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Comparing the Performances of the Partial Equilibrium 
and Time Series Approaches to Hedging 

Practitioner’s Abstract 
 
This research compares partial equilibrium and statistical time-series approaches to hedging.  
The finance literature stresses the former approach, while the applied economics literature has 
focused on the latter.  We compare the out-of-sample hedging effectiveness of the two 
approaches when hedging commodity price risk using a simple derivative with a linear payoff 
function (a futures contract).  For various methods of parameter estimation and inference, we 
find that the partial equilibrium models cannot out-perform the time series model.  The partial 
equilibrium models’ unpalatable assumption of deterministically evolving futures volatility 
seems to impede their hedging effectiveness, even when potentially foresighted option-implied 
volatility term structures are employed. 
 
Keywords:  Commodity contingent claims, multivariate GARCH, hedging. 
 
 
I.  Introduction 
 
Two broad strategies for optimally hedging risky market commitments have emerged in the 
academic literature and in practice.  The applied economics literature has focused on the use of 
statistical models of the observed time series of cash and futures prices in hedging.  Early 
development of this type of optimal hedging is found in Johnson (1960), Peck (1975), and Kahl 
(1983), among others.  Typically, this type of hedging considers an agent with a non-tradable 
position in a cash commodity, who plans to buy or sell some number of commodity futures 
contracts that will maximize her utility.  This traditionally involved making static estimates of 
the variances of changes in the cash and futures prices and the covariance between those 
changes, and then choosing a level of hedging that would minimize the variance of changes in 
the hedger’s portfolio value.  More recently, Cecchetti, Cumby and Figlewski (1988), Myers 
(1991), and Baillie and Myers (1991) have adopted the use of models of time-varying 
conditional variance for optimal hedging.  Noting that the use of differenced data will loose 
information about the long-run relationship between two time series, Kroner and Sultan (1993) 
incorporate the co-integrating relationship between cash and futures prices into their model.  
Gagnon, Lypny and McCurdy (1998) and Haigh and Holt (2000) extend these models to include 
multiple risks. 
 
The finance literature on the other hand has typically stressed the use of partial equilibrium 
derivative pricing models for hedging.  This began when Black and Scholes (1973) and Merton 
(1973) noted that the seller of a derivative could form a risk-free portfolio by holding just the 
right quantity of the underlying security.  This quantity is determined by the rate a which the 
price of the derivative will change as the price of the underlying changes, referred to as the 
“delta.”  This type of hedging is therefore often referred to as “delta hedging.” 
 
In application, different types of hedgers have tended to make use of the two strategies.  Holders 
of large derivative portfolios generally have employed partial equilibrium hedging.  This is the 
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realm of financial institutions and “financial engineers” that sell derivatives to their customers at 
a markup to the value of a portfolio with price dynamics that replicate, as closely as possible, 
those of the derivative.  Commodity producers and consumers, on the other hand, have more 
often used the time series approach.  A typical picture is that of the agricultural producer with a 
crop in the ground, who wishes to minimize the risk that the price of the output will fall before 
the harvest.  Despite their differences, these two types of hedgers face exactly the same problem: 
they each hold a position in one market (either underlying or derivative), and wish to take a 
position in the other market that will result in maximum benefit.  Either hedger might use either 
of the two approaches to hedging, despite the traditional divide. 
 
Each approach has it own merits and drawbacks.  The time series approach does not require the 
imposition of theory a priori, thereby avoiding potential misspecification.  Also, available time 
series models can very effectively represent time-varying covariability among price series, a 
commonly observed market phenomenon that is central to the hedging problem.  This approach 
does not, however, make use of all available information.  For example, time series hedging 
models consider neither the arbitrage activity that constrains the price of a derivative relative to 
its underlying security, nor theories regarding derivatives’ price variability (e.g. the Samuelson 
(1965) hypothesis that a futures contract’s volatility should increase as expiration approaches). 
 
By contrast, the partial equilibrium approach directly incorporates the arbitrage relationship(s) 
between the derivative and underlying instrument(s).  An additional benefit of this approach is 
the ability to use observed market prices to infer the expectations of market participants.  For 
example, option prices can be used to infer the future levels of volatility that knowledgeable 
industry participants are anticipating in an associated underlying market.  The adoption of the 
partial equilibrium approach comes at the price however of requiring various simplifying 
assumptions, which have varying degrees of implausibility.  Crucially, most partial equilibrium 
models do not incorporate the stochastically time-varying volatility that is widely acknowledged 
to exist in most financial and commodity markets. 
 
Given the above stated benefits and drawbacks of each of the two approaches to hedging, it is not 
immediately clear that one approach should be preferred in any given situation.  No previous 
research has directly compared the effectiveness of these two hedging strategies, and we thus 
undertake such an evaluation here.  We directly compare the in-sample and out-of-sample 
hedging performance of the two approaches for a trader that is long physical crude oil, and uses a 
simple derivative with a linear payoff function (a futures contract) to hedge the associated price 
risk.  We assume that the hedger maximizes a mean-variance utility function, and hedging 
effectiveness is measured by the increases in utility that the hypothetical trader realizes by 
implementing each strategy (relative to not hedging at all).  Two partial equilibrium models that 
have been developed in the commodity contingent claims pricing literature are considered – the 
Schwartz (1997) one-factor model, and the two-factor model of Gibson and Schwartz (1990).  
Various strategies for estimating and inferring these models’ parameters are employed.  The 
competing time series model is a vector error-correction model, with a generalized 
autoregressive conditional heteroskedastic error structure. 
 
The rest of this paper is organized as follows:  In section II, we describe the hedging problem 
and the time series model.  In section III, we describe the partial equilibrium models, and 
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describe how they can adapted for optimal hedging by an agent with mean-variance type utility.  
This continuous time mean-variance hedging can be considered a generalization of delta 
hedging.  We also show these models can be extended to allow for spatial and form differences 
between the commodity to which a hedger is committed and the commodity underlying the 
futures contract.  Section IV discusses the estimation of all models, and section V reports their 
hedging effectiveness.   Section VI concludes. 

