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Option Pricing on Renewable Commodity Markets 
Sergio H. Lence and Dermot Hayes 

 
Practitioners Abstract 

The paper motivates and proposes a closed form option pricing model for markets such as grains 
or livestock where the price level can be expected to revert to expected production costs. The 
model suggests that traditional option pricing models will overprice long term options on these 
markets. 
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Introduction 
The Black and Black-Scholes option pricing models assume that spot price volatility 

increases proportionally to the square root of time.  This assumption is reasonable for stocks and 
currencies, but is inconsistent with mean reversion in spot prices.  Most agricultural commodity 
markets demonstrate a mean reversion to production costs (Bessembinder et al.), which suggests 
that the price volatility around this production cost reaches a maximum value.  If this is true, and 
if price volatility is incorrectly assumed to increase in proportion to the square root of time 
beyond this maximum value, the fair value of long-term options will be overestimated.  This 
problem is apparent in long-term options on crude oil futures.  Schwartz recognized this problem 
in the context of oil futures.  He had the insight that price imbalances caused by temporary 
shortages and surpluses would eventually disappear without impacting on the long run volatility 
level.  For example, a shortage of oil can make the convenience yield greater than the storage 
cost and this can cause nearby futures prices to exceed the prices of more distant contracts.  
Miltersen and Schwartz, and Hilliard and Reis proposed closed-form option-pricing models that 
incorporates reversion to the mean in this convenience yield.  However, their models assume that 
the price level trends rather than revert to a long-run mean.  Therefore, such models are most 
likely to be relevant to exhaustible commodity markets such as gold and oil where Hotelling’s 
Principle might be expected to hold. 

Our interest is in renewable commodity markets such as grain or livestock and here we 
can expect mean reversion in both the level of prices and the convenience yield (Routledge, 
Seppi, and Spatt).  For example, suppose that grain prices are high because of yield shortfalls.  
Then, we will see a high price level across all futures contracts and an inverted market.  With 
reversion to the mean in convenience yield only we might expect that the futures prices would 
eventually reflect a normal cost of carry market, but we would also assume that the current high 
price level is permanent.  With the restriction that the mean price level will revert, we can also 
predict that the price level will revert to the expected production cost.  This additional piece of 
information allows us to reduce the future volatility level. 

The model we propose contains Schwartz’s model as a special case.  Hence, it is possible 
to test whether the restriction imposed by Schwartz's model is warranted by observed data. 
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Graphical Examples 
Figures 1, 2 and 3 are a graphical representation of the three assumptions that underlie the 

three models.  All three figures show the same simulated time series of (the logarithm of) prices, 
and all contain the upper and lower confidence intervals for these prices at two points in time. 

Figure 1 shows price under the standard Black-Scholes assumption of Brownian motion.  
It can be observed that the confidence interval for prices increases in proportion to the square 
root of time as is assumed in the model.  The heavy solid line shows the expected price path and 
this shows a small amount of growth as might be expected for the cash prices for commodities or 
stocks.  If futures markets existed for this commodity, this heavy line would reflect the temporal 
basis.  At time period twenty in Figure 1 the cash price is lower than was expected at time zero, 
and the heavy dotted line shows the expected price path from this lower point.  All of the price 
reduction from times zero to twenty is viewed as permanent in this model.  Therefore, the 
updated expected price path runs parallel to the original but at a level that reflects the 
underperformance of price between times zero and twenty. 

Figure 2 shows the Schwartz model, and is otherwise identical to Figure 1.  A key 
difference between Figure 1 and 2 is that when the price path is updated at time twenty,   
the Schwarz model recognizes that the price drop that occurred just before time twenty was in 
part due to a temporary reduction in the convenience yield reflecting a temporary surplus of the 
commodity.  The model assumes that this temporary component will gradually disappear and 
therefore it adjusts the expected time path of cash prices for this expected price recovery.  
However, once this temporary adjustment is out of the way the Schwartz model behaves very 
much like the Black Scholes model. 

