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Pricing and Hedging European Options On Futures Spreads 
Using the Bachelier Spread Option Model 

 
The Bachelier model for pricing options on futures spreads (OFS) assumes changes in the 
underlying futures prices and spread follow unrestricted arithmetic Brownian motion (UABM).  
The assumption of UABM allows for a convenient analytic solution for the price of an OFS.  The 
same is not possible under the more traditional assumption of geometric Brownian motion 
(GBM).  Given the additional complexity of methods for pricing and hedging OFS using GBM 
such as Monte Carlo simulation and binomial trees, it is worth investigating how results from 
the Bachelier model compare to these other methods.  The Bachelier model is presented and then 
extended to price an OFS with three underlying commodities.  Hedge parameters for both 
models are provided.  Results indicate that for OFS with sufficiently low volatility, differences 
between the Bachelier model and methods assuming GBM are quite small. 
   
 
Key Words:  spread options, crack spread, soybean crush spread. 

Introduction 

Options on futures spreads (OFS) are now traded derivatives in over-the-counter agriculture and 
energy markets, and also at the New York Mercantile Exchange.  As recognized by Shimko and 
Poitras, OFS have been considered by at least three futures exchanges: the New York Mercantile 
Exchange (NYMEX) currently lists 1:1 options on crack (fuel) futures spreads and has proposed 
a 3:2:1 crack spread option and energy calendar spread options, the New York Board of Trade 
(NYBOT) proposed a cotton calendar spread option, and the Chicago Board of Trade (CBOT) 
has considered trading options on the soybean crush spread.  In addition, there are credit spreads 
such as the TED spread between the  Eurodollar and Treasury bill rates, and there are spreads 
based on variations in location and grade. Despite their growing popularity and effectiveness for 
managing certain types of risk such as commodity transformation, short-term storage and basis 
risk, little publicly available research has focused on pricing and hedging these derivatives, 
especially for spreads involving three underlying commodities.     
 

Motivating this paper is the fact that a closed form solution for pricing OFS under the 
assumption that the underlying legs follow correlated geometric Brownian motions (GBM) does 
not exist.  Instead analytic approximations or numerical methods such as Monte Carlo simulation 
and binomial trees must be used.  Poitras provides an analytic pricing solution based on the work 
of the French mathematician Bachelier based on the assumption that the underlying spread 
follows unrestricted arithmetic Brownian motion (UABM).  The Bachelier model is easy to 
implement and hedge parameters are easily derived.  Provided the underlying spread is normally 
distributed the Bachelier model is a good starting point for pricing OFS.  While UABM does 
have certain theoretical disadvantages that are discussed later, it is worth investigating its 
usefulness for pricing OFS relative to other methods that assume the spread is the difference 
between two correlated log-normally distributed variables given that they are more complicated 
to implement and hedge and in some cases more computer intensive to implement. 
 

In what follows the Bachelier model for call and put OFS are presented.   Premiums from 
the model are then compared with those from a Jarrow-Rudd analytic approximation based on 
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the Bachelier model, and Monte Carlo simulation and binomial methods each under the 
assumption of GBM.  Hedge parameters for the Bachelier model appear in the appendix.  In 
addition, the Bachelier model is extended to price OFS when three underlying commodities are 
involved.  Hedge parameters for the three commodity Bachelier model also appear in the 
appendix.  The results indicate that for OFS with sufficiently low volatility the Bachelier model 
and other approaches generate nearly identical results.  This is good news for practitioners that 
need to price OFS with sufficiently low volatility and time to maturity.  However, as time to 
maturity and volatility increase so do differences between the Bachelier model and the other 
approaches.                      
 
Different Pricing Methods 
Below is a brief review of the different methods used in this study to price OFS. 
 
Bachelier Model 
Poitras provides the closed form Bachelier model for pricing European OFS spreads.  The model 
assumes the underlying prices follow UABM.  This implies that the distribution of the 
underlying prices (and spread) is normal and that the spread is treated as a single random 
variable.  The partial differential equation that satisfies the riskless hedge portfolio problem has a 
single delta hedge ratio and gamma, whereas in general there will be two delta hedge ratios, one 
for each leg of the spread.  Since UABM allows for negative sample paths, probability is 
assigned to negative paths and call options will be priced higher than they otherwise would be 
under restricted arithmetic Brownian motion. Spread option pricing formulas that assume 
restricted arithmetic Brownian motion (with an absorbing barrier at zero) can be derived but are 
complicated and only differ from unrestricted prices when there is a significant probability of the 
price process reaching zero (Heaney and Poitras).  Furthermore, negative sample paths are 
generally not an issue for commodity prices and are easily identifiable as a potential problem 
(Poitras).  While the validity of the normality assumption should be dealt with on a spread to 
spread basis, Schaefer shows that premiums from the Bachelier model are nearly identical to 
premiums from Monte Carlo simulation assuming GBM when the spread volatility and time to 
maturity are sufficiently low.  