 
II.  Hedging Commodity Price Risk Using Time Series Models 
  
We consider a hedger that is long a physical commodity, and wishes to optimally select of a 
quantity of futures contracts to sell.  The hedge ratio, b, is the ratio of the size of the futures 
market position to the size of the cash market position.  The change in the hedger’s portfolio 
value over the discrete interval from time t-1 to time t is given by 
 
(1)   )()( 1111 −−−− −−−=− ttttttt FFbLLPP  
 
where tP , tL , and tF  represent portfolio value, the local cash price of the commodity held by the 
hedger, and the futures price, respectively, in period t.  Note that the commodity held by hedger 
does not necessarily correspond exactly to the commodity underlying the futures contract.  The 
hedger may be holding a different grade of the commodity than is called for by the futures 
contract (or a different commodity altogether), and she may not be able to deliver her commodity 
against the futures contract at par value locally.  We therefore distinguish between a local cash 
price of an arbitrary commodity, and the price at the specified futures delivery location of the 
specified commodity.  We refer to the former as a local cash price tL  as above, and to the latter 
as the spot price tS . 
 
We assume that the hedger maximizes mean-variance type utility.  The hedger’s problem for 
each period is then is formulated as follows: 
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where E is the conditional expectation operator, tP∆  is the change in portfolio value from t-1 to t, 

1−Ω t   is the information available as of t-1, Uλ  is the coefficient of absolute risk aversion, and 
var() is the conditional variance operator.  Note that the risk-minimizing objective is a special 
case of (2) where ∞=Uλ .  Note that the conditional variance term in (2) can be expanded, using 
(1), as 
 
(3)  )|,cov(2)|var()|var( 111

2
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where cov() is the conditional variance operator.  The utility-maximizing hedge ratio is then 
given by 
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The second-order condition for this problem is the negative of the risk aversion coefficient 
multiplied by the conditional variance of changes in the futures price, and we are thus guaranteed 
a global maximum for a risk-averse hedger.   If we have ∞=Uλ , the first term in the numerator 
is zero and we have the minimum-variance hedge ratio.  For ∞>> Uλ0 , the optimal hedge ratio 
contains the minimum-variance component, and a speculative component.  If our hedger 
anticipates a decrease in the futures price, he will reduce the level of hedging to below the 
minimum variance level to avoid losses in the futures market.  Likewise, an anticipated increase 
in the futures price will compel our hedger to increase the size of the futures position. 
 
Calculating the optimal hedge ratio in equation (4) requires the time-series modeler to provide 
two types of information – the conditional expected futures price change and conditional 
variance-covariance forecasts.  Recent academic hedging research advocates obtaining the first 
piece of information using a vector error correction (VEC) model.  This an the appropriate 
modeling technique in the event that each of the two price series is found to follow a unit root 
process, but a linear combination of the two is found to be stationary (Engle and Granger, 1987).  
This linear combination is interpreted as representing a long-run equilibrium between the two 
levels series.  The VEC model is essentially a vector auto-regression model in which a deviation 
from the long-run equilibrium (the “error”) in one time period is subject to some degree of 
correction in the following time period.  A basic representation of a VEC for 2 variables is as 
follows: 
 

(5)    ttit

r

i
it yyy εαβππ ++∆+=∆ −−

=
∑ 1

1
0  

 
where ty  is the 12×  vector of observations at time t, 0π  is a 12×  parameter vector, iπ  is a 

22×  coefficient matrix, β  is the co-integrating vector characterizing the long-run equilibrium, 
α  is a 12×  coefficient vector, and tε  is a vector of innovations.  The inner product 1−tyβ  is the 
deviation from the long-run equilibrium, and α  characterizes the rate at which each of the two 
variables responds to this deviation.  Forming y using cash and futures prices, Equation (5) can 
then be used to generate forecasts of futures price changes – one of the components of the 
optimal hedge ratio above. 
 
The other pieces of information that are required to calculate the optimal hedge ratio in (4) are 
the conditional variances and covariance. These can be forecast using multivariate versions of 
the auto-regressive conditional heteroskedasticity (ARCH) model of Engle (1982) or the 
generalized ARCH (GARCH) model of Bollerslev (1986).  A GARCH error structure implies 
that the conditional second moment of the innovation vector of a model follows an 
autoregressive, moving average process – it is a function of past innovation vectors and past 
second moments.  Here we employ a GARCH(1,1) model with the diagonal vech 
parameterization of Bollerslev, Engle, and Wooldridge (1988).  The conditional distribution of 
the error vector from (5) is then given by 
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(6)    1| −Ω ttε ~ ),0( tHN  
 
(7)   vech AWH t +=)(  vech BT

tt +−− )( 11εε  vech )( 1−tH . 
 
Here, vech() is the column stacking operator that stacks the lower triangular portion of a 
symmetric matrix, W is a 13×  vector of constants, and A and B are a diagonal 33×  coefficient 
matrices.  Equation (7) can be used to form one-period ahead forecasts of the variance of futures 
price changes and the covariance between futures and cash price changes.  The VEC-GARCH 
model given by equations (5) through (7) thus provides a means by which a hedger can select the 
optimal level of hedging. 
 
III.  Hedging Commodity Price Risk Using Partial Equilibrium Models 
 
Early models for pricing contingent claims included only a single stochastic factor, the price of 
the underlying asset.  These models assumed that a risk-free portfolio consisting of a short 
position in the derivative contract and a long position in the underlying asset could be formed, 
and that this portfolio should earn the risk-free rate of return.  Ross (1978) noted that this 
assumption is inappropriate in the event that there are benefits to holding an actual asset, rather 
than merely holding a contract calling for future delivery.  When the asset is a commodity, the 
flow of these benefits is referred to as a convenience yield.  Kaldor (1939) describes this 
phenomenon, and it features prominently in the theory of storage developed in Working (1949) 
and Brennan (1959).  Consideration of the convenience yield motivated the development of the 
Brennan and Schwartz (1985) model for pricing commodity contingent claims, which assumed 
that a commodity’s convenience yield was a constant proportion of the spot price.  This 
assumption that the convenience yield could be specified as a deterministic function of a 
commodity’s spot price was investigated empirically in Brennan (1991), and Gibson and 
Schwartz (1991).  Both studies decisively concluded that such an assumption was inappropriate, 
and that the convenience yield should be specified as a second stochastic factor. 
 
