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Relaxing standard hedging assumptions in a downside risk framework 
 

The purpose of this study is to analyze how the introduction of a downside risk measure 
and less restrictive assumptions can change the optimal hedge ratio in the standard hedging 
problem. Based on a dataset of futures and cash prices for soybeans in the U.S., the empirical 
findings indicate that optimal hedge ratios change dramatically when a one-sided risk measure is 
adopted and standard assumptions are relaxed. Further, the results suggest that in a downside risk 
framework with realistic hedging assumptions there is little or no incentive for farmers to hedge. 

Keywords: downside risk, hedging, futures markets 
 

INTRODUCTION 

Hedging models traditionally adopt variance as a measure of risk, and minimum-variance 
hedge ratios are calculated for agents to follow. While the minimum-variance hedge ratios are 
tractable and easy to estimate, the underlying assumptions may not be consistent with hedgers’ 
observed behavior, which may explain why estimated and observed hedge ratios differ (Peck and 
Nahmias, 1989; Collins, 1997). 

One problem with the traditional hedge ratios is that the measure of risk implies that agents 
consider positive and negative deviations from the expected return as equally undesirable events. 
However, risk is frequently perceived by agents as a failure to achieve a certain level of return 
(Unser, 2000). In this context, downside risk measures, which assume that returns below a certain 
target involve risk and returns above this target represent better investment opportunities, can be 
highly relevant (Grootveld and Hallerbach, 1999). In recent survey papers, Lien and Tse (2002) 
argued that a one-sided measure is more relevant in a hedging context than the traditional two-
sided measure represented by the variance, and Chen, Lee and Shrestha (2003) emphasized that 
one-sided risk measures like the semivariance are consistent with the risk perceived by individuals. 

Another problem with standard hedging models is the restrictive set of assumptions about 
agents’ behavior. Chen, Lee and Shrestha (2003) point out that almost all work to calculate hedge 
ratios fails to incorporate transaction costs and the possibility of investments in assets other than 
cash and futures positions. In general, minimum-variance hedge ratios are calculated assuming that 
borrowing, lending and investing in alternative activities are not allowed, there are neither initial 
margin deposits nor brokerage fees in futures trading, and production is deterministic. But these 
assumptions are excessively restrictive and may not reflect agent’s situations. By definition, there 
are margin deposit requirements and brokerage fees in futures markets. Further, opportunities to 
borrow and lend, as well as to invest in alternative investments, are at times available to hedgers. 
Lence (1996) conducted a study in which several assumptions were relaxed and his results showed 
that hedge ratios can change dramatically under more realistic assumptions. But as Chen, Lee and 
Shrestha (2003) emphasize Lence’s findings are based on a specific utility function, a given set of 
return distributions, and it remains to be seen if the findings hold for downside risk hedge ratios. 

In this paper, we analyze how estimated hedge ratios and the opportunity cost of hedging 
are affected when risk is measured in a downside framework, and the behavioral assumptions of 



 

 

2 

the standard model are relaxed by allowing alternative investments and the introduction of 
brokerage fees. Hedge ratios are calculated under utility maximization based on a constant relative 
risk aversion (CRRA) utility function which allows the absolute level of risk aversion to change 
with wealth. A data set of U.S. soybean futures and cash returns, and the S&P500 returns between 
1990 and 2004 are used in the analysis. 
 

REVIEW OF LITERATURE 

The notion of one-sided risk has been discussed since the early 50’s, and has evolved into 
several downside-risk measures. Recently, the lower partial moment (LPM) is the measure that has 
been mostly used in the literature. The lower partial moment of order α  with target δ  is defined 
as: 

( ) ( ) ( )∫
∞−

−=
δ

α
α δδ RdGRRLPM ; ,      (1) 

where R is the investment return, δ  is the target return, and G(R) is the cumulative 
distribution function of R. The parameter α  reflects the order of the partial moment, and can be 
seen as a measure of risk aversion. A value of 1<α  implies a risk-preference behavior, while 

1>α  imply a risk-aversion behavior (Grootweld and Hallerbach, 1999). For 1>α , higher values 
of α  indicate that the agent is more concerned with the magnitude of the deviation below the 
target, whereas small values of α  indicate that the agent is not particularly interested in the 
amount of loss incurred by the deviation below the target (Fishburn, 1977). 

