13" December 1995 — 12"
January 2000. While bid-ask quotes are collected and recorded throughout the day (and are
made publicly available) the final bid, ask and settlement price of the day was collected here
based on the assumption that our representative trader makes updates and hedging decisions
towards the close of trading once a week. Therefore weekly price data (214 observations)
were constructed using Wednesday prices (which have the least holidays and do not suffer
from the so called ‘weekend effect’ (French, (1980)). However, if closing bid-ask quotes base
on Wednesday prices were not available, then a Thursday, or a Friday price was used.” The
futures prices are for the nearby contract month which forms the first value for the continuos
series, and runs until the last day of trading of the contract.

In addition to the closing bid, ask and settlement prices weekly London cash prices for
sugar covering the same time period were collected from Datastream International. Figure 1
illustrates the four price series (closing bid, ask, settlement and cash prices over the five-year
horizon). As can be seen from the main graph it is extremely difficult to distinguish between
the related futures price series as the average bid-ask spread as a percentage of the settlement
price is very small. However, as can be seen from the smaller graphical insert, the bid, ask,
and settlement are quite different, and tend to move together over time, albeit by non-constant
amounts. Such a phenomenon is not uncommon in moderately traded markets like the sugar
market at LIFFE.® Figure 2 further illustrates this point by simply presenting time-series plot
of the bid-ask spread over the time horizon. As can be seen, from the chart, the bid-ask spread
varies by uniform amounts (the minimum tick size) and can on some occasions be as high as $2
per tonne. The mean value of the spread over the time period is $0.4557 while the modal
value is $0.2 or twice the size of the minimum tick value.

6. Econometric Estimation Results

Each price series was first examined for the existence of a unit root using Augmented
Dickey Fuller (ADF) tests. Results indicated that all four series (futures bid, ask, settlement
and cash) are nonstationary and when the same unit root testing procedures were applied to the

11



first differenced data, the ADF test statistics reject the null hypothesis of a unit root.
Correspondingly, each series was first differenced in the econometric estimation.® Quasi-
maximum likelihood estimates of model parameters are obtained here by using the BFGS
(Broyden, Fletcher, Goldfarb and Shanno) algorithm.” In many cases the assumption of
conditional normality cannot be maintained, and as an alternative to using a non-normal
distribution is to obtain quasi-maximum likelihood estimates by using the log likelihood
function from the conditional normal specification. Under fairly weak conditions, the resulting
estimates are consistent even when the conditional distribution of the residuals is non-normal
(Bollerslev and Wooldridge (1992)). Parameters estimators for both the bivariate and trivariate
GARCH (1,1) models (model I and Il respectively) are reported in Table 1. Point estimates of
the GARCH parameters along with the robust standard errors indicate substantial evidence of
conditional variance dynamics for each model. Interestingly, the GARCH parameter point
estimates, b., in model 11 are considerably lower than that of model | suggesting perhaps that

modeling the portfolio of prices reduces some of the variability in the model. Residual
diagnostics and the Ljung-Box Q and Q’ test statistics for, respectively, standardized residuals
and squares and cross products of (standardized) residuals for each model suggest that the
models appear to do a reasonable job of explaining conditional mean and variance dynamics of
the cash, futures settlement, and bid and ask prices.® Overall, the constant-correlation
GARCH (1,1) models appear to do a good job of characterizing the essential features of the
data, and are therefore potentially useful tools for examining dynamic time-varying hedging
strategies.

7. Hedging Results

The key question in any hedging evaluation study is how well does the proposed model
perform relative to other models? To answer this question, we first turn our attention to the
DP-GARCH model that only utilizes the cash and futures settlement prices (model I). In
particular an evaluation is made of its performance relative to other more standard models
including a straightforward GARCH, OLS, Naive and Unhedged model which do not employ
any kind of recursive substitution. After examining the nested DP-GARCH model (model I)
we will then turn our attention to the DP-GARCH model that incorporates the bid-ask prices
(model 11). Comparing these results will then enable a trader to evaluate whether there are
advantages to modeling both the bid and the ask prices in a hedging strategy, and whether
indeed, the standard GARCH, and the DP-GARCH (from model 1) might be outperformed by
this model.

