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Option Pricing on Renewable Commodity Markets
Sergio H. Lence and Dermot Hayes

Practitioners Abstract
The paper motivates and proposes a closed form option pricing model for markets such as grains
or livestock where the price level can be expected to revert to expected production costs. The
model suggests that traditional option pricing models will overprice long term options on these
mar kets.
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Introduction

The Black and Black- Scholes option pricing models assume that spot price volatility
increases proportiondly to the square root of time. This assumption is reasonable for stocks and
currencies, but isincongstent with mean reverson in pot prices. Most agricultural commodity
markets demongtrate a mean reverson to production costs (Bessembinder et d.), which suggests
that the price volatility around this production cost reaches amaximum vaue. If thisistrue, and
if price volatility isincorrectly assumed to increase in proportion to the square root of time
beyond this maximum vaue, the fair vaue of long-term options will be overestimated. This
problem is gpparent in long-term options on crude oil futures. Schwartz recognized this problem
in the context of ail futures. He had the ingght that price imba ances caused by temporary
shortages and surpluses would eventudly disgppear without impacting on the long run volatility
levd. For example, ashortage of oil can make the convenience yidd greater than the Sorage
cost and this can cause nearby futures prices to exceed the prices of more distant contracts.
Miltersen and Schwartz, and Hilliard and Reis proposed closed-form option pricing modes that
incorporates reverson to the mean in this convenience yield. However, their modds assume that
the price levd trends rather than revert to along-run mean. Therefore, such models are most
likely to be relevant to exhaustible commodity markets such as gold and oil where Hotelling's
Principle might be expected to hold.

Our interest isin renewable commodity markets such as grain or livestock and here we
can expect mean reversion in both the level of prices and the convenience yield (Routledge,
Seppi, and Spatt). For example, suppose that grain prices are high because of yield shortfalls.
Then, we will see ahigh price level across dl futures contracts and an inverted market. With
reverson to the mean in convenience yidd only we might expect that the futures prices would
eventudly reflect anorma cost of carry market, but we would aso assume that the current high
price levd is permanent. With the redtriction that the mean price leve will revert, we can dso
predict that the price level will revert to the expected production cost. This additiond piece of
information alows us to reduce the future voldility level.

The modd we propose contains Schwartz’s modd as a specia case. Hence, it is possible
to test whether the restriction imposed by Schwartz's modd is warranted by observed data.



Graphical Examples

Figures 1, 2 and 3 are agraphica representation of the three assumptions that underlie the
three moddls. All three figures show the same smulated time series of (the logarithm of) prices,
and dl contain the upper and lower confidence intervas for these prices at two pointsin time.

Figure 1 shows price under the standard Black- Scholes assumption of Brownian motion.
It can be observed that the confidence interva for prices increases in proportion to the square
root of time asis assumed in the modd. The heavy solid line shows the expected price path and
this shows asmdl amount of growth as might be expected for the cash prices for commodities or
docks. If futures markets existed for this commodity, this heavy line would reflect the temporal
bass. At time period twenty in Figure 1 the cash price is lower than was expected at time zero,
and the heavy dotted line shows the expected price path from this lower point. All of the price
reduction from times zero to twenty is viewed as permanent in thismodd. Therefore, the
updated expected price path runs pardld to the origina but at aleve that reflectsthe
underperformance of price between times zero and twenty.

Figure 2 shows the Schwartz modd, and is otherwise identical to Figure 1. A key
difference between Figure 1 and 2 is that when the price path is updated at time twenty,
the Schwarz model recognizes that the price drop that occurred just before time twenty wasin
part due to atemporary reduction in the convenience yield reflecting atemporary surplus of the
commodity. Themode assumes that this temporary component will gradualy disappear and
therefore it adjusts the expected time path of cash prices for this expected price recovery.
However, once this temporary adjustment is out of the way the Schwartz model behaves very
much like the Black Scholesmodd.

Figure 3 shows the model we propose here. The price path after time twenty containsan
adjustment to the temporary imbaance as in the Schwartz modd. However, the modd dso
contains one additiona piece of information. It recognizes that the generdly low leve of prices
observed a time twenty iswell below the production costs for this commodity. Thissuggestsa
reduction in supply until prices recover to these expected production costs. Therefore, the thick
dotted line approaches the heavy solid line as the modd implicitly adjusts supply and demand so
that expected future prices lie on the path representing expected production costs. This
additiond piece of information has adramatic effect on the upper and lower confidence leve
because the modd recognizesthat dl price deviations around this expected production costs are
of atemporary nature and it therefore tightens the confidence interva around this price path.