Gibson and Schwartz (1990) thus developed a model for pricing commodity contingent claims 
with two stochastic factors, the first being the spot price of the commodity and the second being 
the instantaneous net (of storage costs) convenience yield of the commodity.  In this model, the 
holder of a commodity derivative faces not only the risk that the spot price of the commodity 
will change, but also the risk associated with changes in the convenience yield.  As it is not 
possible to hedge the latter risk, the hedger will not be able to form a completely risk-free 
portfolio, and the Gibson-Schwartz (GS) model is one of incomplete markets. 
 The GS model assumes that the spot price of a commodity S and associated instantaneous 
net convenience yield δ  follow the joint diffusion process given by 
 
(8)    11/ dzdtSdS σµ +=  
 
(9)    22)( dzdtkd σδαδ +−=  
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where µ  is the drift of spot price returns, 2
1σ  and 2

2σ  are the instantaneous variances of spot 
price returns and the convenience yield respectively, 1dz  and 2dz  are increments to correlated 
Brownian motions, with the multiplication rule dtdzdz 1221 ρ= , and 12ρ  being the correlation 
coefficient.  The convenience yield is assumed to revert at rate k to a long-run mean level α .  By 
Ito’s Lemma, the price ),,( τδSG of a commodity contingent claim that is a function of time, and 
a twice continuously differentiable function of S  and δ  then follows the diffusion 
 

(10)  dtSGGSGSGGdG SSSS 



 +++−−= µσσσρσ δδδτ

2
22112

22

2
1

2
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1
 

[ ] [ ] 2211 dzGdzSGS δσσ ++  
 

where tT −=τ  is the length of time from the present (t) until expiration of the derivative (T), 
and XG  represents the partial derivative of G with respect to X.  Gibson and Schwartz present a 
no-arbitrage argument that leads to following partial differential equation that must be satisfied 
by the price ),,( τδSF  of a futures contract: 
 

(11) ( )[ ] 0))(
2
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2
1

22112
2
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where r is the risk-free rate of return, and λ  is the market price of convenience yield risk.  The 
solution to (11), as reported in Hilliard and Reis (1998)1 is 
 
(12)  















−++−+







 −−
=

−

kkk
r

k
e

SSF
k

1221
2

2
22

2
)1(

exp),,(
ρσσσλσ

ατ
δ

τδ
τ

 

( )












 −
+








+−−







 −
+

−−

3

22
21221

2

2
22

4
11

k
e

kkkk
e kk ττ σρσσσλσ

α . 

 
We now turn to the task of adapting the GS model for use in hedging.  Using (12) to find 

the appropriate partial derivatives to substitute into (10), we find the diffusion followed by a 
futures contract to be 
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For a hedger whose local cash price corresponds to the spot price, changes in portfolio value are 
given by bdFdSdP −= .  Using this, applying Ito’s Lemma to equation (8), and using equation 
(13), we find that the short hedger’s portfolio dynamics are described by the diffusion 
 

(14)   ( ) ( ) dte
k

rbFSdP k


















 −−−−−








+= − τλσ

δµ
σ

µ 1
2

2
2
1  



 7 

( )[ ] ( )
2

2
11

1 dz
k

ebFdzbFS
k



















 −
+−+

− τσ
σ  

 
Defining another standard Brownian motion z and a parameter Pσ  such that 
 

(15)   ( )[ ] ( )
2

2
11

1 dz
k

ebFdzbFSdz
k

P


















 −
+−=

− τσ
σσ , 

 
we can simplify equation (14) to 
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This expression for the instantaneous variance of changes in portfolio value is analogous to 
equation (3) – the first term is the instantaneous variance of spot price changes, the second term 
is 2b  multiplied by the instantaneous variance of futures price changes, and the third term is 

b2−  multiplied by the instantaneous covariance between spot and futures price changes.  Armed 
with the above specification for the controlled stochastic process followed by the hedger’s 
portfolio, we are in a position to solve the continuous time version of the hedging problem given 
by equation (2).  In the context of the GS model, we find the following expression for the 
optimal hedge ratio: 
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where  
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Note that the above expression for the optimal hedge ratio has been developed for a hedger 
whose cash market commitment exactly corresponds to the commodity underlying the futures 
contract (i.e. L = S).  This result is of limited usefulness, as many hedgers’ cash market 
commitments vary from the specifications of the futures contract.   The GS model can be 
augmented, however, to derive a more general formulation.  We define the difference between 
the hedger’s cash price and the spot price as 
 
(20)     SLB −≡  
 
and we propose the following stochastic process for B: 
 
(21)    ( ) 33dzdtBdB σβγ +−=  
 
where 2

3σ  is the instantaneous variance of changes in B, 3dz  is a third Brownian motion, and we 
add the multiplication rules dtdzdz 1331 ρ=  and dtdzdz 2332 ρ= .  We assume that B reverts to 
level β  at rate γ .  The mean-reverting nature of B is justified in the event that a stable long-run 
relationship between the cash and spot prices exists.  In the event that no such relationship 
existed, the futures contract would make an inappropriate hedging vehicle for the cash price 
concerned.  Changes in the hedger’s portfolio are then given by bdFdSdBdPA −+= , and we 
can follow a succession of steps similar to those above to arrive at the following diffusion: 
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The differences between expressions (17) and (23) are in the terms that represents the 
instantaneous variance of cash price changes and the covariance between cash and futures price 
changes.  The variance of cash price changes now reflects the interaction between the spot price 
and its difference with the local cash price.  The covariance term now contains portions that 
reflect the covariation of B with the other stochastic factors in the model.  This results in an 
expression for the optimal hedge ratio, analogous to (18), of 
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This is a more general optimal hedge ratio that could be used by a hedger who does not plan to 
make delivery at the delivery location specified by the futures contract, or who is implementing a 
cross hedge.   
 