Hedging Results: Model |

The left-hand panel of table 2 presents sample average hedge ratios, along with
standard deviations around the average and minimum and maximum hedge ratios, for each of
the DP-GARCH (b,  and b, ) and GARCH (b ) models. Also included are the average

S)t-2 (S)t-1
values for the OLS, naive, and unhedged hedging strategies. As well, plots of the DP-
GARCH, OLS (b,.) and Naive (b ) hedge ratios for the sample period along with

confidence bands are reported in the upper two panels of Figure 3. Since analytical

S)GARCH

S)NAIVE
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expressions for hedging ratio standard errors may be impossible to obtain, an asymptotic
approximation is applied here. In particular, we make use of the delta method, which amounts
to a Taylor series approximation (Kendall and Stuart (1977)) for deriving standard errors
around the hedge ratios.”” The resulting time-varying confidence bands can then be calculated
and can be seen surrounding the time-varying hedge ratios in figure 3. To illustrate, in weeks
190 — 200 the DP-GARCH hedge ratios at time t - 1 and t - 2 are larger than the naive hedging
ratio (b .. ), but as the confidence band overlaps with the naive ratio we could infer that they

are statistically indistinguishable from one another.

For the GARCH hedge ratio (b ... ) it is assumed that once the hedge is in place it is

not updated over the hedge horizon. Of course a weekly sampling frequency enables the trader
relying on a myopic GARCH model to update the hedge ratio (but not use DP analysis);
however, for comparison sake, this hedge is also left in place for the entire hedge period.
Consequently, the average GARCH hedge ratio, b is identical to the DP-GARCH hedge

(S)GARCH ?
ratio developed at the start of trading. The OLS and Naive hedging ratios, b _.and b

(S)oLs (S)NAIVE ?
on the other hand do not change from week to week, as they are simply obtained from an OLS
regression of the change in the futures settlement price on the change in the cash price, or set
equal to 1 respectively. The unhedged hedge ratio is set equal to O for each and every week.

As illustrated in Table 2 and Figure 3 (Panels A and B), on average each estimated
model calls for short hedging, as indicated by the positive signs associated with the OHRs.
This outcome is as expected for a risk-averse trader anticipating making cash sales in the
future. While results from the DP-GARCH portfolio show substantial variation in OHRs at
each hedge horizon through time, there is relatively little variation among OHRs across hedge
horizons. To illustrate, during the initial period, t — 2, the average hedge ratio for the trader is
0.7613; conversely the hedging ratio in the next period is 0.7627, indicating that on average
the hedge ratio increases modestly. The fact that the hedge ratio increases over time is
consistent with the findings of Anderson and Danthine (1983). If no variation occurred across
hedge horizon, the DP-GARCH hedge ratios (b,  and b, ) would be identical to the

GARCH hedge ratios (b .. ), and there would be no incentive in combining the DP and

GARCH approaches. Results reported in Table 2 also reveal for the DP-GARCH portfolio
that, at most, 112.88% of the cash position would have been hedged by the sugar trader, with
the least amount hedged being about 48.85% of the cash position.

S)t-2

Results reported in Table 2 and Figures 3 (panels A and B) also indicate that over the
entire sample period that DP-GARCH hedge ratios (b, ,and b, ) may vary considerably.

S)t-2 (S)t-1
Indeed the standard error around the mean is 12.88%. Visual inspection of the hedge ratios
illustrate that the DP-GARCH hedge ratios are quite erratic, sometimes recommending that
about 50% of the hedged position be lifted, or locked into in just a matter of weeks. Such a
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recommendation could imply that a trader might incur substantial transaction costs associated
with updating the portfolio. The lower part of Table 2 reveals that the OLS hedge ratio
(b...) for the sugar trader is 0.7104, suggesting somewhat less hedging on average than

(S)oLs
either the DP-GARCH model or the static GARCH model. By adopting the OLS, naive or
unhedged approaches, the hedger would employ the same hedge ratio every week over the
entire time frame, and so this approach shows no variability.