 
Jarrow-Rudd Approximation to “True” Solution 
Shimko presents an analytic approximation based on the Wilcox model that approximates a 
single integral solution for the price of an option on a spread with stochastic convenience yield 
where the underlying prices are assumed to follow GBM.  Shimko applies the Jarrow-Rudd 
technique using the Wilcox model to approximate the true solution.  This paper does not explore 
the evaluation of the integral solution and instead focuses on the approximation using the 
Bachelier model as the approximating model assuming non-stochastic convenience yield.  
Shimko shows that when the spread volatility (in annualized dollar terms) is below $3.74 ($7.48) 
for a 12 month (1 month) option one can expect the pricing error to be bounded by $0.025, or 
less than 1/32.  However, as this study highlights, the approximation diverges from the “true” 
GBM solution over relevant ranges as volatility and time to maturity increase, oftentimes before 
its usefulness over the Bachelier model is relevant.  Nevertheless this method can be useful for 
pricing long dated spread options with sufficiently low volatility, and can also be extended to the 
three commodity case.  Hedge parameters for this model are difficult due to the inclusion of 
skewness and kurtosis. 
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Monte Carlo Simulation   
The Monte Carlo simulation approach is a discrete numerical approximation to the true analytic 
solution, in this case where the underlying prices follow GBM (see Hull for a review).  At the 
limit this approach converges to the true solution.  An acceptable level of convergence is usually 
reached after a large number of simulations even though variance reduction techniques can be 
implemented to reduce the number of simulations.  Because hedge parameters are obtained by 
re-pricing the derivative for a small change in the relative input variable this process is 
inefficient for constantly updating entire options’ series even by today’s PC processor speeds.  
The Monte Carlo method is used here as a reference for results from the Bachelier model and the 
analytic approximation.  

 
Binomial Trees 
The binomial tree method is also a discrete approximation to the true analytic solution that can 
be implemented under the assumption that the underlying prices follow GBM (see Hull for a 
review).  This method also converges to the GBM solution at the limit, but the speed of 
convergence requires less iterations than the Monte Carlo technique.  Of the three methods that 
assume the underlying prices follow GBM compared in this paper, binomial trees are superior in 
both computational speed and accuracy, but do come with added complexity, more so for spreads 
involving three commodities.  The methodology for the two commodity case is outlined by Hull.  
The binomial method is used here as a second reference for results from the Bachelier model and 
the analytic approximation. 
   
Using the European Bachelier Model To Price an OFS (Two Commodity Case) 
Shimko derives a single-integral solution for the value of a call spread option with stochastic 
convenience yield based on the assumption that the underlying assets follow correlated 
geometric Brownian motions.  Using the Wilcox model Shimko derives an analytic 
approximation to this solution based on the Jarrow and Rudd technique.  This technique involves 
approximating the true distribution of the underlying spread by a more tractable approximating 
distribution using a generalized Edgeworth series expansion.  The approximating formula uses 
the known pricing solution given the approximating distribution and adjusts it based on the 
skewnesss and kurtosis of the true distribution relative to the approximating distribution. Here 
the Bachelier model is used as the base model in the analytic approximation.  The derivation of 
the Bachelier model and the analytic approximation with constant convenience yield are 
presented below.   
 
The Approximating Distribution  
Following the techniques used by Jarrow and Rudd and Shimko for computing the central 
moments of the underlying spread, the Bachelier model for an OFS under the assumption of 
normality is presented first.  The normal distribution is then used as the approximating 
distribution for the true GBM solution of the spread value.  This leads to an analytic 
approximation based on the Bachelier model.  Based on the standard assumptions of perfect 
markets and continuous trading, the absence of arbitrage solution to the Bachelier call option 
pricing result is as follows: 

(1)  ( ) [ ] [ ]( )22  
*

µµ dndd NeAC rt += −  
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where  is the price of the Bachelier futures spread call option,  is the price of the 
underlying long position,  is the price of the underlying short position, is time to expiration 
as a fraction of a year (  where T is the option’s expiration date and t is the current 
date, r is the risk free interest rate, X is the strike price, N[d] and n[d] are the cumulative normal 
probability density function and normal density function, respectively, evaluated at d, 
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*t2F
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2µ  is the 
second central moment of the future difference between  and  (defined below), where 1F 2F sσ  is 
the annualized standard deviation of daily changes in the value of the spread, and 12σ  is the 
covariance of daily changes in the value of the spread.  Under the same assumptions the 
Bachelier put option pricing result is as follows: 

(2) ( ) [ ]( ) [ ]( )22 1  
*

µµ dndNdeAP rt +−= −  

where  is the price of the Bachelier futures spread put option, and all other variables have 
been previously defined.  The mean of the approximating distribution is  and the variance 
is .  The skewness is zero, and the adjusted kurtosis is zero. 
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*
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The True Distribution 
Define two correlated geometric Brownian motion processes for futures contracts: 