Several risk measures commonly adopted are special cases of the LPM. For 0=α , the 
term in parenthesis in expression (1) becomes 1, and the measure is the probability of falling 
below the target. If the target is set to zero ( 0=δ ), then the measure is just the probability of loss. 
When 1=α , the lower partial moment represents the expected deviation of returns below the 
target. For 2=α , the measure is similar to the variance, but with deviations computed only for 
observations below the target return. If the target is set to the mean return, then the lower partial 
moment of order two (LPM2) is the semi-variance. Moreover, if the target is set to the mean return 
and returns are symmetrically distributed, the LPM2 is proportional to the variance, i.e., both risk 
measures would lead to the same ordering of risky assets (Eftekhari, 1998). 

In contrast to the variance, the LPM offers flexibility in modeling risk behavior. While the 
variance as a measure of risk imposes that any deviation from the expected return is considered an 
undesirable event, the LPM assumes that only deviations below a certain target is taken as risk, 
and this target can be the expected return or any other one defined by the hedger. Moreover, the 
LPM allows for different levels of risk aversion, while this is not an explicit issue with the 
variance. 

Although the idea of downside risk has been identified for some time, not many studies 
have been performed calculating hedge ratios in a mean-downside risk framework, and even less 
using agricultural commodities as the asset to be hedged. Still, many studies have been developed 
using the concept of downside risk in pricing models and in the estimation of minimum-downside 
risk hedge ratios. Since there is no analytic solution for the minimum-downside risk hedge ratio, 
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various researchers have adopted different methods to calculate this ratio. 

Several studies have focused on calculating optimal hedge ratios by minimizing downside 
risk and comparing them to minimum-variance hedge ratios. Eftekhari (1998) minimizes the lower 
partial moment of order two (LPM2) with target set to zero to calculate the optimal hedge ratio for 
the FTSE-100 stock index from 1985 to 1994. Using continuously compounded returns on spot 
and nearby futures prices, he adopted two hedging horizons (one- and two-week) and a dynamic 
strategy based on rolling windows. The general result is that minimum-LPM hedge ratios are 
slightly smaller and tend to yield a better risk/return combination than the minimum-variance 
hedge ratios. In terms of hedging effectiveness, the LPM approach usually led to somewhat 
smaller risk than in the variance approach.1 Similarly, Lien and Tse (2000) calculated the 
minimum-LPM and the minimum-variance hedge ratios for the Nikkei Stock Average index over 
1-week hedging horizons from January 1988 to August 1996. Three orders of the LPM were used 
(1, 2, and 3), and the target returns ranged from –1.5% to +1.5%. In general the optimal hedge 
ratio increased as the order of the LPM increased, as well as when the target return increased. 
Their findings suggest that the minimum-LPM and the minimum-variance hedge ratios may differ 
sharply, particularly when the hedger is willingly to absorb small losses and very cautious about 
large losses, i.e., when the target return is small and the order of the LPM is large. Turvey and 
Nayak (2003) calculated minimum-semivariance2 hedge ratios for Kansas wheat hedged on the 
Chicago Board of Trade wheat futures contract, and Texas steers hedged on the Chicago 
Mercantile Exchange live cattle futures contract using several targets. Daily price observations 
were used for wheat (1980-2000) and for steers/live cattle (1989-2000). Their results were 
consistent with previous studies in the sense that minimum-semivariance hedge ratios were usually 
smaller than the minimum-variance hedge ratios, but the difference between the two ratios varied 
depending on the target and the distribution of risk. Moreover, the minimum-semivariance hedge 
was found to offer a better protection against downside risk than the minimum-variance hedge. 