Schwartz (1997) presents a one-factor model for pricing commodity contingent claims, hereafter 
referred to as the S97 model.  Rather than arguing that a risk-free portfolio of a derivative and 
the underlying commodity can be formed, however, this model is developed by attaching a 
market price of (spot price) risk to the derivative.  The S97 model does not therefore follow in 
the spirit of Kaldor, Working and Brennan’s theory of storage as the GS model did, but instead 
follows Keynes (1930) and Hicks (1939) in emphasizing the role of risk and return in 
determining the value of contingent claims.  In the S97 model, the spot price is assumed to 
follow the process 
 
(25)    ( ) 11ln SdzSdtSkdS σµ +−= . 
 
 where as before 2

1σ  is the instantaneous variance of changes in the natural logarithm of the spot 
price, and the log of the spot price reverts to level µ  at rate k.  The price of a futures contract 
must satisfy, as discussed by Schwartz, the partial differential equation 
 

(26)    ( ) τλµσ FSFSkFS SSS −−−+ ln
2
1 22

1  

 
where λ  is the market price of risk.  Schwartz gives the solution as 
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Following the discussion of hedging using the GS model, when C = S, we have the following 
process for the short hedger’s portfolio under the S97 model 
 
(28)     dzdtdP PP σµ +=  
 
where the drift is 
 
(29)    ( ) λµµ τ kbFeSSk k

P
−−−= ln  

 
and instantaneous variance is 
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(30)   2
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The optimal hedge ratio for the short hedger when L = S is then 
 

(31)    2
1
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Note that if we ignore the speculative component, the variance-minimizing hedge ratio is 
( ) )exp( τkFS .  Using equation (27), it is easy to see that this is identical to SF .  This 
demonstrates that the adaptation of contingent claims models for mean-variance hedging that we 
outline here can be considered a generalization of delta hedging.  Augmenting the S97 for the 
case where SL ≠ , again using equation (20) and specifying  
 
(32)    ( ) 22dzdtBdB σβγ +−= , 
 
similar to before we find the diffusion followed by the hedger’s portfolio is 
 
(33)    dzdtdP APAPA σµ +=  
 
with drift 
 
(34)   ( ) ( ) λµβγµ τ kbFeSSkB k

AP
−−−+−= ln  

 
and instantaneous variance 
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The optimal hedge ratio for the short hedger when SL ≠  is then given by 
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IV.  Data, Parameter Estimation, and Parameter Inference 
 
The data we use are week ending observations of the New York Mercantile Exchange (NYMEX) 
crude oil futures contracts, options on those futures, and the associated spot price.  The futures 
and spot price data are observed over the period January 6, 1984 through June 21, 2002.  We use 
option prices observed January 3, 1992 through June 21, 2002.  Option prices were available 
before 1992, but trading volumes were not sufficient for the purposes outlined below.  All data 
were provided by Commodity Research Bureau.  We divide the data into three periods.  The first 
time period, January 6, 1984 through December 27, 1991 (417 observations), is used strictly for 
parameter estimation.  The second time period, January 3, 1992 through December 27, 1996 (261 
observations), is used for both parameter estimation and the evaluation of in-sample hedging 
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effectiveness.2  Out-of-sample hedging effectiveness is evaluated over the final time period, 
January 3, 1997 through June 21, 2002 (286 observations). 
 
There is one NYMEX crude oil futures delivery per month.  The price data for individual futures 
contracts were used to construct a rolling nearby futures series (NEAR) that is used in the 
parameter estimation and evaluation of hedging effectiveness.  Where price changes were 
required, as in the unit root testing and VEC model estimation, care was taken to take changes of 
the individual futures series before selecting those changes that were nearby.  That is to say, we 
use nearby futures changes (NEARD) rather than a changes in the nearby futures series 
(DNEAR).  The latter series would result in roughly one out of every four observations being the 
composition of a change in a futures price and the spread between the expiring and new nearby 
futures prices (due to monthly contract expiration and the weekly observation frequency).  Such 
a series has no natural interpretation in the context of hedging, and an uncertain (at best) 
interpretation in the context of time series econometrics.  The NEARD series, however, contains 
no observations that are corrupted by futures spreads and is consistent with the futures price 
changes that an actual trader would realize.  The differenced spot price series (DS) contains the 
usual first differences of the spot prices (S). 
 
Following Gibson and Schwartz (1990), we employ the annualized one-month forward 
convenience yield when estimating the stochastic processes underlying the GS model.  This is 
estimated using the price F1 of a nearby futures contract and the price F2 of the subsequent 
contract expiring using the following relation 
 

(37)     







−= 2

1
1 ln12

F
Frδ  

 
where r1 is the one-month forward riskless interest rate. 
 
We first discuss the in-sample time series analysis.  Augmented Dickey-Fuller (ADF) Tests for 
unit roots were carried out on all series over the in-sample estimation period (January 6, 1984 
through December 27, 1996), with results presented in the first four rows of Table 1.  Test results 
suggest non-stationary behavior, and differenced spot and nearby futures changes series are thus 
used for the remainder of the time-series estimation.  We test for the presence of cointegration 
between S and NEAR using the Engle-Granger (1987) methodology.3  Regressing S on NEAR 
and a constant results in the following potential cointegrating relation 
 
(38)    NEARSECT 001.1014.0 −+= . 
 
An ADF test statistic on the recovered ECT series, presented in the last row of Table 1, strongly 
rejects the null hypothesis of a unit root, and we conclude that S and NEAR are indeed 
cointegrated. 
 