1111 dW FdF σ=  

(3) 2222 dW FdF σ=  

dt pdWdW =21  

The next step is to compute the central moments of the future difference between  and 
 given the true distribution.  Let Z be the difference between  and .  Then the mean of Z 

is m , where the expectation  is defined as follows: 

1F
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The central moments up to order four are shown below: 
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The skewness and adjusted kurtosis are determined to be 

(6) 33 µκ =  
2
244 3µµκ −=  

Here the first and second moments of the approximating and true distributions are 
matched.  Then call option formula (1) is used as the approximating formula and the expression 
for the approximate option price is 
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The expression for the put option based on formula (2):  
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To apply the Bachelier model, use the Black implied volatility for 1σ  and 2σ  and 
compute ρ  (see appendix for deriving implied correlations).  Calculate the moment 2µ  and 
calculate call and put prices from (1) and (2).  To apply the analytic approximation, calculate the 
moments 2µ  through 4µ , 3κ and 4κ , and calculate call and put prices from (7) and (8).  Poitras 
specifies volatility in the Bachelier model using sσ , which is a dollar figure.  Here the model has 
been specified in terms of 2µ , which relies on percent volatility.  This approach should be more 
convenient to practitioners because it allows for the use of standard methods of calculating 
volatility developed for regular options.  It also allows for the model to be directly compared to 
most other alternative methods for pricing OFS.   
 
Using the European Bachelier Model To Price an OFS (Three Commodity Case) 
The potential for an OFS involving three underlying commodities is also of interest.  Commodity 
transformation spreads in oil refining and the soybean complex have been considered by major 
exchanges.  Consider the 3:2:1 crack spread, which is two parts unleaded gasoline plus one part 
heating oil minus three parts crude oil.  It is possible to synthetically trade the 3:2:1 crack spread 
by using one NYMEX 1:1 heating oil crack spread and two NYMEX 1:1 gasoline crack spreads 
as “building blocks”.1  However, this scheme is more expensive for two reasons.  First it has 
additional “optionality” because each option can be exercised independently of the others. 
                                                           
1 NYMEX 1:1 crack spread options have American exercise style. 
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Second the sum of the volatility for each “block” is more than the volatility of the single 3:2:1 
underlying spread.  Related spreads include the 1:1:1 soybean crush spread which is one part 
bean oil plus one part soybean meal minus one part soybeans, and the 2:1:1 cattle crush spread 
which is one part feeder cattle plus one part corn minus two parts live cattle.   
 
The Approximating Distribution 
Due to the linearity properties of the normal distribution extending the Bachelier model and the 
Jarrow-Rudd approximation to price an OFS consisting of three underlying commodities is 
straightforward.  Below pricing formulas for the Bachelier model and the analytic approximation 
are given for the case of a spread in the form ( )321 FFF −+  such the 3:2:1 crack spread and the 
1:1:1 soybean crush spread (i.e. it would not be appropriate for the cattle crush spread which has 
the form ).   ( )321 FFF −−

 
To begin assume that the individual price processes each follow UABM where the 

appropriate weights are assumed to have been pre-multiplied by the price.  The price spread will 
follow the diffusion: 

(9) ( ) ssdWFFFd σ=−+ 321  

where the variance of the joint process is specified as 
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Here the spread is treated as a single random variable that is normally distributed.  The 
partial differential equation (PDE) associated with the risk hedge portfolio problem for a futures 
price following UABM can then be invoked which gives 
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Because the spread is treated as a single random variable this PDE involves only one 
delta hedge ratio and one gamma. The Bachelier call option formula that satisfies this PDE is 
given by 
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Under the same assumptions the put option pricing result is as follows: 
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(12) ( ) [ ]( ) [ ]( )22 1 
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where  is the price of the Bachelier futures spread put option.  Substitution of the 
derivatives theta [formulas A.30 (call) and A.31 (put)] and gamma (A.21) into (10) proves (11) 
and (12). 

)(AP

 
The True Distribution 
Define three correlated geometric Brownian motion processes for futures contracts: 

1111 dW FdF σ=    dt pdWdW 1221 =  

(13)  2222 dW FdF σ=    dt pdWdW 1331 =  

 3333 dW FdF σ=    dt pdWdW 2332 =  

Next compute the central moments of the future difference between  and  given 
the true distribution.  Let Z be the difference between 
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The central moments up to order four (see Kendall and Stuart 1977, p. 73) are below: 
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The skewness and adjusted kurtosis are determined to be 
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The call option formula (11) is used as the approximating formula and the expression for 
the approximate option price is 
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The approximating formula for the put option based on (12) is  
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To apply the Bachelier model, use the Black implied volatility for 1σ , 2σ , and 3σ  and 
compute each ρ .  Calculate the moment 2µ  and calculate call and put prices from (11) and (12).  
To apply the analytic approximation, calculate the moments 2µ  through 4µ , 3κ and 4κ , and 
calculate call and put prices from (17) and (18). 
 