A different approach was followed by Chen, Lee and Shrestha (2001), who adopted a 
mean-downside risk framework to estimate optimal hedge ratios. They argued that hedge ratios 
obtained by simple minimization of the generalized semivariance (GSV) 3 might not be consistent 
with the concept of stochastic dominance, since they are usually dependent on the target return. 
Consequently, they argued that these hedge ratios should be calculated using utility maximization 
in a mean-risk framework. Using an empirical distribution-based technique as the estimation 
procedure, the authors calculated the mean-GSV hedge ratios for the S&P500 index with two 
targets (zero, and the sample average of the S&P500 spot price changes) and a range of values for 
the parameter α  from 1.25 to 60, and compared them with the minimum-GSV hedge ratio.4 Their 
results showed that, as the order of the GSV increased, both the mean-GSV and the minimum-
GSV hedge ratios tended to become smaller and converge to a level close to 0.7 under both targets. 
Further, the mean-GSV hedge ratios were usually smaller than the minimum-GSV hedge ratios, 
and showed less variability for lower levels of risk.   

Another area of recent investigation has focused on identifying the implications of relaxing 

                                                                 
1 These results do not necessarily hold when the sample size is small and when hedges are adjusted frequently. 
2 Their definition of semivariance is basically the second-order lower partial moment defined in equation (1). 
3 They adopt the same definition of the lower partial moment for the GSV. 
4 Four other models were examined: minimum variance hedge ratio, mean-extended-Gini hedge ratio, Sharpe ratio-
based hedge ratio, and mean-variance hedge ratio 
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assumptions of the traditional mean-variance hedging model. Based on an expected utility 
maximization framework, Lence (1996) incorporated the possibility of lending, borrowing, and 
investing in alternative investments. Transaction costs in futures markets (initial margins and 
brokerage fees) and stochastic production were also included. Using a CARA utility function and 
calibrating the model for grain storage, Lence considered three levels of risk aversion and three 
hedging horizons in the simulations. His results showed that the maximum-expected-utility hedge 
ratios obtained from relaxing the conventional assumptions can differ substantially from the 
standard minimum-variance hedge ratios, and in some cases optimal hedges were close to zero. 
His findings suggested that the mean-variance hedge ratios can be far from optimum in the 
presence of alternative investments and stochastic production. Optimal hedge ratios were also 
found to be very sensitive to transaction costs. 

In the present study, we combine the notion of downside risk and relaxation of the standard 
assumptions. A downside risk framework is adopted with low target returns, and several of the 
standard hedging assumptions are relaxed. The research method and the data are discussed in the 
next sections. 
 

RESEARCH METHOD 

The analysis is based on a risk-averse farmer, who takes a short position in the futures 
market to hedge stored soybeans. The farmer is assumed to maximize the expected utility of final 
wealth hrWW ⋅= 01 , where W1 and W0 are final and initial wealth, respectively, and rh is the return 
from the farmer’s hedged portfolio.  Two standard hedging assumptions are relaxed as brokerage 
fees are introduced and an alternative investment is allowed. These two assumptions are relaxed 
one at a time and then together, which yields the four different models in equations (2) through (5). 

( ) hrrr fch ⋅−+= 1         (2) 

( ) hbrrr fch ⋅−−+= 1        (3) 

( ) ( )[ ] AAfcAh rshrrsr ⋅+⋅−+⋅−= 11       (4) 

( ) ( )[ ] AAfcAh rshbrrsr ⋅+⋅−−+⋅−= 11      (5) 

where rc is the return on the cash position5, rf is the return on the futures position, rA is the return 
on the alternative investment, sA is the share of the farmer’s wealth invested in the alternative 
investment, h is the hedge ratio, and b is the brokerage fee as a proportion of the initial futures 
price.6 
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Equation (2) represents the standard hedging model. The first assumption to be relaxed is 
the absence of transaction costs (equation 3). Five levels of brokerage fees (0.0005, 0.001, 
0.00125, 0.0025, and 0.005) are introduced in the model, which are taken as a proportion of the 
initial futures prices. Brokerage fees have declined during the period of this study. In 1990 
brokerage fees would commonly be between 0.00125 and 0.005, while by 2004 these values would 
be between 0.0005 and 0.00125.7 The second assumption relaxed allows an alternative investment 
(equation 4), which means that part of the farmer’s wealth can be invested in assets other than 
soybeans. The returns on the S&P500 index are used to reflect returns on alternative investments 
available to the farmer. Three values for the share of farmer’s wealth invested in other assets are 
assumed: 0.10, 0.25, and 0.50. Finally, the fourth model relaxes the two assumptions 
simultaneously (equation 5); five levels of brokerage fees and three investment scenarios are used 
in this case. 