The upper and lower confidence intervals are directly related to the fair option price and
we can therefore we have intuitive evidence that suggests that models that incorporate mean
reversion in convenience yields will exhibit lower option prices than those that do not. We can
aso conclude that when mean reversion in the price level is added to mean reversonin
convenience yidd, the fair option vaue will be lower sill. The degree to which modd s that
neglect mean reverson in the price leve overprice option premiawill of course depend on the
parameters of the models, but it is clear that the degree of overpricing will increase with the time
to expiration of the option.

The Schwartz Mode
Schwartz advanced a path-breaking modd of commodity pricesthat alows for mean
reversion in the convenience yied but not on the spot price. Given the semind nature of his
work, and the fact that his modd is a specia case of the model advocated here, we introduce
Schwartz' framework fird.



Schwartz fundamenta ingght was that commaodities are characterized by "convenience
yidds' that are sochastic and mean reverting. Accordingly, he postulated that the convenience

yield net of storage cogtsc; © Convenience Yidld — Storage Cost follows the Ornstein-Uhlenbeck
stochastic process (1.1):

(1.1) dc=(m—kcC)dt +scdW,

where my/k. = long-term mean, k¢ © speed of mean reversion (ke > 0), and dW\ isa Wierer
process. The mean of cr asof timet ismykc + exp[—K¢ (T —1t)] (¢ — m/kc), and the varianceis
0.5{1—exp[— 2 ke (T—1)]} Scilket

In contrast to the convenience yield process (1.1), Schwartz assumed that the actual
process for the commodity spot price (S) isnot mean reverting. More specificdly, he
hypothesized that spot prices behave as a geometric Brownian motion:

(12) dS=msSdt+ssSdWs,

where dWs is a Wiener process correlated with dW, so that dWs dW: =r s dt (r s; being the
correlaion coefficient). Letting x © In(S), gpplication of Ito's Lemmarto (1.2) yields the
arithmetic Brownian motion (1.3) for the logarithm of spot prices.

(1.3) dx=nmydt+s, dW,

wherem® my- s<2/2,54° Ss, WL ® dWs, andryc=r <. In (1.2), nx denotes the drift in the
logarithm of spot prices.

The rate of return to holding commodity consists of the relative price change (dS/S = dx)
plus the convenience yield net of storage costs (c). Thus, the expected rate of return to
commodity holdersisny + c. In equilibrium, the laiter must equd the risk-free rate of return (r)
plustherisk premium (1 ). Lettingny+c=r +1 in(1.1) and (1.3), yieds the corresponding
risk- neutralized stochastic processes.

(14) dc=(m-—kec—I)dt+scdw,,
(L5 dx=(r—c)dt+syxdw,,

where| . isthe market price for c risk and dW, and dw, are the Wiener processes under the

equivalent martingale measure. Note that dW, d\Ny =r yy dt. Schwartz derived futures prices

under the above assumptions, whereas Miltersen and Schwartz, and Hilliard and Reis obtained
the equations for the corresponding option prices.

The discrete-time anal og of process (1.1) isc; =fo +fy .1 +i.i.d. shock.



Allowing for Mean Reversion in the Price L evel
Unlike Schwartz, here spot prices are dlowed to be mean reverting asin (2.1):

(2.1) dS=[ms—ksIn(9] Sdt +ssSdWs,

Given (2.1), Ito's Lemmayidds the Ornstein-Uhlenbeck stochastic process (2.2) for the
logarithm of the spot prices:

(22) dx=(m—KkxX) dt +sxdW,

whereky © ks> 0isthe speed a which the logarithm of the spot price revertsto its long-run
mean m/kyx. Notethat if ky =0, (2.2) collapsesto (1.3), i.e., the arithmetic Brownian motion
with expected drift mx assumed by Schwartz.

A sylized fact of commodity marketsis that convenience yields are positively associated
with the spot prices? Hence, the convenience yield net of storage costsis postulated to consist
of the fallowing random function of the logarithm of the spot price:

(23) c=y+kyX,
wherey follows the Orngtein-Uhlenbeck stochastic process (2.4):
(24) dy=(m—kyy)dt +sydW\.

Wiener processes dWi and dW, are correlated so that dW, dW, =y dt, wherer y isthe
correlation coefficient. Setting ky = 0in (2.3) yidds ¢ =y, in which case the advocated
convenience yield process becomes identical to that in Schwartz.