Accuracy 

The analytic approximation can be checked using Monte Carlo simulation.  Three 
correlated samples 1ε , 2ε  and 3ε  from standard normal distributions are required.  First obtain 
independent samples ,  and  from a univariate standardized normal distribution.  The 
required samples 

1x 2x 3x

1ε , 2ε  and 3ε   are then calculated as follows: 
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Sensitivity Analysis  
The first part of this section presents call option premiums using the two commodity European 
Bachelier model.  The premiums are compared to those using the Jarrow-Rudd analytic 
approximation, and Monte Carlo simulation and binomial tree methods each under the 
assumption that the spread is the difference between to correlated log-normally distributed 
random variables.  Options with different volatilities and times to maturity are evaluated.  Table 
1 presents results for options one month, three months, and one year to expiration.  
 

The second part of this section presents call option premiums using the three commodity 
European Bachelier model for a spread in the form ( )321 FFF −+ .  The premiums are compared 
to those using the Jarrow-Rudd analytic approximation and Monte Carlo simulation under the 
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assumption that the underlying prices follow GBM.  Options with different volatilities and times 
to maturity are evaluated.  Table 2 presents results for options one month, three months, and one 
year to expiration.   
 

The number of Monte Carlo simulations used was 200,000 for each option premium with 
time step equal to time to maturity.  No variance reduction procedures were used.  One hundred 
iterations were used for the binomial method.  The Bachelier model, analytic approximation and 
Monte Carlo simulations were conducted in VBA.  Results from the binomial method were 
generated using Fintools® software.  

 
Two Commodity OFS 
One Month Options 
Based on the results in Table 1 the Bachelier model and the analytic approximation are very 
accurate relative to the Monte Carlo and binomial methods.  Differences are less than a penny for 
OFS for “low” and “medium” range volatility.    For OFS with “high” volatility, the Bachelier 
model is within 1 to 2 cents of the Monte Carlo and binomial methods and the analytic 
approximation is generally within a cent. 
 
Three Month Options 
For OFS three months to expiration differences between the Bachelier model and the analytic 
approximation are within a penny of the Monte Carlo and binomial methods for low range 
volatility spreads.  For medium range volatilities the Bachelier model differences increase to 
about 3 pennies relative to the Monte Carlo and binomial methods, while the analytic 
approximation remains consistent.  This is a good example of the when the analytic 
approximation is still relatively consistent with the GBM solution while the Bachelier model is 
not.  This will generally be true for OFS with low to medium range volatility with two or more 
months to expiration (see Figure 1).  However, the error of the approximation should always be a 
concern of the practitioner.  For OFS in the high volatility range the Bachelier model differences 
relative to the Monte Carlo and binomial methods grow to about 12 cents.  We also start to see 
the analytic approximation start to diverge (see Figure 3)2.   

 
One Year Options 
OFS in the low volatility range are still consistent across each method.  Differences are generally 
less than a penny.  In the medium range case differences between the Bachelier model and the 
Monte Carlo and binomial methods are quite significant growing to as much as 20 cents.  The 
analytic approximation is also significantly different, nearly 13 cents under the numerical 
methods.  As expected, the difference grows between the Bachelier model and analytic 
approximation relative to the numerical methods as volatility increases.  The Bachelier model 
premiums are around 1 dollar more and the analytic approximation is actually negative in the 
high volatility case (see Figure 3).  
 
Three Commodity OFS 
Results of the sensitivity analysis conducted for the three commodity Bachelier model are 
presented in Table 2.  Results are consistent with results for the two commodity case.  In general, 
the Bachelier model is consistent with the GBM solution (in this case approximated by just the 
                                                           
2  20,000 Monte Carlo simulations were used to create Figure 3 in order to illustrate the binomial method. 
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Monte Carlo method) for OFS in the low volatility range for each time to maturity tested.  
Differences increase as volatility and time to expiration increase.  Likewise, the analytic 
approximation is consistent with the Monte Carlo method for OFS with relatively low volatility 
but begins to significantly diverge at approximately two and a half months to maturity for the 
high volatility case (see Figure 4).  As for the two commodity case, there are ranges over which 
the analytic approximation will be more accurate than the Bachelier model relative to the GBM 
solution given different volatilities and times to maturity.  However, the error of the 
approximation must be monitored (see Figure 2). 
 
Conclusion 
Options on futures spreads are currently traded in over the counter agriculture and energy  
derivatives markets and also at the New York Mercantile Exchange.  Additional contracts have 
been proposed by leading exchanges. Despite their growing popularity and effectiveness for 
managing certain types of risk such as commodity transformation, short-term storage and basis 
risk, little publicly available research has focused on pricing and hedging these derivatives, 
especially for spreads involving three underlying commodities such as the crack (fuel) spread 
and the soybean crush spread.   While methods for pricing an OFS exist there is little information 
on how different methods compare.   
 