The optimal hedge ratio is calculated assuming utility-maximization of the farmer’s final 
wealth. Since the joint distribution of cash, futures, and S&P500 returns is elliptically symmetric, 
and final wealth satisfies the location-scale condition, expected utility can be written as a function 
of the first two moments of the return distribution (Chamberlain, 1983; Meyer, 1987). A constant 
relative risk aversion (CRRA) location-scale objective function is used (Nelson and Escalante, 
2004): 

( )[ ] ( )
( )δγµ

µ
,

1
,

2

21

hh

h
rLPM

LPMVWUE
⋅−

−==     (6) 

where hµ  is the mean return on the hedged portfolio, ã is the coefficient of relative risk aversion, 

and ( )δ;2 hrLPM  is the second-order lower partial moment of the portfolio return rh with target δ . 
The CRRA utility function is consistent with agents’ observed behavior since it exhibits constant 
relative risk aversion and decreasing absolute prudence. Unlike the constant absolute risk aversion 
utility function, the CRRA utility function also exhibits risk vulnerability which Gollier and Pratt 
(1996) argue is a “natural” restriction of utility functions. Risk vulnerability means that the 
addition of an unfair background risk to initial wealth causes risk-averse decision makers to 
become more risk averse toward any other independent risk. In a price hedging context, this 
implies that an increase in revenue variability caused by stochastic production should increase the 
optimal hedge. The coefficient of relative risk aversion ã is specified to be 3 which is slightly more 
risk averse than average estimates of farmer risk preferences.8 Nelson and Escalante (2004) found 
coefficients of relative risk aversion derived from historical financial attributes of Illinois farms to 
range from 0.27 to 4.95. The order two of the lower partial moment is chosen because it is most 
comparable to the traditional measure of variance. The targets are arbitrarily set at five levels: zero 
and four percentiles of the return distribution: 50th, 25th, 10th, and 5th. A target equal to zero means 
that the hedger is only concerned with negative returns, while targets set to lower percentiles imply 
the hedger is mainly concerned with extreme losses. 

The estimation of the optimal hedge ratio in the presence of downside risk follows 
Eftekhari (1998). First the hedge ratio is set to h = 0, and the values of expected return, lower 

                                                                 
7 A hedger is assumed to pay between US$15 and US$25 per contract in brokerage fees currently which is about half 
the fees that existed in 1990. 
8 Qualitatively similar findings were found for simulations using relative risk aversion ranging from 1 to 5. 
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partial moment and expected utility are calculated. Then the hedge ratio is increased by a small 
fraction and these values are calculated again for the new hedge ratio. This process is repeated 
until the hedge ratio reaches a large enough number, which is arbitrarily set to h = 1.50. The value 
of h which yields the highest expected utility is considered the optimal hedge ratio. Mean-variance 
hedge ratios are estimated by this method using the CRRA utility function presented in equation 
(6) where the variance of the portfolio return 2

hσ  is used as the second moment of the distribution. 
Finally, a minimum-variance hedge ratio is used for comparison, and is obtained by dividing the 
covariance between cash and futures returns by the variance of futures returns: 

 ( )
( )f

fc

RVar

RRCov
h

,
= .        (7) 

Opportunity costs of placing sub-optimal hedge ratios are also calculated. These costs 
represent the minimum return required by the hedger to accept placing a sub-optimal hedge, and 
can be estimated as follows: 

 ( )[ ] ( )[ ]OCRUERUE sub
h

opt
h +=       (8) 

where opt
hR  is the return provided by the optimal hedge ratio, sub

hR  is the return provided by the 
sub-optimal hedge ratio, and OC is the opportunity cost. 
 

DATA 

The empirical simulations are conducted using futures and cash prices of U.S. soybeans, 
and quotes of the S&P500 index from January 1990 through June 2004. Three hedging horizons 
are adopted: 4, 12, and 24 weeks. The soybean prices and the S&P500 quotes were obtained from 
the Commodity Research Bureau (CRB), and correspond to midweek (Wednesday) closing prices. 
The cash prices refer to soybeans in Central Illinois. The futures prices refer to the contracts traded 
at the Chicago Board of Trade (CBOT). Contract months are January, March, May, July, August, 
September and November, and the nearby futures contract that corresponds to the length of the 
hedging horizon was used. The selected contract permits the hedger to maintain the position 
without having to roll over to a new contract. For example, if the agent with a 12-week hedging 
horizon placed a hedge on September 8, 1993, the date to lift the hedge would be February 23, 
1994 and so the March contract is used to place the hedge. Following this procedure, the hedger 
avoids potential risk in rolling the hedge forward at the expiration of the November contract. 
 