Preliminary univariate analysis of the DS and NEARD series suggested the presence of GARCH 
effects as expected.  Bollerslev’s GARCH(1,1) process was then fitted to each series under the 
assumption of normality, with the results found in Table 2.  Consistent with Baillie and Myers, 
no autoregressive terms in the mean equations were necessary to render the standardized 



 12 

residuals free of autocorrelation, as evidenced by the reported Ljung-Box tests on the 
standardized residuals for up to 12th-order autocorrelation.  The sample skewness and kurtosis of 
the standardized residuals from each model suggest no significant deviation from normality.  
Asymptotic standard errors for the conditional variance equation parameter estimates confirm the 
presence of GARCH behavior in the series, and the Ljung-Box test on the squared standardized 
residuals indicates that the GARCH(1,1) specification adequately represents this behavior. 
 
Based on the results of the univariate time series analyses, the multivariate VEC-GARCH(1,1) 
model given by equations (5) through (7) was fitted to the DS and NEARD series under the 
assumption or normality.  The mean equations for each variable include the ECT recovered using 
equation (38).  Schwarz (1978) information criterion was employed in the specification of the 
mean equations otherwise, and it was determined that neither constants nor autoregressive terms 
were desirable.  Results are presented in Table 3.  Residual diagnostics suggest no serious 
misspecification.  All parameter estimates are significant at the 1% level.  The speed of 
adjustment coefficients on the ECT suggest that deviations from the long-run equilibrium are 
subject to rapid correction, as expected given the frequency of futures deliveries used to 
construct the NEARD series.  The parameters estimates associated with the conditional variance 
dynamics ( iiiii WBA ,, ; 3,1=i ) are similar to those obtained in the univariate estimation.  
 The parameter estimates associated with the conditional covariance dynamics ( 22222 ,, WBA ) 
indicate substantial interaction between the two series. 
 
The GS model parameters were estimated using an iterated seemingly unrelated regressions 
(SUR) procedure on the linear discrete approximations to equations (8) and (9).  The resulting 
annualized parameter estimates are 017.0−=µ , 177.0=α , 183.9=k , 349.01 =σ , 157.12 =σ , 
and 431.012 =ρ .  The large estimate of k suggests a high degree of mean-reversion in the 
convenience yield, and the large estimate of 2σ  suggests that it is highly volatile as well.  We 
refer to this method of parameter estimation as estimating the stochastic differential equations 
(SDEs). 
 
In order to implement the optimal hedging scheme outlined in section III, an estimate of the 
market price of convenience yield risk in the GS model is also needed.  To accomplish this task, 
we follow Gibson and Schwartz (1990) by finding the least-squares fit of the futures pricing 
formula in the GS model to the market data.  Specifically, for each available week-ending futures 
price observation for each delivery in the data set over the in-sample period, we collect the 5-
tuple ( )rSF ,,,, τδ .  We then use all such observations to find the value of λ  that minimizes the 
sum of squared pricing errors implied by equation (12), using the estimates of parameters other 
than λ  found by estimating the SDEs.  The value of λ  that we find is –0.132.  As discussed in 
Gibson and Schwartz (1990), finding a negative price of convenience yield risk is consistent with 
the fact that the partial derivative of the futures price with respect to the convenience yield is 
negative. 
 
In addition to estimating the SDEs, it is also possible to directly estimate the parameters of the 
term structure of volatility (TSV) in the GS model, using market data observed during the recent 
past.  This provides a means by which the restrictive assumption of a constant TSV can be 
somewhat relaxed.  The TSV for the GS model is given by 
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Computing the annualized sample standard deviations of observed futures log price changes for 
the most recent 2 months of daily observations for the nth nearby futures series provides us with 
a pair ( )τσ ,ˆ F  where τ  is the average length of time until expiration.  Collecting these pairs for 
the 12 nearest nearby futures price series provides 12 observations with which we find the values 
of 1221 ,, ρσσ  and k  that result in the best fit, in the least squares sense, of equation (39) to the 
market data.  This exercise can be carried out at any point in time to arrive at a TSV that reflects 
more recent market activity, rather than a very long run average TSV found by estimating the 
SDEs.  The estimated TSV might be thought of as the generalization of what is commonly 
referred to as “historical volatility.”  Rather than estimating the annualized volatility of only the 
spot price using a moving window of observations, however, the entire TSV is estimated.  This 
provides a second means that a hedger might use arrive at the GS parameters needed to calculate 
his optimal hedge ratio.  As an example, Figure 1 presents the GS term structure of volatility 
found by estimating the SDEs, and the TSV found by direct estimation on June 21, 1996 (a date 
chosen to illustrate an example of a high level of volatility in nearby futures).  In both cases, the 
TSV is a decreasing function of time until maturity, as predicted by the Samuelson hypothesis.  
The functional form for the TSV in the GS model does not require this, however; gentle 
increases at longer times until maturity are permitted and are observed over some intervals in the 
data set. 
 
In addition to the two parameter estimation methods discussed above, it is also theoretically 
possible to infer the TSV from observed futures option prices if a closed-form solution for those 
prices is available for a given model.  In the case of the GS model, the value C at time t, of a 
European call option with strike price X, expiring at time T1, on a futures contract with price F, 
expiring at time T, is given in Hilliard and Reis (1998) as 
 
(40)   [ ])()(),,,,( 11
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N(d1) represents the standard normal distribution function evaluated at d1.  To infer the TSV on a 
given date, the price for one approximately at-the-money option on each futures contract was 
collected (where available).  All such available option prices and the corresponding values of F, 
X, r, T, and T1, were then used in attempts to find the values of 1221 ,, ρσσ  and k  that provided 
the best least-squares fit of (the highly non-linear) equation (40).  Just as the direct estimation of 
the TSV can be thought of as a generalization of “historical volatility”, the option-implied TSV 
can be thought of as a generalization of “implied volatility”.  Unfortunately, in many cases as 
few as 5 observations were available for this task, and the inferred parameter values were often 
unreasonable.  Given that this task could not be performed reliably with the available data, we do 
not use option-implied term structures of volatility for hedging in the context of the GS model. 
 