Here the Bachelier model is presented and hedge parameters are provided.  The closed 
form Bachelier model assumes the underlying spread follows unrestricted arithmetic Brownian 
motion.  An analytic approximation for the price of an OFS under the assumption that the 
underlying prices follow correlated geometric Brownian motions is also presented.  The two 
methods are then extended to price an OFS with three underlying commodities.  Next the 
Bachelier model is compared to Monte Carlo simulation and binomial tree methods that assume 
the underlying prices follow correlated geometric Brownian motions for spreads with two and 
three underlying commodities. 
 
 Results from the sensitivity analysis indicate that for OFS with two and three underlying 
commodities that have sufficiently low volatility, the Bachelier model and the analytic 
approximation are very consistent with Monte Carlo and binomial methods.  However, as time to 
maturity and volatility increase so do differences between the Bachelier model and the analytic 
approximation relative to the numerical methods. Given that alternative methods for pricing OFS 
under the assumption of geometric Brownian motion and restricted arithmetic Brownian motion 
are more complicated, the Bachlier model should be of particular interest to practitioners who 
place a premium on ease of implementation, tractable hedge parameters and computational speed 
in addition to pricing accuracy.  
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Appendix 
 
Hedge Parameters For the Bachelier Model (Two Commodity Case) 
Poitras gives solutions for the delta, gamma and theta for the Bachelier call spread option.  
Provided here are the delta, gamma, vega, theta and rho for the Bachelier call and put option.   
 
Delta 
Delta for the spread  and for the individual legs from the Bachelier futures spread call 
option are as follows: 
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Delta for the spread and individual legs from the Bachelier futures spread put option are as 
follows: 
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Delta can be interpreted the same as for the Black model. 
 
Gamma  
Gamma for the spread and the individual legs from the Bachelier futures spread call and put 
option is as follows: 
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Vega  
Vega for the spread, from the Bachelier futures spread call and put option, is as follows: 

(A.6) 
( ) ( ) [ ] **

tdneAPAC rt

ss

−=
∂
∂

=
∂
∂

σσ
 

Vega with respect to 1σ  for a call and put option is as follows: 

(A.7) 
( ) ( ) [ ] ( )

2

2,21,2
*

11

*

µ

ρµµ
σσ

−
=

∂
∂

=
∂
∂

− tdneAPAC rt

 

where the moments 1,2µ  and 2,2µ  are as follows: 
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(A.8) ( ) ( )( )( )*2
1111,  15.exp tkkFFEm kk

k σ−=≡  

( ) ( )( )( )*2
2222,  15.exp tjjFFEm jj

j σ−=≡  
2
1,11,21,2 mm −=µ  
2

2,12,22,2 mm −=µ  

Vega with respect to 2σ for a call and put option is as follows: 

(A.9) 
( ) ( ) [ ] ( )

2

1,22,2
*

22

*

µ

ρµµ
σσ

−
=

∂
∂

=
∂
∂

− tdneAPAC rt

 

Vega can be interpreted as follows: for a one dollar increase in the value of sσ , 1σ , or 2σ , 
respectively, the value of the option will increase by vega.  The change in the value of the option 
premium given a one percent change in correlation can be computed as follows: 

(A.10) 
( ) ( ) [ ]

100
2

2,21,2

*

÷−=
∂

∂
=

∂
∂

−

µ

µµ

ρρ

dneAPAC
rt

 

Theta  
From the Bachelier spread call option model it can be shown that theta per annum is as follows: 

(A.11) 
( ) [ ]( ) ( ) [ ]









−−−

−
−=

∂
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e
t
AC rt

21*
2

*

* 2
12

2
1 * µ

 

For a Bachelier spread put option it can be shown that 

(A.12) 
( ) [ ]( ) ( ) [ ]( )









−−−−

−
−=

∂
∂ − 12

12
2
1

21*
2

*

*
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t
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e

t
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When time is measured in days, theta per day = [theta per annum/365].  
 
Rho  
From the Bachelier spread call option model it can be shown that  rho is as follows: 

(A.13) 
( ) ( ) 100 * ÷=
∂

∂ tAC
r
AC

 

For a Bachelier spread put option the rho is as follows: 

(A.14) 
( ) ( ) 100 * ÷=
∂

∂ tAP
r
AP

 

Implied Correlation 
The implied correlation of the spread can be found using the Newton-Raphson algorithm.  To 
start the search algorithm first find the initial guess of the spread variance based on an initial 
guess for the correlation: 

(A.15) iis ρµµµµσ 2,21,22,21,2
2
, 2−+=  
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where is,σ  is the initial guess for the spread variance, the moments 1,2µ  and 2,2µ are computed 
using implied volatility 1σ  and 2σ  from the Black model, and iρ  is the initial guess for implied 
correlation.  Next find the second guess for ρ : 

(A.16) ( ) iiii
i

i
isi

BMP
ρµρµρµρµ

ρ
ρ

σρ 2,21,22,21,2
2
,1 2−












+−

Λ
−

+=+   

where MP is the market price of the option, iB ρ  is the Bachelier premium conditional on iρ  

and iρΛ  the option’s vega conditional on iρ .  Continue the process until ερ <− iBMP  where 
ε  is a specified degree of accuracy. 
 