RESULTS 

The discussion of the results focuses on the 4-week horizon. Results for the 12- and 24-
week horizons are qualitatively similar and are not presented for brevity. Summary statistics for 
futures, cash, and S&P500 returns are presented in Table 1. It is assumed that futures markets are 
unbiased, i.e., the empirical distribution of the futures returns were adjusted such that ( ) 0=frE . 
All empirical distributions are somewhat leptokurtic. However, Jarque-Bera fails to reject 
normality for the cash and S&P500 returns. The p-value of the test statistic for futures returns is 
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0.079, which is not strong evidence against normality. A normal Q-Q plot of the futures returns 
data reveals that the distribution is fat tailed. 
 

Table 1. Summary Statistics for Futures, Cash and S&P500 Returns (4-week horizon) 

 futures cash S&P500 
Mean 0.00% 0.58% 1.04% 
Median 0.10% 1.16% 0.99% 
Std. deviation 6.81% 6.66% 4.99% 
Kurtosis  3.970 3.517 3.350 
Skewness 0.196 -0.176 -0.158 
Maximum 21.67% 19.60% 13.95% 
Minimum -18.02% -18.79% -12.57% 
Sample size 126 126 126 
JB test (p-value) 0.079 0.358 0.558 
    
 ( )δ;2 rLPM     

ä = 0 4.72% 4.56% 3.04% 
ä = 50th percentile 4.78% 5.16% 3.49% 
ä = 25th percentile 2.95% 3.14% 2.22% 
ä = 10th percentile 1.50% 1.30% 1.35% 
ä = 5th percentile 0.92% 1.12% 0.88% 
    
Correlation    
futures 1.000 0.919 -0.053 
cash  1.000 -0.003 
S&P500   1.000 
    
Correlation-LPM2  cash – futures  cash – S&P500 futures – S&P500 
ä = 0 0.95 0.27 0.25 
ä = 50th percentile 0.95 0.32 0.32 
ä = 25th percentile 0.93 0.12 0.09 
ä = 10th percentile 0.91 0.01 0.00 
ä = 5th   percentile 0.89 0.00 0.00 

As a first assessment of the differences between two-sided and one-sided risk measures, the 
standard deviation is greater than the square root of the second-order lower partial moment9 
(LPM2), particularly as the target is reduced (Table 1). The square of the second-order lower 
partial moment declines monotonically with a lowering of the target for all the returns. However, 
the correlations among the returns behave differently. The sample correlation between cash and 
futures returns decline modestly as the target is lowered, but the sample correlation between cash-
S&P500 and futures-S&P500 drops to zero at the lowest targets. The changing correlations at 
different targets suggest that the ordering of risky assets and consequently the hedge ratios may 
change at the lower targets. 

The traditional minimum-variance hedge ratio is 0.89 in the 4-week hedging horizon 
(Table 2). Based on the CRRA utility function, the standard model10 yields an optimal hedge ratio 
of 0.90 when the variance is adopted as the risk measure. Allowing for the presence of downside 
risk in the standard model, the optimal hedge ratio becomes smaller as the target return is set at 
                                                                 
9 The square root of the second-order lower partial moment in a downside risk context is equivalent to the standard 
deviation in a variance context. 
10 The standard model assumes no borrowing and lending, no transaction costs, and deterministic production. 
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lower levels of the distribution of returns.11 In the extreme situation where the hedger is concerned 
only with losses below the 10th and 5th percentiles of the return distribution, the optimal hedge 
ratios are 0.59 and 0.68 respectively. 
 