Figure 3 shows the model we propose here.  The price path after time twenty contains an 
adjustment to the temporary imbalance as in the Schwartz model.  However, the model also 
contains one additional piece of information.  It recognizes that the generally low level of prices 
observed at time twenty is well below the production costs for this commodity.  This suggests a 
reduction in supply until prices recover to these expected production costs.  Therefore, the thick 
dotted line approaches the heavy solid line as the model implicitly adjusts supply and demand so 
that expected future prices lie on the path representing expected production costs.  This 
additional piece of information has a dramatic effect on the upper and lower confidence level 
because the model recognizes that all price deviations around this expected production costs are 
of a temporary nature and it therefore tightens the confidence interval around this price path. 

The upper and lower confidence intervals are directly related to the fair option price and 
we can therefore we have intuitive evidence that suggests that models that incorporate mean 
reversion in convenience yields will exhibit lower option prices than those that do not.  We can 
also conclude that when mean reversion in the price level is added to mean reversion in 
convenience yield, the fair option value will be lower still.  The degree to which models that 
neglect mean reversion in the price level overprice option premia will of course depend on the 
parameters of the models, but it is clear that the degree of overpricing will increase with the time 
to expiration of the option. 
 

The Schwartz Model 
Schwartz advanced a path-breaking model of commodity prices that allows for mean 

reversion in the convenience yield but not on the spot price.  Given the seminal nature of his 
work, and the fact that his model is a special case of the model advocated here, we introduce 
Schwartz' framework first. 
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Schwartz' fundamental insight was that commodities are characterized by "convenience 
yields" that are stochastic and mean reverting.  Accordingly, he postulated that the convenience 
yield net of storage costs ct ≡ Convenience Yield – Storage Cost follows the Ornstein-Uhlenbeck 
stochastic process (1.1): 
 
(1.1) dc = (µc – κc c) dt + σc dWc, 
 
where µc/κc = long-term mean, κc ≡ speed of mean reversion (κc > 0), and dWc is a Wiener 
process.  The mean of cT as of time t is µc/κc + exp[–κc (T – t)] (ct – µc/κc), and the variance is 
0.5 {1 – exp[– 2 κc (T – t)]} σc

2/κc.1 
In contrast to the convenience yield process (1.1), Schwartz assumed that the actual 

process for the commodity spot price (S) is not mean reverting.  More specifically, he 
hypothesized that spot prices behave as a geometric Brownian motion: 
 
(1.2) dS = µS S dt + σS S dWS, 
 
where dWS is a Wiener process correlated with dWc, so that dWS dWc = ρSc dt (ρSc being the 
correlation coefficient).  Letting x ≡ ln(S), application of Ito's Lemma to (1.2) yields the 
arithmetic Brownian motion (1.3) for the logarithm of spot prices: 
 
(1.3) dx = µx dt + σx dWx, 
 
where µx ≡ µS − σS

2/2, σx ≡ σS, dWx ≡ dWS, and ρxc = ρSc.  In (1.2), µx denotes the drift in the 
logarithm of spot prices. 

The rate of return to holding commodity consists of the relative price change (dS/S = dx) 
plus the convenience yield net of storage costs (c).  Thus, the expected rate of return to 
commodity holders is µx + c.  In equilibrium, the latter must equal the risk-free rate of return (r) 
plus the risk premium (λ).  Letting µx + c = r + λ in (1.1) and (1.3), yields the corresponding 
risk-neutralized stochastic processes: 
 
(1.4) dc = (µc – κc c – λc) dt + σc *

cdW , 
 
(1.5) dx = (r – c) dt + σx *

xdW , 
 
where λc is the market price for c risk and *

cdW  and *
xdW  are the Wiener processes under the 

equivalent martingale measure.  Note that *
xdW  *

ydW  = ρxy dt.  Schwartz derived futures prices 
under the above assumptions, whereas Miltersen and Schwartz, and Hilliard and Reis obtained 
the equations for the corresponding option prices. 
 