We now turn to the estimation of the parameters of the S97 model.  The linear discrete 
approximation of equation (25) was estimated over the in-sample estimation period using 
ordinary least squares, resulting in the following annualized parameter estimates: 038.3=µ , 

993.2=α , 334.1=k , and 347.01 =σ .  The market price of risk in the S97 model was 
estimated using a procedure analogous to that used to estimate the market price of convenience 
yield risk in the GS model.  The resulting in-sample estimate of the market price of risk λ  is 
0.025.  In addition to estimating the SDE of the S97 model, it is again possible to directly 
estimate the TSV.  The TSV for the S97 model is given by 
 
(43)     ( ) 11 ,; σστσ τk

F ek −= . 
 
Again pairs ( )τσ ,ˆ F  were collected for the 12 nearest nearby futures series, and the natural 
logarithm of Fσ̂  was regressed on τ  to arrive at least squares estimates for k  and 1σ .  In the 
case of the S97 model, we find that it is possible to reliably infer the TSV using observed futures 
option prices.  The solution for European options on futures in the S97 model is given in 
Clewlow and Strickland (1999).  The solution is equations (40) and (41) again, but equation (42) 
is replaced with 
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The term structures of volatility estimated/inferred using the three methods outlined above for 
the S97 model on June 21, 1996 are presented in Figure 2.  Note first that in all cases the TSV is 
a strictly decreasing function of time until maturity as dictated by its exponential decay 
functional form.  The directly estimated TSV indicates a higher level of volatility at all times 
until maturity than the option-implied TSV.  As it happened, the option-implied TSV indicated 
much higher levels of volatility one or two months earlier.  This highlights the lagged effect that 
an increase in the general level of volatility will have on the TSV that is directly estimated using 
a moving window of historical data.  The option-implied TSV, on the other hand, is calculated 
using data observed on a single day and can therefore adjust instantly to changes in market 
conditions. 
 
Careful examination of the dynamics of the implied TSV, however, reveals a more subtle 
problem.  We found the S97 option-implied TSV displayed a teetering behavior – an increase in 
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implied spot price volatility was generally accompanied by a decrease in the implied volatility of 
futures far from maturity and vice versa.  Evidence of this is presented in Figure 3.  Over a six 
week period, the implied spot price volatility increased roughly 8%, while the implied volatility 
of futures one year from expiration decreased about 4%.  This phenomenon seems difficult to 
justify economically, and more likely result from the assumption of a constant TSV.  In actual 
practice, option traders anticipate mean reversion in volatility levels - an increase in spot price 
volatility is likely to die out as time passes.  As discussed in Hull and White (1987), the prices of 
options in a stochastic volatility environment should be a function of the expected levels of 
volatility over the life of the option.  A short-term increase in spot price volatility has a large 
impact on the average level of volatility over the life of option that is nearing expiration, but a 
relatively small impact on the average level of volatility expected over the life of an option far 
from expiration.  A significant increase in the premiums for options on nearby futures may 
therefore be accompanied by only a modest increase in the prices of options on distant futures.  
A significant increase in nearby option prices necessarily results in an increase in the value of 1σ  
in the fitted TSV, but the rate of decay of volatility k must also increase if the distant option 
prices have not risen by much. 
  
V.  Hedging Effectiveness 
 
We consider the problem of a hypothetical crude oil trader with mean-variance utility that wishes 
to take an optimal position in crude oil futures using equation (4).  We assume that the cash 
position is 100,000 barrels, and that this position is hedged using the nearby futures contract.  
We further assume that the hedger’s cash position corresponds to the specifications of the futures 
contract (i.e. L = S).  Optimal hedge ratios in the time series hedging scheme are formed in each 
period by using the appropriate elements of the conditional variance-covariance matrix tH .  
When employing partial equilibrium hedging, hedge ratios are formed using either equation (18) 
or equation (31) after any appropriate parameter estimation or inference.  Two methods of 
parameter estimation are devised above for the GS model: 1) simply estimating the SDEs and 2) 
directly estimating the TSV each time a new hedge ratio is formed.  These two methods of 
parameter estimation are also available when using the S97 model, and we additionally are able 
to infer the TSV from futures option prices.  We thus have five competing partial equilibrium 
hedging schemes. 
 
The time paths of hedge ratios generated by the VEC-GARCH and GS models during the last 18 
months of the in-sample period are presented in Figure 4.  As expected, the hedge ratios 
generated by the GS model with SDE parameters estimates are fairly stable relative to those 
generated by the VEC-GARCH and GS model employing a freshly estimated TSV each period.  
Nonetheless, the paths of the VEC-GARCH and GS with SDE parameter estimates are similar – 
steady in late 1995, then dipping in the spring and summer of 1996 and then increasing in late 
1996.  Over the portion of the in-sample period for which we evaluate hedging effectiveness, the 
correlation coefficient between these two models’ hedge ratios is 0.53, while the correlation 
between the hedge ratios from the VEC-GARCH and the GS model with an estimated TSV is –
0.10.  The time paths of the optimal hedge ratios generated by the three S97 models over the 
same time period are presented in Figure 5.  All three consistently follow a saw tooth pattern due 
to the functional form of the TSV in the S97 model.  Ignoring the speculative component of 
equation (31), and assuming the ratio of the spot price to the futures price is approximately one, 
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the optimal hedge ratio is then approximately )exp( τk .  This is greater than one before futures 
expiration, and decays to one at the time of expiration.  As one might expect after examining 
Figures 4 and 5, the S97 hedge ratios are highly correlated with one another, but not with the GS 
or VEC-GARCH hedge ratios. 
 
To evaluate in-sample hedging effectiveness, the realized levels of utility, based on the realized 
price changes and conditional variances and covariances from the VEC-GARCH model, were 
evaluated for each week over the period January 3, 1992 through December 27, 1996.  The 
average level of utility was then calculated for each of the six hedging models.  Table 4 presents 
these averages, along with the incremental utility increase (IUI) that are realized for each model 
versus holding only the unhedged cash position.  Utility increases are large in all cases, 
demonstrating the excellent hedging performance of NYMEX crude oil contract in the present 
context.  The VEC-GARCH model delivers the greatest utility increase, at 85.16%.  Among the 
partial equilibrium models, there is no clear-cut pattern.  Neither the GS nor S97 models’ 
performance dominates the other.  Also, neither of the two available methods of parameter 
estimation is clearly superior.  Hedging using the GS model with estimated SDEs results in 
hedging performance that is very similar to hedging using the S97 model with estimated term 
structures of volatility.  The S97 model with option-implied terms structures of volatility 
provides the second worst hedging performance, despite the attempt to glean insight into the 
future volatility conditions expected by option traders.   
 