In equilibrium, the ingtantaneous expected totd return to commodity holders { E(dS'S + ¢)

= [(mx—Kkx X) + (y + ky X)] dit} must equal the risk-free rate plus the associated market price of
risk (r +1). Therefore, the risk-neutral process for dx may be written as (2.5):

(25) dx=[r—(y+keX)] dt + 5, AW,
where dW; isthe Wiener process under the equivaent martingale measure. Component y of the

convenience yied (2.3) cannot be hedged because it is not traded. Hence, the stochastic process
for y under the equivalent martingale measure (2.6) depends on the market price for y risk (1 y):

(26) dy=(m-kyy- I, dt+sydw,.

In (2.6), dWy isthe Wiener process under the equivaent martingale measure. Note that dw,
dW, =T,y dt.

Therisk-neutrdized processes (2.5) and (2.6) provide the basic foundations to derive
commodity futures and options prices, which are discussed the next two sections.

2Typically, when acommodity isin relatively short supply its priceis high and its convenience is high, aswell.



FuturesPrices
Under the assumption that the risk-free interest rate r is congtant, at timet the commodity

futures price with maturity T isSmply thetime-t expected price of the commodity a time T
under the equivadent martingde measure. That is

(31) F(S, W, t1 T) = E': (SI') ’

where E; (¥ denotes the expectation with respect to the risk-neutralized processes (2.5) and
(2.6). Theexpressionfor E, (S;) can be obtained by noting that Sr = exp[In(Sr)] = exp(xT), and

that the vector (X, y) follows an afine diffuson (eg., Da and Singleton) under the martingde

measure. This alows usto apply the method proposed by Duifie, Pan, and Singleton to get a
closed-form solution for the futures price.

The expression for the futures price is (3.2):

32 F& Wt T)=exp{A(Q)- A(t-T)+ % [F©O)- F(t-T)]
+In(S) Bx(t —T) + vt By(t—T)},

where:

o & m-1yuB®), B0
A e R

(S>2" 2r xS X yky)l‘tI Bx(t)2

é
Ft)°e g2+ U
ky(kotky) g 2,

()

s2-2r s sk B (t)?
_ ( y Xy©< X7y y) Bx(t) By(t)+S§ L’
ky(kx+ky) Z<y

Bx(t) © exp(kx t),

explk,t) - expk t)

By(t) ©
0° ==

Optionson Futures Contracts
Of particular interest here are the prices of options on futures. To thisend, let C[F(S, Vi,
t, T), K, t, T1] denote the price a timet of a European cal option expiring a time T, 3 t ona
futures contract that expiresat time T 3 Ty, with strike price K. Since the payoff of such an
option a expirationis maq{ F(S; , y; ,T,,T) - K, 0], standard arguments can be applied to show
thet itsprice & timet isgiven by:

(41) CIF(S yut. T K t, T =explr (t- To)] E {max{F (S, y;,T,,T)- K,Ol}.



The andyticd solution for the cal option price C[F(S, v, t, T), K, t, T1] can be computed by
resorting again to Duffie, Pan, and Singleton, as done next.

The moment generating function of the logarithm of futures prices under the equivaent
martingale measure is defined by (4.2):

(42)  Mirs, v (@ © EfexdzIn(F(S;, v, T, )}

Using (3.2) to subdtitute for In[F (S, , y;,T,,T)] ontheright-hand side of (4.2) and rearranging
yields the following expresson for the moment generating function:

(43)  Mies, y,nm (@ =exp{z[AQ) - A(T1-T) + % (F@O) - F(T-M)}
E{exdz B(T1—T) x, +zBy(T1—-T) y; 1}.

The expectation term on the right-hand side of (4.3) is of the same form as equation (2.3) in
Duifie, Pan, and Singleton, so their advocated method can be gpplied. The resulting andytica
solution for the moment generating function is (4.4):

1
(4.4) Mln[F(Srl'yTlle,T)](Z) =exp[mS, yu t, T1, T) 2+ 5 s(t, T, T 7],

where:

NS,y t, To, ) © AQ) - At - T)+§ [F(O)- F(T1—T)]
+In(S) Byt —T) +y Byt ),

s, T, T)?° F(T1—-T)- F(t-T.