While sample and average hedge ratios are instructive, they tell us little about how the
various models perform. To this end, this research extends the work of Mathews and
Holthausen (1991) (who just studied the pattern of the hedge ratios) and calculate the average
variance of total wealth (as defined in equation 3) for each model. These results, along with
other descriptive statistics including the standard deviation of the wealth variance and minimum
and maximum wealth variances are reported, for each model in Table 3. Also, Panels 3C, 3D
and 3E present the time-varying percentage improvement of the DP-GARCH model over the
OLS (Panel 3C), naive (Panel 3D), and the unhedged model (Panel 3E). It is clear that on
average the DP-GARCH approach outperforms all basic alternatives with the worst performing
strategy being the unhedged approach (as one might expect). Interestingly, there are several
times when the DP-GARCH model is outperformed by the OLS and naive unhedged
approaches. However, the negative percentage improvement figures associated with these time
periods are not of large magnitudes suggesting that even if the DP-GARCH is beaten by
simpler alternatives the trader would not be too heavily penalized.

According to Table 3 there appear to be some gains to using both the GARCH and the
DP — GARCH approach relative to the more basic models in terms of average variance
reductions. The performance of the GARCH model is of no surprise and appears to be very
close (in terms of performance) to other papers that have evaluated its performance (e.g.,
Baillie and Myers, (1991)). What are the advantages to using the DP — GARCH model
compared to the GARCH approach? According to Table 3 not much. In particular, the
average performance of the DP — GARCH model over the static GARCH is just 0.2203%.
This number would clearly be more significant to a trader hedging a large quantity of sugar,
but it might also be of importance to know the variance around this improvement. Figure 4
provides this answer. While the average hedge ratios appear quite similar (panel A), and hence
average improvement quite low, there are periods of time when the static model is beaten quite
convincingly. For instance the DP-GARCH outperforms the static GARCH by approximately
9% at week 100. Indeed, visual inspection of the percentage improvement of the DP-GARCH
model over the static GARCH and the hedge ratios with the confidence bands verify that there
are indeed times when the market suddenly and abruptly turns and the trader following the
static GARCH methodology may have lost out.

14



Hedging Results: Model 11

The key difference between model | and model Il is the incorporation of the two futures
price series — the bid and ask, instead of just using the futures settlement price. Consequently,
the hedging ratios developed in this model are generated using a portfolio of prices, and such
hedging ratios, when estimated in other research papers (see for example GLM (1998)) have
tended to be much lower than those when just the cash and futures prices are estimated jointly.

Results presented on the right hand side of Table 2 verify that not only are the average
hedging ratios lower, their variability is also lower. For instance, at time t — 2, the average
optimal hedging ratio associated with the DP-GARCH model that uses bid and ask prices,
(b, ,) is 0.7476 compared to the average ratio recommended in model I (bg ) of 0.7613.

A similar pattern emerges in t — 1 whereby the average optimal hedging ratio (b, ) is 0.7490

compared to the hedge ratio of 0.7627 recommended by model I. These results seem to verify
the findings of GLM (1998) that hedging ratios estimated in a portfolio tend to be lower than
those estimated in a bivariate setting. Interestingly, the closer to the cash sale date, the greater
the hedging ratio tends to get, which is the same general result as that in Anderson and
Danthine’s Appendix A2, that the hedge ratio (the futures positions) grow over time. The
other important observation is the fact that the standard errors around the average hedging
ratios are much lower in model Il compared to model I. In particular the standard error
associated with b and b, .in model Il are 0.0459 and 0.0420 respectively, whereas the

(BA)t-2 (BA)t-1
corresponding standard errors in model | are 0.1288 and 0.1287, about three times as large.
Comparing the optimal hedging ratios for model I and model 11, complete with their confidence
bands in Figure 5 illustrates this fact visually. The hedge ratios from the DP — GARCH
framework in model Il are far more stable but do experience time-variation. The hedging
ratios from the DP — GARCH framework in model | are much more volatile.

BA)t- S)t-

Comparing the time-pattern and statistical difference (if any) of the hedging ratios from
different models is interesting in itself the more important question from an economic
standpoint is how do they hedging ratios compare in terms of reducing variability for the
trader. Therefore, as was done for model |1 we evaluate the usefulness of adopting the DP-
GARCH approach using the bid-ask and cash prices (model Il) over all alternatives described
thus far, including the DP-GARCH approach that utilizes only the cash and futures settlement
price (model I). If the true portfolio relevant to the trader really does incorporate the bid-ask
prices (which should be more readily available with the electronic platform), then the system to
be estimated should involve three price series rather than two.