Table 2. Optimal Hedge Ratios at the 4-week Horizon 

     CRRA downside risk with target set to: 
 

Minimum 
variance 

CRRA 
Mean-

variance 
zero 50th 

percentile 
25th 

percentile 
10th 

percentile  
5th  

percentile 
Standard model 0.89 0.90 0.86 0.88 0.76 0.59 0.68 
        
Standard model + brokerage fees 
b = 0.00050  0.86 0.78 0.82 0.62 0.23 0.17 
b = 0.00100  0.83 0.71 0.77 0.50 0.05 0.00 
b = 0.00125  0.81 0.68 0.73 0.45 0.00 0.00 
b = 0.00250  0.72 0.49 0.58 0.22 0.00 0.00 
b = 0.00500  0.54 0.10 0.20 0.00 0.00 0.00 
        
Standard model + investment in alternative asset 
sA = 0.10  0.89 0.86 0.88 0.76 0.69 0.71 
sA = 0.25  0.89 0.87 0.88 0.77 0.91 0.78 
sA = 0.50  0.86 0.90 0.88 0.88 1.12 1.30 
        
Standard model + brokerage fees + investment in alternative asset 
sA = 0.10        
b = 0.00050  0.85 0.78 0.81 0.59 0.16 0.09 
b = 0.00100  0.81 0.70 0.75 0.45 0.00 0.00 
b = 0.00125  0.79 0.65 0.72 0.40 0.00 0.00 
b = 0.00250  0.69 0.44 0.55 0.14 0.00 0.00 
b = 0.00500  0.49 0.00 0.12 0.00 0.00 0.00 
sA = 0.25        
b = 0.00050  0.84 0.77 0.80 0.55 0.01 0.00 
b = 0.00100  0.79 0.67 0.72 0.37 0.00 0.00 
b = 0.00125  0.77 0.62 0.69 0.30 0.00 0.00 
b = 0.00250  0.64 0.35 0.47 0.00 0.00 0.00 
b = 0.00500  0.40 0.00 0.00 0.00 0.00 0.00 
sA = 0.50        
b = 0.00050  0.79 0.74 0.76 0.47 0.00 0.00 
b = 0.00100  0.72 0.58 0.64 0.17 0.00 0.00 
b = 0.00125  0.68 0.49 0.58 0.04 0.00 0.00 
b = 0.00250  0.50 0.07 0.22 0.00 0.00 0.00 
b = 0.00500  0.14 0.00 0.00 0.00 0.00 0.00 

Hedge ratios become smaller as the standard assumptions are relaxed. When brokerage fees 
are introduced hedge ratios drop quickly, turning to zero at higher fees and lower targets. Both 
higher fees and lower target returns cause hedge ratios to drop, but it appears that lower targets 
have a greater impact than higher fees. Using the variance as the risk measure, the optimal hedge 

                                                                 
11 In previous studies, the optimal hedge ratios in a downside risk framework have been estimated between 0.7 and 1.0 
with target returns set to zero which corresponds to our estimate, 0.86. 
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ratio reaches a low of 0.54 with the highest level of brokerage fee. In the presence of downside 
risk, the optimal hedge ratio can reach about 0.6 in the standard model, and quickly approaches 
zero even when low brokerage fees are combined with lower targets. The introduction of an 
alternative investment in the model at lowest level (SA = 0.10) does not markedly change the 
hedge ratios developed under the standard model. However, as the level of the alternative 
investment increases LPM hedge ratios increase, particularly at lower target returns. For example, 
with the target return set to the 10th percentile, the optimal hedge ratio increases from 0.69 to 1.12 
as the farmer’s share of wealth invested in an alternative asset increases from 10% to 50%. 
Increases in the optimal futures positions may reflect a lowering of portfolio risk when the share of 
the alternative investment increases, particularly as the correlation between futures-S&P500 and 
cash-S&P500 returns decline. 