Hedge Parameters For the Bachelier Model (Three Commodity Case) 
 
Delta 
Delta for the spread (  and for the individual legs from the Bachelier futures spread 
call option are as follows: 

)321 FFF −+

(A.17) 
( )

( )
( ) ( ) [ ]dNe

F
AC

F
AC

FFF
AC rt*

21321

−=
∂
∂

=
∂

∂
=

−+∂
∂

 

(A.18) 
( ) [ ]dNe
F

AC rt*

3

−−=
∂
∂

 

Delta for the spread and individual legs from the Bachelier futures spread put option are as 
follows: 

(A.19) 
( )

( ) [ ]( )1)()( *

21321

−=
∂
∂

=
∂

∂
=

−+∂
∂ − dNe

F
AP

F
AP

FFF
AP rt  

(A.20) 
( ) [ ]( )1

*

3

−−=
∂
∂ − dNe

F
AP rt  

Gamma  
Gamma for the spread and the individual legs from the Bachelier futures spread call and put 
option is as follows: 

(A.21) 
[ ]
2

*

µ
dne rt−

=Γ  

Vega 
Vega for the spread from the Bachelier futures spread call and put option is as follows: 

(A.22) 
( ) ( ) [ ] **

tdneAPAC rt

ss

−=
∂
∂

=
∂
∂

σσ
 

Vega with respect to 1σ  for the call and put option is as follows: 
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(A.23) 
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where the moments 1,2µ , 2,2µ , and 3,2µ  are as follows: 

(A.24) ( ) ( )( )( )*2
1111,  15.exp tkkFFEm kk

k σ−=≡  

( ) ( )( )( )*2
2222,  15.exp tjjFFEm jj

j σ−=≡  

( ) ( )( )( )*2
3333,  15.exp tiiFFEm ii

i σ−=≡  
2
1,11,21,2 mm −=µ  
2

2,12,22,2 mm −=µ  
2

3,13,23,2 mm −=µ  

Vega with respect to 2σ for the call and put option is as follows: 

(A.25) 
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Vega with respect to 3σ for the call and put option is as follows: 

(A.26) 
( ) ( ) [ ] ( )

2
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The change in the value of the option premium given a one percent change in correlation can be 
computed as follows: 

(A.27) 
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(A.28) 
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(A.29)  
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2
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2323
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Theta  
From the Bachelier spread call option model it can be shown that theta per annum is as follows: 

(A.30) 
( ) [ ]( ) ( ) [ ]




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
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
−−+−
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For a Bachelier spread put option it can be shown that 
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(A.31) 
( ) [ ]( ) ( ) [ ]( )
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When time is measured in days, theta per day = [theta per annum/365].  
 
Rho  
From the Bachelier spread call option model it can be shown that  rho is as follows: 

(A.32) 
( ) ( ) 100 * ÷=
∂

∂ tAC
r
AC

 

For a Bachelier spread put option the rho is as follows: 
 

(A.33) ( ) ( ) 100 * ÷=
∂

∂ tAP
r
AP  

 
Implied Correlation 
The implied correlation for the three commodity case is complicated by the need for three 
unknown correlations.  If two correlations can be implied from 1:1 option premiums (as is the 
case for the 3:2:1 crack spread) then the third implied correlation can be derived using the 
Newton-Rhapson algorithm applied to the three commodity case.   
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Table 1 
Theoretical Prices of European Futures Spread Options (2 Commodity) Using Bachelier, Shimko, Monte Carlo and Binomial Tree 

Methods (r = 4%, F1 = $25, F2 = $25, Strike Price = $0, Simulations = 200,000, Iterations = 100) 
  Calls 
Option Parameters Spread 