Previous optimal hedging literature considers not only in-sample hedging effectiveness, but 
stresses the need to evaluate out-of-sample hedging effectiveness as well.  This provides a fair 
test of how an optimal hedging scheme is likely to perform in real-world conditions.  To evaluate 
out-of-sample hedging effectiveness, we re-estimated each model each period using all available 
data at that point in time for each of the models, and then used each to make one period ahead 
forecasts of the components of the hedger’s optimal hedge ratio.  The resulting utilities in each 
period were assessed using the ensuing actual price changes in the following week and the 
conditional variances and covariances recovered from a final VEC-GARCH model estimated 
using the entire data set.  Again the utilities in each period were averaged and incremental 
increases in utility over that of the unhedged portfolio were calculated for each hedging model.  
Results are presented in Table 5.  These results are very similar to those found in the in-sample 
period.  The VEC-GARCH model results in the largest utility increase, but delivers a utility 
increase almost 5% greater than the second place model versus only about 2% in-sample.  Again 
the S97 model with estimated TSV and the GS model with estimated SDEs deliver similar 
performance, roughly tying for second place.  The remaining three models again share the 
dishonor of being the three worst performing.   
 
To determine if the superior hedging effectiveness of the VEC-GARCH model was attributable 
to superior futures price forecasting (associated with the speculative component of the hedge 
ratio) or the superior variance and covariance forecasting, the out-of-sample forecasts of nearby 
futures one-week price changes were evaluated.  All models delivered very similar root mean 
squared forecast errors (RMSEs), however the VEC-GARCH model provided the worst 
forecasts.  The RMSE of the VEC-GARCH forecasts was $1.161 per barrel, while the partial 
equilibrium models’ RMSEs were tightly distributed around an average of $1.154 per barrel.  It 
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therefore appears that the superior hedging performance of the VEC-GARCH model is due 
entirely to superior modeling of conditional variance and covariance dynamics. 
 
Overall, the VEC-GARCH hedging model, which allows time-varying variances and covariance, 
provides the best hedging performance, despite producing the most variable hedge ratios (as 
measured by sample standard deviation).  The partial equilibrium models’ hedge ratios are less 
variable, but perform worse.  This suggests that the hedge ratios generated by the partial 
equilibrium models are not sufficiently reflecting changes in volatility conditions.  The cause of 
the inferior performances of the partial equilibrium hedging models thus appears to be the 
unrealistic assumption of a constant TSV.  Attempts to compensate for this shortcoming by 
frequently estimating or inferring the TSV do not result in consistently improved hedging 
effectiveness, and in no case is the performance of the VEC-GARCH model matched.  
Estimating the TSV suffers from the problem of employing a moving window of historical data, 
and any change in volatility conditions is reflected with somewhat of a lag.  Inferring the TSV 
from futures options prices (only practical for the S97 model) is still done in a constant TSV 
context, and suffers from the teetering effect described earlier.  All methods of updating the 
parameters of the term structures of volatility in the partial equilibrium models also come at the 
expense of a significant increase in computational complexity. 
 
In a sense, the hedging problem formulated here was the easiest possible for the partial 
equilibrium models.  The assumption was made that the hedger’s cash position corresponded 
with the futures contract specifications (i.e. L = S).  We thus employed the optimal hedge ratios 
in equations (18) and (31) rather than those from the augmented models in equations (24) and 
(36).  For many hedgers this will not be the case, and the use of the augmented models would be 
necessary.  This would likely result in hedging performance that fell further short of that of the 
VEC-GARCH model, for the following reason.  The use of an augmented partial equilibrium 
models would add another layer of constant variance-covariance assumptions – likely 
exacerbating the problem that led to the poor performance when L = S.  On the other hand, the 
case where SL ≠  presents no special problem for the time series model, as one would simply 
employ the appropriate local cash price series rather than the spot price series, and proceed as 
usual with a model that fully incorporates conditional variance and covariance dynamics. 
 
VI.  Conclusion 
 
This paper compares the performances of time series and partial equilibrium based optimal 
hedging models for trader that is long in a cash commodity market, and maximizes mean-
variance utility using futures contracts.  We find that the time series approach delivers superior 
hedging performance to that of each of the other models considered.  This appears to be due to 
the partial equilibrium models’ unpalatable assumption of a constant volatility term structure.  
The constant volatility term structure framework hampers even the seemingly promising 
technique of inferring option market participants’ expectations regarding future volatility 
conditions. 
 
This research has considered only a single type of derivative, however.  These results suggest 
that the attractiveness of employing a simple partial equilibrium model (i.e. one that does not 
incorporate stochastic volatility) when hedging a commodity market cash position using futures 
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contracts (or vice versa) is questionable.  Few would doubt the usefulness of partial equilibrium 
models in hedging a position in a derivative with a non-linear payoff function (e.g. an option), 
however.  The conclusion then is that different types of hedging models are suited to different 
tasks, and the best approach in still other situations (e.g. hedging with swaps) is uncertain.  
Furthermore, this research has considered only a single hedging objective.  When commodity 
producers or consumers purchase options they generally think of them as being similar to 
insurance contracts.  This suggests that they are maximizing utility of a form other than that 
employed here (and in much of the optimal hedging literature).  These issues illuminate the 
necessity of further research. 
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Table 1 
 
Results from Augmented Dickey-Fuller (ADF) tests for the presence of unit roots (test is on the 
estimated coefficient 1θ  from the following prototype model: ∑ =