Table 4 presents the descriptive variance statistics for all the models and how they
compare to the bid-ask DP-GARCH approach. The results are quite striking. Model Il (DP-
GARCH using b and b, .) appears to outperform, in terms of reduced variability, model

(BA)t-2 (BA)t-1

I (DP-GARCH using b, and b, ) by 1.833% which, on the surface does not seem like a

dramatic improvement. However, as described previously, averages can be deceiving and so
the time-series plot of the improvements are presented in Figure 5, panel C. Clearly, when the
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model | hedge ratios are extremely volatile, the trader would lose out by following that
approach, if the true model was indeed the model incorporating the bid and the ask prices
(model 11).

It is clear however from table 4 that the DP-GARCH model that utilizes both b and

(BA)- 2

b outperforms all the “basic’ alternatives, beating the unhedged model by 52.105%. The

(BA)t-1

OLS model performs better when evaluated against model 11 (compared to model 1) because as
can be seen from Figure 6, the OLS hedging ratios are closer to the DP-GARCH hedge ratios,
simply because the DP-GARCH ratios are less volatile as they were estimated in a portfolio
setting. Unlike the case of model I, while the percentage improvement over the OLS approach
is lower, the DP-GARCH model is never beaten by the simpler alternative. The same results
are obtained for the naive and unhedged approach.

While the DP-GARCH approach using b and by, , performs the best out of the

(BA)t-2
simpler alternatives it does not seem to significantly outperform the static DP-GARCH
approach (that just utilizes b_ ,). Indeed the percentage reduction from using the dynamic

(BA)t-2
model over the static approach is 0.099%. Again, this result is not particularly surprising
given the finding that the optimal hedge ratios do not vary as much as the DP-GARCH model
presented in model 1. However as mentioned previously, traders are probably more interested
in the distribution of the variability of the improvement over time. To this end, Panels 7A and
7B provide more evidence on this. Firstly, panel 7A illustrates that in general the hedge ratios
generated from the dynamic DP-GARCH (b and b, ,) are not, in general, statistically

BA)t- 2 (BA)t-1
different from the hedge ratio employed both periods in the static version (b, ,). That is, the

confidence bands overlap for most of the period of time analyzed. One might suspect therefore
that if there is no statistical difference between the hedging ratios then there might not be any
improvement, from an economic sense. Panel 7B illustrates that when the percentage
improvement is very low, (e.g., week 40 to week 100) the optimal hedge ratios are statistically
indistinguishable. However, when the market suddenly and abruptly turns, (see the graphical
inset in Panel 7A), the performance of the dynamic approach improves. This may lead us to a
simple conclusion. The dynamic hedging ratios are forward looking (they are forecasts) and so
if the new hedge ratio (b, ,) is not different from the older hedge ratio (b, ,) from a

statistical sense, then it is unlikely that any economic reward will be yielded. Consequently,
the trader would save on transaction costs from updating the old hedge ratio. The same
conclusion, and advice could be given to the trader considering using the DP — GARCH model
over the OLS, naive and unhedged strategies. Interestingly, compared to model I, as can be
seen from panels 5C, 6C, 6D, 6E and 7B, the DP-GARCH model that optimally uses both the
bid and the ask prices is never outperformed by any other approach. This was not the case in
model I.

BA)t- 2
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8. Conclusions

In this paper several questions were addressed simultaneously. Are there any
advantages to combining two related but distinct hedging strategies — dynamic programming
(DP) and time series econometrics (GARCH) models? Are the generated optimal hedging
models from this approach statistically different from more standard approaches? Are there
any economic gains to be enjoyed by combining the approaches, and are there certain times
when a trader following a more basic strategy loses out? What is the role of the bid-ask spread
on the optimal hedging strategy, and there are any gains to accounting for this in the optimal
hedging strategy?