 
 
 

                                                                 
1The discrete-time analog of process (1.1) is ct = φ0 + φ1 ct−1 + i.i.d. shock t. 
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Allowing for Mean Reversion in the Price Level 
Unlike Schwartz, here spot prices are allowed to be mean reverting as in (2.1): 

 
(2.1) dS = [µS – κS ln(S)] S dt + σS S dWS, 
 
Given (2.1), Ito's Lemma yields the Ornstein-Uhlenbeck stochastic process (2.2) for the 
logarithm of the spot prices: 
 
(2.2) dx = (µx – κx x) dt + σx dWx, 
 
where κx ≡ κS > 0 is the speed at which the logarithm of the spot price reverts to its long-run 
mean µx/κx.  Note that if κx = 0, (2.2) collapses to (1.3), i.e., the arithmetic Brownian motion 
with expected drift µx assumed by Schwartz. 

A stylized fact of commodity markets is that convenience yields are positively associated 
with the spot prices.2  Hence, the convenience yield net of storage costs is postulated to consist 
of the following random function of the logarithm of the spot price: 
 
(2.3) c = y + κx x, 
 
where y follows the Ornstein-Uhlenbeck stochastic process (2.4): 
 
(2.4) dy = (µy – κy y) dt + σy dWy. 
 
Wiener processes dWx and dWy are correlated so that dWx dWy = ρxy dt, where ρxy is the 
correlation coefficient.  Setting κx = 0 in (2.3) yields c = y, in which case the advocated 
convenience yield process becomes identical to that in Schwartz. 
 In equilibrium, the instantaneous expected total return to commodity holders {E(dS/S + c) 
= [(µx – κx x) + (y + κx x)] dt} must equal the risk-free rate plus the associated market price of 
risk (r + λ).  Therefore, the risk-neutral process for dx may be written as (2.5): 
 
(2.5) dx = [r – (y + κx x)] dt + σx *

xdW , 
 
where *

xdW  is the Wiener process under the equivalent martingale measure.  Component y of the 
convenience yield (2.3) cannot be hedged because it is not traded.  Hence, the stochastic process 
for y under the equivalent martingale measure (2.6) depends on the market price for y risk (λy): 
 
(2.6) dy = (µy – κy y − λy) dt + σy 

*
ydW . 

 
In (2.6), *

ydW  is the Wiener process under the equivalent martingale measure.  Note that *
xdW  

*
ydW  = ρxy dt. 

 The risk-neutralized processes (2.5) and (2.6) provide the basic foundations to derive 
commodity futures and options prices, which are discussed the next two sections. 
                                                                 
2Typically, when a commodity is in relatively short supply its price is high and its convenience is high, as well. 
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Futures Prices 
Under the assumption that the risk-free interest rate r is constant, at time t the commodity 

futures price with maturity T is simply the time-t expected price of the commodity at time T 
under the equivalent martingale measure.  That is: 
 
(3.1) F(St, yt, t, T) = )(*

Tt SE , 
 
where )(* ⋅tE  denotes the expectation with respect to the risk-neutralized processes (2.5) and 

(2.6).  The expression for )(*
Tt SE  can be obtained by noting that ST = exp[ln(ST)] = exp(xT), and 

that the vector (x, y) follows an affine diffusion (e.g., Dai and Singleton) under the martingale 
measure.  This allows us to apply the method proposed by Duffie, Pan, and Singleton to get a 
closed-form solution for the futures price. 