−∆++=∆
K

k tkt kXX
110 βθθ ).a 

 
  Series K  1θ    
     
 Spot Price 0 -2.907  
 Spot Price Changes 0 -28.819  
 Nearby Future Price 2 -2.973  
 Nearby Futures Price Changes 1 -16.474  
 ECT 3 -11.458  
          
 
a The critical value –3.43 (1%) is given in Fuller (1976).  The optimal lag length (K) was chosen using the Schwarz 
(1978) information criterion. 
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Table 2 
 
Parameter estimates and residual diagnostics for the univariate GARCH(1,1) models: 
 ttx εµ +=  

 
1

2
1

2
1 ),0(~|

−−

−

++=

Ω

ttt

ttt

hh

hN

βαεω

ε
 

 
      DSPOT     NEARD     
         
 µ   -0.006 (0.027)  0.057 (0.028)  
 ω   0.051 (0.013)  0.089 (0.019)  
 α   0.184 (0.037)  0.200 (0.038)  
 β   0.764 (0.042)  0.679 (0.052)  
         
 Log-likelihood  -197.416   -182.392   
         
 m3  -0.330   -0.069   
 m4  2.180   2.504   
 Q(12)  17.541 (0.130)  17.249 (0.140)  
 Q2(12)  6.745 (0.874)  9.581 (0.653)  
                  
 
bThe numbers in parenthesis beside the parameter estimates are asymptotic standard errors.  m3 and m4 are the 
sample skewness and sample kurtosis, respectively, of the standardized residuals.  Q(12) and Q2(12) denote Ljung-
Box test statistics for 12th-order autocorrelation in the standardized and squared standardized residuals, respectively, 
with the numbers in parenthesis being the associated p-values. 
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Table 3 
 
Parameter estimates and residual diagnosticsc for the multivariate GARCH(1,1) model: 
 ttt ECTy εα +=∆ −1 ; ( )Tttt NEARDDSPOTy ,=∆  
 1| −Ω ttε ~ ),0( tHN  
 vech AWH t +=)(  vech BT

tt +−− )( 11εε  vech )( 1−tH  
 
     
 α 1 -0.572 (0.102)  
 α 2 0.299 (0.106)  
 W1 0.078 (0.006)  
 W2 0.069 (0.001)  
 W3 0.070 (0.005)  
 A11 0.121 (0.011)  
 A22 0.093 (0.009)  
 A22 0.096 (0.011)  
 B11 0.761 (0.014)  
 B22 0.785 (0.011)  
 B33 0.786 (0.018)  
     
 Log-likelihood 412.628   
     
 DSPOT equation    
     m3 -0.264   
     m4 2.417   
     Q(12) 17.157 (0.144)  
     Q2(12) 11.972 (0.448)  
     
 NEARD equation    
     m3 -0.150   
     m4 2.795   
     Q(12) 17.067 (0.147)  
     Q2(12) 15.493 (0.216)  
          
 
cThe numbers in parenthesis beside the parameter estimates are asymptotic standard errors.  m3 and m4 are the 
sample skewness and sample kurtosis, respectively, of the standardized residuals.  Q(12) and Q2(12) denote Ljung-
Box test statistics for 12th-order autocorrelation in the standardized and squared standardized residuals, respectively, 
with the numbers in parenthesis being the associated p-values. 
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Table 4 
 
In-sample hedging effectiveness: average levels of utility and incremental utility increases (IUI)d 

 
    Average Utility I.U.I   

     
 Unhedged -5.648E+09   
 S97 (estimated SDE) -1.018E+09 81.98%  
 S97 (estimated TSV) -9.537E+08 83.11%  
 S97 (inferred TSV) -1.058E+09 81.26%  
 GS (estimated SDEs) -9.498E+08 83.18%  
 GS (estimated TSV) -1.143E+09 79.77%  
 VEC-GARCH -8.380E+08 85.16%  
          
 
dIUI is the percentage increase in average utility over that realized when not hedging. 
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Table 5 
 
Out-of-sample hedging effectiveness: average levels of utility and incremental utility increases 
(IUI)e 

 
    Average Utility I.U.I   
     
 Unhedged -9.370E+09   
 S97 (estimated SDE) -2.908E+09 68.97%  
 S97 (estimated TSV) -2.723E+09 70.93%  
 S97 (inferred TSV) -2.989E+09 68.10%  
 GS (estimated SDEs) -2.773E+09 70.41%  
 GS (estimated TSV) -2.954E+09 68.48%  
 VEC-GARCH -2.281E+09 75.66%  
          
 
eIUI is the percentage increase in average utility over that realized when not hedging.
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Figure 1 
 
The term structure of volatility (TSV) of crude oil in the Gibson-Schwartz (GS) model using different parameter estimation 
techniques. 
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Figure 2 
 
The term structure of volatility (TSV) of crude oil in the Schwartz 1997 (S97) model using different parameter estimation and 
inference techniques. 
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Figure 3 
 
The option-implied term structure of volatility (TSV) of crude oil in the Schwartz 1997 (S97) model observed on two dates. 
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Figure 4 
 
Partial time paths of the in-sample optimal hedge ratios generated by the GARCH and GS models  
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Figure 5 
 
Partial time paths of the in-sample optimal hedge ratios generated by the S97 models 
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Endnotes 
                                                 
1 Gibson and Schwartz (1993) and Schwartz (1997) also publish formulas for the price of a 
futures contract in the GS model, but these formulas appear to suffer from typographical errors 
as they do not seem to solve partial differential equation (11). 
2 In-sample hedging effectiveness is not evaluated over the entire in-sample estimation period 
because option trading volume was insufficient to carry out the inference of the term structure of 
volatility in the S97 model.   
3 Unfortunately, available implementations of Johansen’s (1988) cointegration methodology 
perform data differencing automatically when forming the vector auto-regression.  In the present 
context, given the series NEAR, an implementation of the Johansen methodology would then 
generate and subsequently employ the unacceptable differenced nearby series DNEAR described 
above.  Hypothesis testing on the coefficients of the cointegrating vector within the Engle-
Granger framework can be misleading (Stock 1987), however we carry out no such testing.  The 
Engle-Granger methodology does provide a consistent estimate of a single cointegrating vector, 
however, which is all that we require here. 