On all counts the results here are encouraging. First, given the ability to forecast
volatilities and finding unbiased commodity markets enables us to derive a simple rule for
developing the optimal DP-GARCH hedge ratios using cash and futures settlement price data.
Second, using the well-known delta method, time-varying confidence bands were obtained such
that a trader could distinguish whether or not optimal hedging ratios are statistically different
from other models. It was also discovered that while the DP-GARCH model does slightly
outperform the static GARCH approach on average, results verify that a trader that follows the
static GARCH approach would lose out when the market suddenly and abruptly turns.
Incorporating bid-ask prices into the traders portfolio resulted in hedge ratios lower than those
recommended in the two price equation portfolio (using just settlement and cash prices),
suggesting lower transaction costs, with much less volatility associated with the hedging ratios.
Interestingly, while the gains from following the DP-GARCH approach after accounting for
the bid-ask spread over the static approach are small, on average there are times that the trader
would lose out when the market suddenly and abruptly turns, just like in the more basic model
that ignores the spread. The more sophisticated models like DP-GARCH or static GARCH
that ignore the bid-ask spread are outperformed by more stable hedging strategies like the
OLS, when evaluated in the bid-ask environment. This result is also consistent with previous
research whereby ignoring a natural portfolio results in far more volatile hedge ratios, which
may induce risk rather than reduce it. This element of the research shows that if the forecasts
of the DP-GARCH model incorporating the bid-ask spread suggest a statistically significantly
different hedging ratio compared to the hedge ratio employed the previous period, then the
trader should update the portfolio. As a result some gains may be achieved in terms of risk
reduction. Alternatively, in more stable periods, the trader should continue with a static
GARCH model that uses all three prices relevant to the trader, and enjoy potentially lower
transaction costs.

Incorporating bid-ask prices into the trader’s optimal hedging model may be more
important in markets that have volatile bid-ask spreads. While the empirical application has
focused on a moderately traded commodity in terms of volume (sugar), it would certainly be of
interest to extend the same analysis to a more heavily traded commodity (with less volatile bid-
ask spreads) or to a less heavily traded commodity (with more volatile spread behavior).
Migration to a fully electronic trading system which generally provides more detailed pricing
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information (bid, ask, transaction and trading volume) will enable research to be conducted on
other commodities and time frames and enable further study on the microstructure of futures
markets. These and other related issues remain, however, as important topics for future
research.
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Table 1. Estimation of Model | (using settlement prices) and Model Il (bid and ask

prices).
Model |
Cash (C) Settlement (S)
Parameter Coefficient Parameter Coefficient
m -0.7410 m -0.7906
(0.5581) (0.4456)
W, 2.8746 W, 4.6252
(1.7739) (3.6181)
a. 0.1015 a, 0.1582
(0.0402) (0.0891)
b, 0.8494 b, 0.7493
(0.0348) (0.1303)
Correlation Parameter
Parameter Coefficient
[ 0.6774
(0.0458)
Log Likelihood: -972.58
Model 11
Cash (C) Bid (B) Ask (A)
Parameter Coefficient Parameter Coefficient Parameter Coefficient
m -1.1703 m, -0.8596 m, -0.8367
(2.700) (0.197) (0.2047)
W, 54.559 W, 46.855 w, 45.026
(15.691) (6.023) (0.098)
a. 0.1456 a, 0.1270 a, 0.1512
(0.002) (0.014) (0.001)
b, 0.5715 b, 0.5227 b, 0.5363
(0.003) (0.047) (0.001)
Correlation Parameters
Parameter Coefficient
r., 0.6600
(0.008)
re. 0.6549
(0.014)
r. 0.9987
(0.001)

Log Likelihood: -1011.99

Robust standard errors are in parenthesis.
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Table 2. Descriptive Statistics for Hedge Ratios for Risk Minimizing Static and Dynamic Objectives, Three-Week Hedging Horizon.

Model | Model 11
Hedge MOdeI b(S)t—Z b(S)x—l bBA(t—Z) b(BA)t—l
DP-GARCH
Avg. 0.7613 0.7627 0.7476 0.7490
SE 0.1288 0.1287 0.0459 0.0420
Min 0.4885 0.4895 0.5518 0.5663
Max 1.1288 1.1310 0.8870 0.8852
GARCH I I
Avg. 0.7613 0.7476
SE 0.1288 0.0459
Min 0.4885 0.5518
Max 1.1288 0.8870

b(S)OLS b(BA)OLS
OLS 0.7104 0.7104

b( S)NAIVE b( BA) NAIVE
Naive 1 1

b(S)Unhedged b(BA)Unhedged
Unhedged 0 0

Note: The annualized discount rate, r, is 0.10. Avg. denotes sample aver age, SE isthe corresponding standard error of the average of the
hedge ratios, Min isthe sample minimum and Max is the sample maximum. The GARCH hedgeratio for both model | (b ) and model

(b ) representsthe aver age hedge ratio that would be used by the trader over the entiretrading period. It isequal to the hedgeratio

(BA) GARCH

used at t - 2 by the DP — GARCH user asit isassumed that the smple GARCH user uses weekly data to form the hedgeratio to be applied at
t - 2 and left in place until the commodity is purchased at the end of the trading horizon. TheOLS, b .and b and Naive, b and

(S)oLs (BA)OLS (S)NAIVE

b hedge ratios and, used each week are not, likethe DP-GARCH and GARCH counter parts updated each week.