The expression for the futures price is (3.2): 
 

(3.2) F(St, yt, t, T) = exp{Α(0) − Α(t – T) + 
2
1

 [Φ(0) − Φ(t – T)]  

+ ln(St) Βx(t – T) + yt Βy(t – T)}, 
 
where: 
 

 Α(τ) ≡ 










 −
−

y

yyr
κ

λµ )(
 

x

x
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τΒ )(

 + (µy − λy) 
y

y

κ

τΒ )(
, 

 

 Φ(τ) ≡ 

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









+

−
+

)(

)2( 2
2

yxy

yyxxyy
x κκκ

κσσρσ
σ  

x

x

κ
τΒ

2
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− 
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)2( 2

yxy

yyxxyy

κκκ

κσσρσ

+

−
 Βx(τ) Βy(τ) + 2

yσ  
y

y

κ

τΒ

2

)( 2

, 

 
 Βx(τ) ≡ exp(κx τ), 
 

Βy(τ) ≡ 
yx

yx expexp

κκ

τκτκ

−

− )()(
. 

 
Options on Futures Contracts 

Of particular interest here are the prices of options on futures.  To this end, let C[F(St, yt, 
t, T), K, t, T1] denote the price at time t of a European call option expiring at time T1 ≥ t on a 
futures contract that expires at time T ≥ T1, with strike price K.  Since the payoff of such an 
option at expiration is ]0 ,),,,([ 111

KTTySFmax TT − , standard arguments can be applied to show 
that its price at time t is given by: 
 
(4.1) C[F(St, yt, t, T), K, t, T1] = exp[r (t − T1)] ]}.0 ,),,,([{ 111

KTTySFmaxE TT
*
t −  
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The analytical solution for the call option price C[F(St, yt, t, T), K, t, T1] can be computed by 
resorting again to Duffie, Pan, and Singleton, as done next. 

The moment generating function of the logarithm of futures prices under the equivalent 
martingale measure is defined by (4.2): 
 
(4.2) )()],,,([ 11

zM TTySFln TT
 ≡ ))]}.,,,(( [{ 111

TTySFlnzexpE TT
*
t  

 
Using (3.2) to substitute for )],,,([ 111

TTySFln TT  on the right-hand side of (4.2) and rearranging 
yields the following expression for the moment generating function: 
 

(4.3) )()],,,([ 111
zM TTySFln TT

 = exp{z [Α(0) − Α(T1 – T) + 
2
1

 (Φ(0) − Φ(T1 – T))]}  

zexpE*
t [{  Βx(T1 – T) 

1Tx  + z Βy(T1 – T) ]}.
1Ty  

 
The expectation term on the right-hand side of (4.3) is of the same form as equation (2.3) in 
Duffie, Pan, and Singleton, so their advocated method can be applied.  The resulting analytical 
solution for the moment generating function is (4.4): 
 

(4.4) )()],,,([ 111
zM TTySFln TT

 = exp[µ(St, yt, t, T1, T) z + 
2
1

 σ(t, T1, T)2 z2], 

 
where: 
 

 µ(St, yt, t, T1, T) ≡ Α(0) − Α(t − T) + 
2
1

 [Φ(0) − Φ(T1 – T)]  

+ ln(St) Βx(t – T) + yt Βy(t – T), 
 
 σ(t, T1, T)2 ≡ Φ(T1 – T) − Φ(t – T). 
 

The specific form of moment generating function (4.4) implies that )],,,([ 111
TTySFnl TT  

is distributed as a normal random variable with mean µ(St, yt, t, T1, T) and variance σ(t, T1, T)2.  
In addition, (4.4) implies that F(St, yt, t, T) = exp[µ(St, yt, t, T1, T) + σ(t, T1, T)2/2].  This is true 
because F(St, yt, t, T) = )],,,([ 111

TTySFE TT
*
t , and the latter expectation equals 

)1()],,,([ 111
=zM TTySFln TT

 (see (4.2)).  These two results make it straightforward to derive the 

following analytical solution for the price of the call option: 
 