The opportunity costs of not hedging are presented in Table 3 for the standard model. 
Under both the variance and the LPM risk measures, opportunity costs are small for hedge ratios 
close to the optimal level, indicating that minor departures from the optimal hedge ratio are not 
penalized severely. Comparing the risk measures, opportunity costs of not hedging are lower in the 
presence of downside risk, which is expected since downside risk hedge ratios are lower than 
mean-variance hedge ratios. For example, at h=0 in a variance context, the highest opportunity 
cost exists, 7.28% of the initial wealth, but this drops off quickly to 0.24% at the 5th percentile in 
the downside risk framework. Relatively low opportunity costs for downside risk measures are 
also observed when low brokerage fees are introduced in the model (Figure 1). At the 25th 
percentile, when brokerage fees are equal to or smaller than 0.125%, the opportunity costs of 
placing sub-optimal hedge ratios in the presence of downside risk barely surpass 1%. More 
generally, the downside risk framework implies very low opportunity costs of placing sub-optimal 
hedges when target returns and brokerage fees are low, suggesting that farmers are not penalized 
by hedging at a sub-optimal ratio or not hedging at all. In the presence of higher brokerage fees, 
the opportunity costs of hedging change substantially.  With brokerage fees of 0.5%, opportunity 
costs increase monotonically and farmers are penalized heavily when their hedge deviates from its 
optimal zero value. 
 

Table 3. Opportunity Costs of Hedging at the 4-week horizon – Standard Model (annual return as a 
percentage of initial wealth) 

      CRRA downside risk with target set to: 
 

CRRA 
Mean-

variance 
zero 50th  

percentile 
25th  

percentile 
10th 

percentile 
5th 

 percentile 
h = 0.0 7.28 3.09 3.70 1.65 0.33 0.24 
h = 0.1 5.72 2.42 2.69 1.20 0.19 0.13 
h = 0.2 4.42 1.83 2.29 0.83 0.10 0.06 
h = 0.3 3.25 1.32 1.70 0.53 0.04 0.02 
h = 0.4 2.21 0.89 1.19 0.31 0.01 0.01 
h = 0.5 1.43 0.55 0.76 0.15 0.00 0.00 
h = 0.6 0.78 0.29 0.42 0.05 0.00 0.00 
h = 0.7 0.39 0.11 0.18 0.01 0.00 0.00 
h = 0.8 0.13 0.01 0.03 0.00 0.00 0.00 
h = 0.9 0.00 0.01 0.00 0.03 0.00 0.00 
h = 1.0 0.13 0.09 0.09 0.08 0.00 0.00 
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Figure 1. Opportunity Costs of Hedging at the 4-week Horizon (annual return as a percentage of initial 
wealth) – brokerage fees  
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In the presence of an alternative investment, the opportunity costs of placing sub-optimal 
hedges are small. Although the introduction of alternative assets in the farmer’s portfolio often 
leads to higher optimal hedge ratios, the opportunity cost of not hedging (h=0) never reaches more 
than 3% (Figure 2). When 50% of the farmer’s wealth is invested in alternative assets – the case 
that yields the highest hedge ratios – and the target return is set to either the 50th or the 25th 
percentiles, the opportunity cost of not hedging is 0.97% and 0.33% respectively. For lower 
targets, the opportunity cost of not hedging is almost zero. While the opportunity cost can reach 
nearly 3.0% at the lowest level of investment and the 50th-percentile target, the opportunity cost of 
hedging barely reaches 1% at the 25th percentile and lower targets. 
 

Figure 2. Opportunity Costs of Hedging at the 4-week Horizon (annual return as a percentage of initial 
wealth) – alternative investment  

 
SA = 0.10 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0.0 0.2 0.4 0.6 0.8 1.0
hedge ratio

op
p

or
tu

n
it

y 
co

st

50th perc.

25th perc.

 

 
SA = 0.50 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0.0 0.2 0.4 0.6 0.8 1.0

hedge ratio

op
p

or
tu

n
it

y 
co

st SA = 0.1

SA = 0.5

 



 

 

11 

 

When brokerage fees are introduced together with the alternative investment, optimal 
hedge ratios are quickly driven towards zero, and similar to the previous discussion about the 
effects of brokerage fees on optimal hedge ratios, the opportunity cost of not hedging becomes 
zero and the opportunity cost of actually hedging becomes relatively high. When 50% of the 
farmer’s wealth is invested in alternative assets and the targets are set to the 25th and the 5th 
percentiles, the opportunity cost of not hedging is zero in both cases, while the opportunity cost of 
hedging increases as higher hedge ratios are adopted (Figure 3). 
 