(BA)NAIVE

S)GARCH
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Table 3. Descriptive Variance Statistics for Static and Dynamic Objectivesfor Model |.
DP-GARCH using b _and b

(s)t-2 (s)t-1

Avg. 133.21
SE 50.960
Min 62.219
Max 337.382
GARCH - static using justb

Avg. 133.84
SE 51.127
Min 62.346
Max 337.49
OLS - static using b, _

Avg. 137.93
SE 53.436
Min 62.565
Max 631.07
Naive — Static using b

Avg. 142.41
SE 60.900
Min 65.803
Max 468.28
Unhedged — Staticusing b, =0.

Avg. 231.67
SE 84.900
Min 104.01
Max 464.70
% variance reduction from using the DP — GARCH model relative
to:

GARCH - static using justb 0.2203%
OLS - static using b, _ 2.8404%
Naive — Static using b 5.1180%
Unhedged - Static using b, =0. 42.274%

The annualized discount rate, r, is 0.10. Avg. denotes sample average, SE denotes the corresponding
standard deviation. Min is the sample minimum and Max is the sample maximum. Results are based on
212 weekly hedging periods. The DP-GARCH model uses the optimal hedging ratios generated from the
cash and futures settlement prices. The GARCH-Static model only employs the hedging ratio developed in
t — 2, and does not optimally update. The OLS model uses the hedging ratio developed from a simple
regression of the futures settlement price on the cash price. The Naive and Unhedged ratios are set equal to
1 and 0 respectively.

23



Table 4. Descriptive Variance Statistics for Static and Dynamic Objectives for Model I1.
DP-GARCH using b, ,and b

(BA)t-1
Avg. 237.75
SE 42.855
Min 148.56
Max 515.46
GARCH - static using justb,,
Avg. 238.013
SE 43.155
Min 148.960
Max 517.810
DP-GARCH using b, _and b, |
Avg. 242.131
SE 42.6720
Min 150.823
Max 524.361
GARCH - static using justb
Avg. 242.850
SE 43.103
Min 150.621
Max 526.082
OLS - static using b, .
Avg. 239.079
SE 43.1437
Min 151.824
Max 527.319
Naive — Static using b, . -
Avg. 269.2831
SE 57.0637
Min 160.308
Max 656.380
Unhedged — Static using b, . =0.
Avg. 494.356
SE 58.0823
Min 359.168
Max 822.060
% variance reduction from using the DP — GARCH model relative to:
GARCH - Static using justb,, 0.099
GARCH - Dynamic using b, _and b, =~ 1.833
GARCH - Static using justb, 2.095
OLS - static using b, . 0.5667
Naive — Static using b, 11.297
Unhedged 52.105

The DP-GARCH model uses hedging ratios generated from cash, bid and ask prices. The GARCH-Static employs
the cash, bid and ask prices but only the ratio developed in t — 2, and does not update. The DP-GARCH is the
bid-ask model that employs hedging ratios developed from model 1. The GARCH static uses the bid-ask model,
but employs the ratio from model I. The OLS model uses the hedging ratio developed from a simple regression of
the futures settlement price on the cash price. The Naive and Unhedged ratios are set equal to 1 and 0 respectively.
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Figure 1. Weekly Bid, Settlement, Ask and Cash Prices: December 1995 — January 2000.
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Figure 2. Weekly Wednesday Closing Bid-Ask Spread: December 1995 — January 2000.
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Figure 3. Model I (DP-GARCH model using b(s) hedge ratios) with confidence bands (Panel 3Aand 3B) att-1,t-2

respectively, and percentage improvement over the OLS, Nar've and unhedged models (Panels 3C — 3E).
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Figure 4. Model | hedge ratios at t - 1, t — 2 with confidence bands (Panel 5A) and percentage improvement over the

static version of model I. (Panel 5B).
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Figure 5. Model I and Model 11 hedge ratios at t - 1, t — 2 with confidence bands (Panel 5A and 5B) and percentage

improvement of Model 11 over Model I (Panel 5C).
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Figure 6. Model 11 (DP-GARCH model using b(BA) hedge ratios) with confidence bands (Panel 4A and 4B) att-1,t—2

respectively, and percentage improvement over the OLS, Nar've and unhedged Models (Panels 4C — 4E).
Panel 6A. Hedge ratios at t — 1.