(4.5) C[F(St, yt, t, T), K, t, T1] = exp[r (t − T1)] [F(St, yt, t, T) N(d1) – K N(d2)] 
 
where N(⋅) is the standard normal cumulative probability distribution, d1 ≡ {ln[F(St, yt, t, T)/K] + 
0.5 σ(t, T1, T)2}/σ(t, T1, T), and d2 ≡ {ln[F(St, yt, t, T)/K] − 0.5 σ(t, T1, T)2}/σ(t, T1, T). 
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Figure 1.  Behavior of xt, Conditional Expectations, and 95% Confidence Intervals under Brownian Motion
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Figure 2.  Behavior of xt, Conditional Expectations, and 95% Confidence Intervals under Mean Reversion 
in yt but not on xt
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Figure 3.  Behavior of xt, Conditional Expectations, and 95% Confidence Intervals under Mean Reversion 
in xt and yt
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Appendix A 
The affine diffusion for vector (x, y) under the risk-neutral measure may be written as 
follows: 
 

(A.1) 







dy
dx

 = 

























−








− y

xr

y

x

yy κ
κ

λµ 0
1

 dt + 







− yxyyxy

x

σρσρ
σ

)1(
0

2  











*

*

y

x

dW
dW

. 

 
 

Appendix B 
The call option formula can be obtained by noting that if ln(S) is normally distributed 
with mean µ and variance σ2, then: 
 

(B.1) E[max(
1TF  − K), 0] = )]([ 

)(

2
1

2
1

)(
1

1

1

2

)(
T

T

Kln
T Flnd

Fln
exp KF
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 −
−−∫

∞
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πσ
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2
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2
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2
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 −
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∞
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− )]([ 
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2
1

2
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
















 −
−∫

∞

σ

µ

πσ
, 

 
because 

1TF  > K ⇒ )(
1TFln  > ln(K).  But )(

1TFln  > ln(K) ⇒ [ )(
1TFln  – µ]/σ > [ln(K) – 

µ]/σ = [ln(K) – µ – σ2/2 + σ2/2]/σ = [ln(K) – ln(Ft) + σ2/2]/σ, so that: 
 

(B.2) )]([ 
)(

2
1

2
1

1

1

2

)(
T

T

Kln

Flnd
Fln

exp 





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










 −
−∫

∞

σ

µ

πσ
 = 1 – N{[ln(K/Ft) + σ2/2]/σ} 

 
(B.2')  = N{[ln(Ft/K) − σ2/2]/σ} 
 
In addition: 
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= Ft {1 – N[(ln(K/Ft) − σ2/2)/σ]} 

 
(B.3')  = Ft N{[ln(Ft/K) + σ2/2]/σ} 
 
Substituting (B.2') and (B.3') into (B.1) yields 
 
(B.4) E[max(

1TF  − K), 0] = Ft N{[ln(Ft/K) + σ2/2]/σ} − K N{[ln(Ft/K) − σ2/2]/σ}. 
 
The call option formula (4.5) follows immediately from (B.4). 
 
 

Appendix C 
Under the risk-neutral measure, the discrete-time distribution of vector [xT, yT] is 
bivariate normal with mean vector (C1) and covariance matrix (C.2): 
 

(C.1)  







−

−−
)(

)()0(
Tt

TtAA

yθ
 + 








−
−−

)(0
)()(

Tt
TtTt

y

yx

Θ
ΒΒ

 








t

t

y
x

, 

 

(C.2) 







−−
−−

)()(
)()(

TtTt
TtTt

yyxy

xyxx

ΣΣ
ΣΣ

, 

 
where: 
 

(C.3) θy(τ) ≡ µy 
y

yy

κ

τΘΘ )]()0([ −
, 

 
(C.4) Θy(τ) ≡ exp(κy τ) (= Βx(τ) − (κx − κy) Βy(τ)), 
 
(C.5) Σxx(τ) ≡ Φ(0) − Φ(τ), 
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(C.6) Σxy(τ) ≡ 2
yσ  

y

yyyy

κ

τΘτΒΘΒ

2

)]( )()0( )0([ −
  

− 
)(2

)2( 2

yxy

yyxxyy

κκκ

κσσρσ

+

−
 [Βx(0) Θy(0) − Βx(τ) Θy(τ)], 

 

(C.7) Σyy(τ) ≡ 2
yσ  

y

yy

κ

τΘΘ

2

])()0([ 22 −
. 

 