Figure 3. Opportunity Costs of Hedging at the 4-week Horizon (annual return as a percentage of initial 
wealth) – brokerage fees and alternative investment (SA = 0.50) 
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SUMMARY, DISCUSSION AND IMPLICATIONS 

This paper analyzed how hedge ratios and the opportunity costs of placing sub-optimal 
hedges vary as a downside risk measure is introduced in the presence of transaction costs and 
alternative investments. The findings indicate that downside risk hedge ratios can differ 
substantially from the standard mean-variance hedge ratios at low targets and when the standard 
assumptions are relaxed. Although it might have been expected that low targets would 
automatically reduce hedge ratios our findings indicate that this is not the case. Hedge ratios in the 
standard model can increase at lower targets as the correlations among the variables in the 
downside portion of the return distribution change. These results support Lien and Tse (2002), and 
Demirer and Lien’s (2003) discussion of the conceptual properties of the minimum-LPM hedge 
ratio, and  Lien and Tse (2000) and Turvey and Nayak’s (2003) empirical evidence using the 
minimum-LPM model that optimal hedge ratios do not necessarily decrease as target returns are 
set to lower levels. The introduction of transaction costs appears to have the largest effect on the 
optimal hedge ratio, particularly at lower target return levels. Using transaction costs that existed 
near the beginning of the sample period, hedge ratios decline quickly to zero as the target return 
declines. With more current transaction costs, hedge ratios decline towards zero but not as rapidly. 
In the presence of alternative investment opportunities, hedge ratios are not strongly affected 
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relative to the standard model at lower levels of investment.  However, hedge ratios increase as the 
level of the alternative investment increases and the target declines. When alternative investments 
and transaction costs are introduced simultaneously, the effect on the hedge ratios is dramatic and 
the optimal hedge ratios are driven to zero most quickly, particularly as the target returns decline. 

With regards to the opportunity cost of not hedging the results are clear. In the presence of 
non-zero optimal hedges, the opportunity cost of not hedging is small. In the presence of a zero 
optimal hedge, which is primarily driven by higher transaction costs, the opportunity cost of 
actually hedging increases quickly, particularly at lower target returns. In these situations, there 
appears to be little incentive for farmers to hedge. 

Recall Lence (1996) demonstrated that hedge ratios for a farmer can change dramatically 
when the assumptions used to estimate minimum-variance hedge ratios are relaxed. He found that 
the inclusion of transaction costs, alternative investments and stochastic production can cause 
minimum-variance and maximum-utility optimal hedges to differ substantially, and reduce the 
level of farmer hedging. Chen, Lee and Shretha (2003) questioned the robustness of Lence’s 
findings due to the utility function, the specifics of the return distributions, and the definition of 
risk measure used in the analysis. How do our findings add to this dialogue? Our results, based on 
a CRRA utility function, the most recent returns for cash, futures and the S&P500, the LPM 
measure of downside risk, are quite compatible with Lence’s conclusions and implications. Even 
though we do not consider the stochastic production case, our results clearly demonstrate the 
sensitivity of hedge ratios to deviations from the minimum- variance assumptions. Further, in our 
simulations the farmer has little incentive to hedge, and even when the incentive to hedge emerges 
the opportunity cost of not hedging is relatively small. Our findings also support the notion mean-
variance utility-maximizing hedge ratios should be used with caution in the presence of downside 
risk. Variance-based hedge ratios are close to downside risk-based hedge ratios only under specific 
conditions. In our analysis, this occurs when the target return is set to either zero or the 50th 
percentile of the distribution and the standard assumptions hold. While variance-based hedge ratios 
are easier to calculate than downside-risk-based hedge ratios, their results tend to differ 
dramatically when more realistic models are used.  

Finally, our findings might help explain the observed limited use of futures contracts for 
hedging by soybean and grain farmers.  If producers are intensely concerned with downside risk 
and transaction costs are not negligible, then the opportunity costs of not hedging using futures 
contracts may be small and hedge ratios may be close to zero. Interestingly, transaction costs 
which have been declining in importance only measure brokerage fees. Clearly, other costs 
including initial and maintenance margin deposits and the opportunity of following futures markets 
exist which can further reduce the motivation of producers to hedge. However, the recent increase 
in high-volume, larger grain producers may reduce per unit transaction costs and make hedging 
more attractive for these producers. 
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