1.1

....... b(BA) Lower and Upper Confidence Bands ———b(BA) Hedge Ratio
OLS Hedge Ratio ——s—NAIVE Hedge Ratio

Panel 6D. Percentage Improvement of Model 11 over the Naive Model

25

-
3}

-
=}

&}

Panel 6E. Percentage Improvement of Model 11 over the Unhedged Model
130 140 150 160 170 180 190 200 210

0

70

60

0
1 10 20 30 40 50 60 70 80 90 100 110 120

Week

a
o

IS
o

w
o

N
o

-
=}

29



Figure 7. Model 11 hedge ratios at t - 1, t — 2 with confidence bands (Panel 7A) and percentage improvement over the

static version of model I1. (Panel 7B).
Panel 7A. Hedge Ratios and confidence bands at t — 1and t-2
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Endnotes

1.

Since then, this branch of the hedging literature adopted the term dynamic because these studies
relax the assumption of constant conditional variances and covariances. Importantly however, when
contrasted with the DP approach, these hedge ratios are not really dynamic, they are smply time-
varying.

To simplify the model, we follow Mathews (1989) and Mathews and Holthausen (1991) by
assuming that the hedger knows b . at theinitial trade date. If we did not make this assumption,

(S)t-1

then b_ would be stochastic and additional variance and covariance terms would be involved. This

(S)t-1

may not however be a very restrictive assumption, as estimates of the variances and covariances
were based on historical relationships are relatively easy to forecast using GARCH models (see
footnote 5).

For example, we can represent the futures price at time period t as F, = F_, +u, with a corresponding
variance expressed as. Var, (F) = E, (u,)*. The futures price a period t — 1 can then be expressed as:
F,=F,+u_, and because F =F_,+u_ +u_,, we have Cov_,(F ,F)=E_(u_,u_ +u)*.
=E_(u_)’. Therefore, Var, ,(F_)=Cov,,(F.,,F_,), and so the hedge ratio in (12), for example,
collapsesto b, , = Cov,, (F.,,C) :
(@+r)Var,,(F.,)

period is simply the ratio of the forecasted covariances of F_and C, , divided by the discount rate
and the variance of the next periods futures price, F,,

t-21

and so the optimal hedge ratio to be employed at the initial

However, we continue with the assumption (as do other papers that have employed the MV
methodology) that the trader is extremely risk averse. Consequently, the speculative component of
the hedging ratio — even if it is expected to be negative, is likely to be quite insignificant and hence
the two hedging approaches should be extremely similar.

It can be shown (full details are available from the author upon request) that the M-step ahead

conditional variance for the GARCH (1,2 model IS simply
s’ =Ms +Ef+1 s M,where s ' =— Y isthe steady state volatility of the
‘ 1- @ +b) (a-a-b)

GARCH process.

Baillie and Myers (1991) also undertook their analysis using a similar framework, thus employing a
relatively parssmonious model. In this paper, the structure for the time-series generating process is
based on the usual residua diagnostic results (Ljung-Box Q and Q° tests for white noise).

A total of seven Thursday prices and five Friday prices were used.
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8. For example, total volume for the year 2000 for the sugar contract was 907,399, which ranked third
in terms of total volume behind cocoa (1,636,322) and coffee (1,470,980). The BIFFEX freight
futures contract was the most thinly traded commodity in year 2000 totaling just 3,244 contracts. In
contrast however, the NYBOT #11 Sugar contract traded approximately 5,917,303 contracts in 2000,
approximately 6.5 times the number of sugar contracts traded at LIFFE.

9. Theseresults, like al results excluded to conserve space are available from the author upon request.

10. This algorithm is described in Press, et. a (1988).

11. Theseresults, like all results excluded to conserve space are available from the author upon request.

12. In particular, each of the hedging ratios b _,,, can be expressed as function b (q) of a parameter

vector g =(Q4,,....--dp) - If the covariance matrix of dis C and Jis the gradient of b (q), then
approximately: b (@) =b @,) +(@ - do)'J , where g, = E(q) , S0 Var (b (@) = J'CJ
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