Value 
Bachelier Shimko MC Binomial 

σ1 = 15% -.50 0.03910 0.03923 0.03909 0.03887 
σ2 = 15% -.30 0.07996 0.07994 0.08062 0.07984 
ρ = 90% -.10 0.14731 0.14715 0.14789 0.14726 
t* = 1/12 0 0.19267 0.19249 0.19270 0.19263 
 .10 0.24622 0.24606 0.24587 0.24618 
 .30 0.37706 0.37704 0.37720 0.37694 
 .50 0.53517 0.53533 0.53404 0.53496 
σ1 = 45% -.50 0.37259 0.36707 0.36712 0.36790 
σ2 = 45% -.30 0.44842 0.44327 0.44459 0.44396 
ρ = 90% -.10 0.53484 0.52990 0.53305 0.53052 
t* = 1/12 0 0.58213 0.57722 0.57904 0.57782 
 .10 0.63218 0.62726 0.63436 0.62789 
 .30 0.74058 0.73550 0.73836 0.73619 
 .50 0.85995 0.85453 0.85737 0.85537 
σ1 = 75% -.50 0.76552 0.73950 0.74206 0.74343 
σ2 = 75% -.30 0.84805 0.82297 0.82875 0.82638 
ρ = 90% -.10 0.93712 0.91257 0.91290 0.91571 
t* = 1/12 0 0.98414 0.95970 0.96461 0.96278 
 .10 1.03285 1.00840 1.01153 1.01153 
 .30 1.13533 1.11054 1.11563 1.11396 
 .50 1.24459 1.21904 1.22646 1.22297 
σ1 = 15% -.50 0.14467 0.14372 0.14536 0.14376 
σ2 = 15% -.30 0.20647 0.20554 0.20769 0.20571 
ρ = 90% -.10 0.28560 0.28468 0.28547 0.28493 
t* = 3/12 0 0.33208 0.33117 0.33148 0.33142 
 .10 0.38328 0.38237 0.38247 0.38262 
 .30 0.49974 0.49883 0.49925 0.49900 
 .50 0.63413 0.63322 0.63293 0.63325 
σ1 = 45% -.50 0.80026 0.77108 0.77446 0.77558 
σ2 = 45% -.30 0.88255 0.85436 0.85916 0.85833 
ρ = 90% -.10 0.97110 0.94348 0.95103 0.94716 
t* = 3/12 0 1.01777 0.99026 0.99682 0.99387 
 .10 1.06604 1.03853 1.05302 1.04220 
 .30 1.16744 1.13958 1.14658 1.14353 
 .50 1.27533 1.24668 1.25492 1.25119 
σ1 = 75% -.50 1.55301 1.38849 1.43473 1.43578 
σ2 = 75% -.30 1.63699 1.47503 1.52152 1.52080 
ρ = 90% -.10 1.72491 1.56457 1.60479 1.60949 
t* = 3/12 0 1.77037 1.61048 1.65889 1.65517 
 .10 1.81684 1.65714 1.69988 1.70189 
 .30 1.91281 1.75277 1.80050 1.79805 
 .50 2.01288 1.85150 1.90304 1.89803 
σ1 = 15% -.50 0.44439 0.43622 0.44175 0.43740 
σ2 = 15% -.30 0.51980 0.51211 0.51723 0.51307 
ρ = 90% -.10 0.60413 0.59670 0.59918 0.59754 
t* = 1 0 0.64972 0.64234 0.64322 0.64316 
 .10 0.69762 0.69022 0.69008 0.69107 
 .30 0.80037 0.79276 0.79481 0.79373 
 .50 0.91235 0.90432 0.90567 0.90551 
σ1 = 45% -.50 1.91456 1.59199 1.71300 1.71490 
σ2 = 45% -.30 1.99553 1.67681 1.79657 1.79728 
ρ = 90% -.10 2.07979 1.76363 1.88561 1.88270 
t* = 1 0 2.12316 1.80780 1.93608 1.92648 
 .10 2.16738 1.85248 1.99062 1.97112 
 .30 2.25834 1.94338 2.06557 2.06253 
 .50 2.35270 2.03636 2.16467 2.15706 
σ1 = 75% -.50 4.00794 -0.14828 2.98760 2.99810 
σ2 = 75% -.30 4.08251 -0.04699 3.07328 3.07792 
ρ = 90% -.10 4.15942 0.05153 3.14059 3.15941 
t* = 1 0 4.19876 0.09973 3.20121 3.20080 
 .10 4.23870 0.14721 3.23359 3.24272 
 .30 4.32039 0.24001 3.32156 3.32786 
 .50 4.40451 0.32994 3.40422 3.41479 
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Table 2 
Theoretical Prices of European Futures Spread Options (3 Commodity) Using Bachelier, Shimko, and Monte Carlo Methods 

 (r = 4%, F1 = $60, F2 = $30, F3 = $90, Strike Price = $0, Simulations = 200,000) 
  Calls 
Option Parameters Spread 