The specific form of moment generating function (4.4) impliesthet In[F(S; , y;., T,,T)]
isdigtributed as anormd random variable with mean (S, vi, t, T1, T) and variance s (t, Ta, T)Z.
In addition, (4.4) impliesthat F(S, Vi, t, T) = exp[m(S, Vi, t, T1, T) + s(t, T, T)?/2]. Thisistrue
because F(S, yi, t, T) = E[[F(S; Y5, T,.T)], and the latter expectation equals
M ¢ (S, BT (z=1) (see(4.2)). Thesetwo results makeit sraightforward to derive the
following andytica solution for the price of the call option:

(45 CFS Wt T, K t, Ta] =explr (t- T1)] [F(S, ¥ t, T) N(d1) — K N(d2)]

where N(3¥ isthe slandard norma cumulative probability didribution, d; © {In[F(S, vi, t, T/K] +
0.5s(t, To, N3 /s(t, To, T),and d2 © {IN[F(S, Y, t, TVK] - 0.5s(t, Ty, TV3}/s(t, T, T).
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Figure 1. Behavior of xt, Conditional Expectations, and 95% Confidence Intervals under Brownian Motion
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Figure 2. Behavior of xt, Conditional Expectations, and 95% Confidence Intervals under Mean Reversion
in yt but not on xt
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Figure 3. Behavior of xt, Conditional Expectations, and 95% Confidence Intervals under Mean Reversion
in xt and yt
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Appendix A
The affine diffuson for vector (X, y) under the risk-neutral measure may be written as
follows

& o8
* b B,

&, Lluéxid ,  és, 0 ue'dw*u

é
~ ~~dt +
e ug u- € - r2
&0 Kk, géyuy & xSy @ )Syu @jwy

C) [ ey e
1

Appendix B
The cal option formula can be obtained by noting that if In(S) is normally distributed
with mean mand variance s 2, then:

_ s 1 1 1n(F;)- mirfl
B Emax(F, - K.0= 0 (F;- K)e o Ze—% dlin(F;,)]

_ ¥\ 1 i_ 1e|n(FTl) mg P
= |n(|<o) Fﬂﬁexp% Ee—u )t/)d“ n(F;)l

s
KD J_exp}-le%ugd[lnw 0,

In(K) S

because F;, >K b In(F; ) >In(K). But In(F,) >In(K) b [In(F;) —nl/s > [In(K) -
m/s = [In(K) —m—s?/2 + s?/2)/s = [In(K) = In(Fy) + s%/2)/s, o that:
 1dn(F,)- )
(B.2 0 J_ exp_| - —e—u yd[ln(F )] =1-N{[In(K/Fy) +s</2]/s}
Ub

In(K )
(B.2) = N{[In(F/K) - s%2]/s}

In addition;

¥‘ 1 i em( Tl) mu P
(B.3) m(% F—— e exp_.f - Ee—u {) d[In(F;)]

o1 1én(F;)- myfl
= expi In(F; )- —e—l d[In(F; )]
In(KCJ) N T u y

ce Ub
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o1 1 oge 1GMF) (m+s 2)u'f

expim+—- =

CapsV®j 2 28

G yd[in(F;,)]

9h

¥
= exp(m+s ?/2)
.n(%s@ i 28

S

¥ 1 4 W]
1 i 1€in(F)- In(F)-s /Z’i/d[ln(F N

= F exp - —é
tlr((K))SVZp i 28

= F {1=N[(In(K/Fy) - s%2)/s]}
(B.3) = F N{[In(F/K) + s%/2]/s}

Substituting (B.2) and (B.3) into (B.1) yields

(B4) E[max(F; - K), 0] = F N{[In(F/K) +s%2]/s} -

The cdl option formula (4.5) follows immediately from (B.4).

Appendix C

p"} eIn(F) (m+s?/2)-s2/20

b

g ydlin(Fy )]
4p

K N{[In(F/K) - s%2]/s}.

Under the risk-neutra measure, the discrete-time distribution of vector [x, yr] IS

bivariate normal with mean vector (C1) and covariance matrix (C.2):

C.l1l A
CD ¢ qen 478 o ol

S, (t-T) S,t-THu

(€2 gsxy(t T) S,t-Tgy

where:

[Q,(0)-Q, )]
" :

(C4) Qyt)° exp(kyt) (=Bx(t) - (kx- ky) By(t)),

(C.5) Su(t)° F(O)- F(t),

(C3) at)° m

6A0)- At-T)a &,(t-T) B,(t-T)d ext
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[B,(0)Q,(0)- B, (t)Q,(t)]
X

y
s.s k.)

(Si'zrxyxyy B.(0 0) - B.(t t
T Ak, k) [Bx(0) Qy(0) - B«(t) Qu(t)],

(CH) Sylt)°s;

., Q,0%-9,0)%
(CT) Sylt)°s? _ .
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