Value 
Bachelier Shimko MC 

σ1 = 15% -.50 0.39668 0.39562 0.39966 
σ2 = 15% -.30 0.47509 0.47424 0.47376 
σ3 = 15% -.10 0.56359 0.56294 0.56491 
ρ12 = ρ 13 = ρ 23 = 90% 0 0.61170 0.61114 0.61294 
t* = 1/12 .10 0.56359 0.56294 0.56523 
 .30 0.47509 0.47424 0.47773 
 .50 0.39668 0.39562 0.39723 
σ1 = 45% -.50 1.61645 1.59906 1.61394 
σ2 = 45% -.30 1.70657 1.68996 1.69779 
σ3 = 45% -.10 1.80013 1.78423 1.79760 
ρ12 = ρ 13 = ρ 23 = 90% 0 1.84821 1.83263 1.83132 
t* = 1/12 .10 1.80013 1.78423 1.79790 
 .30 1.70657 1.68996 1.69087 
 .50 1.61645 1.59906 1.60872 
σ1 = 75% -.50 2.89313 2.81192 2.82240 
σ2 = 75% -.30 2.98412 2.90446 2.91604 
σ3 = 75% -.10 3.07722 2.99896 3.01820 
ρ12 = ρ 13 = ρ 23 = 90% 0 3.12456 3.04694 3.05468 
t* = 1/12 .10 3.07722 2.99896 3.00447 
 .30 2.98412 2.90446 2.93097 
 .50 2.89313 2.81192 2.82666 
σ1 = 15% -.50 0.82905 0.82520 0.83257 
σ2 = 15% -.30 0.91475 0.91130 0.91231 
σ3 = 15% -.10 1.00632 1.00325 1.00436 
ρ12 = ρ 13 = ρ 23 = 90% 0 1.05432 1.05143 1.05550 
t* = 3/12 .10 1.00632 1.00325 1.00775 
 .30 0.91475 0.91130 0.91822 
 .50 0.82905 0.82520 0.82850 
σ1 = 45% -.50 3.00164 2.91052 2.94091 
σ2 = 45% -.30 3.09200 3.00250 3.02479 
σ3 = 45% -.10 3.18437 3.09635 3.12740 
ρ12 = ρ 13 = ρ 23 = 90% 0 3.23131 3.14397 3.15247 
t* = 3/12 .10 3.18437 3.09635 3.12379 
 .30 3.09200 3.00250 3.01680 
 .50 3.00164 2.91052 2.93561 
σ1 = 75% -.50 5.39726 4.87949 5.03298 
σ2 = 75% -.30 5.48572 4.97222 5.11365 
σ3 = 75% -.10 5.57543 5.06590 5.22350 
ρ12 = ρ 13 = ρ 23 = 90% 0 5.62076 5.11310 5.25356 
t* = 3/12 .10 5.57543 5.06590 5.20396 
 .30 5.48572 4.97222 5.14755 
 .50 5.39726 4.87949 5.03884 
σ1 = 15% -.50 1.83902 1.81349 1.83135 
σ2 = 15% -.30 1.92636 1.90174 1.91154 
σ3 = 15% -.10 2.01659 1.99278 1.99170 
ρ12 = ρ 13 = ρ 23 = 90% 0 2.06280 2.03936 2.05669 
t* = 1 .10 2.01659 1.99278 1.99856 
 .30 1.92636 1.90174 1.91424 
 .50 1.83902 1.81349 1.81789 
σ1 = 45% -.50 6.52799 5.51075 5.88896 
σ2 = 45% -.30 6.61234 5.60180 6.03857 
σ3 = 45% -.10 6.69774 5.69349 6.10354 
ρ12 = ρ 13 = ρ 23 = 90% 0 6.74083 5.73959 6.16178 
t* = 1 .10 6.69774 5.69349 6.06404 
 .30 6.61234 5.60180 6.01961 
 .50 6.52799 5.51075 5.89140 
σ1 = 75% -.50 13.14039 -0.01197 10.06736 
σ2 = 75% -.30 13.21594 0.12002 10.00135 
σ3 = 75% -.10 13.29223 0.25127 10.13658 
ρ12 = ρ 13 = ρ 23 = 90% 0 13.33066 0.31662 10.14638 
t* = 1 .10 13.29223 0.25127 10.14880 
 .30 13.21594 0.12002 10.00978 
 .50 13.14039 -0.01197 10.02412 
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Figure 1
Theoretical Price of a European 2 Com m odity Spread O ption Using Bachelier, Shim ko, M onte Carlo, and 

Binom ial M ethods: X=$0, σ1=σ2=30% , F1=F2=$25, r =4% , ρ12=90% , Sim ulations=200,000, Iterations=100
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Figure 2
Theoretical Price of a European 3 Commodity Spread Option Using Bachelier, Shimko, and Monte Carlo 

Methods: X=$0, σ1=σ2=σ3=30%, F1= $60, F2=$30, F3=$90, r=4%, ρ12=ρ13=ρ23=90%, Simulations=200,000
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Figure 3
Theoretical Price of a European 2 Com m odity Spread Option Using Bachelier, Shim ko, M onte Carlo, and 

Binom ial M ethods: X=$0, σ1=σ2=75%, F1=F2=$25, r =4%, ρ12=90%, Sim ulations=20,000, Iterations=100
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Figure 4
Theoretical Price of a European 3 Commodity Spread Option Using Bachelier, Shimko, and Monte Carlo 

Methods: X=$0, σ1=σ2=σ3=75%, F1= $60, F2=$30, F3=$90, r =4%, ρ12=ρ13=ρ23=90%, Simulations=200,000
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