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Soybean Acreage Response in Brazil 
 

This paper advances Williams and Thompson (1984) by updating their work and by explicitly 
accounting for price and yield risk in the analysis of acreage response in Brazil for soybeans and 
by assessing model specification. Empirical equations were estimated using seemingly unrelated 
regression (SUR). The robustness of the model was evaluated in the battery of misspecification 
tests suggested by McGuirk et al. (1993) and McGuirk et al. (1995). The results of the testing 
procedure suggest that the model is fairly robust in terms of normality, heteroscedasticity and 
functional form. The results point to parameter instability in the soybean model. The approach to 
the problem of parameter instability involved dividing the data in two periods and estimating 
regressions for each period. The signs of the significant coefficients were consistent with 
expectation, particularly for the second period. Soybean acreage is explained mainly by past 
acreage, expected prices of soybeans and land competing crops (cotton, rice, and corn), and 
price and yield risk. Results suggest that market signals played a reduced role in the soybean 
acreage growth in early years. In contrast, in recent years producers in Brazil became more 
sensitive to changes in prices and risk. Measures of short-run price elasticity of soybean acreage 
response are similar to the one obtained by William and Thompson (1984) for soybean supply. 
Long-run elasticities are significantly smaller.  

 
Key words: misspecification tests, seemingly unrelated regression, soybean acreage 

 
 

Introduction 
 
Acreage response has been extensively studied in the last years. Nonetheless, the emergence of 
South American countries as important international suppliers of soybeans, in particular Brazil, 
calls for a better understanding of the factors affecting supply of this crop in Brazil. 

 
To our knowledge, no attempt was made to estimate acreage (or supply) response in 

Brazil since Williams and Thompson (1984). However, since 1984 soybean acreage has 
increased by 128.7 percent in Brazil, allowing it to become the second largest producer of 
soybeans. Williams and Thompson (1984) estimated a supply function for soybeans in Brazil 
using a log-linear function where soybean production is explained by lagged prices of soybeans, 
price of wheat, acreage planted to coffee, lagged production and a dummy variable to capture the 
effects of a drought in 1978. These explanatory variables are intuitively sound for the period of 
analysis. Their major objective was to evaluate the impact of government intervention in the 
Brazilian exports in the 1960’s and 1970’s. The model developed by these authors does not 
appear to perform satisfactorily as most of the coefficients presented in the final model are 
statistically insignificant. 

 
Here, we estimated acreage response in the Brazilian agriculture using annual 

observations from 1976 to 2003 obtained from the Brazilian Ministry of Agriculture1.  We 
advance Williams and Thompson (1984) by updating, explicitly accounting for price and yield 
risk, by assessing model specification, and by estimating empirical equations using seemingly 
unrelated regression (SUR). Ordinary least square (OLS) regressions are also estimated for 
                                                 
1 Same results were obtained using USDA data, available for production, acreage and yield. 
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soybeans in order to avoid difficulties posed by the apparent structural change. The empirical 
model consists of four acreage equations (soybeans, cotton, corn and rice). We assume that these 
are land-competing crops and, therefore, the allocation of land is determined jointly.  

 
The need to include risk in this type of analysis was previously stressed in the literature 

(for example Just (1975), Thompson and Abbott (1982), and later by Holt and Chavas (2002), 
among many others). Risk is frequently addressed in the literature in terms of both price and 
production risk and also in terms of the impact of government programs on the underling risk 
structure.   

 
In the conceptual model, soybean acreage is assumed to be a function of expected price 

of soybeans, price of land-competing crops (cotton, corn and rice), lagged acreage of soybeans, 
price and yield risk of soybeans, and the resources spent by the Brazilian Government in 
agriculture support programs2. Risk is estimated based on the variability of the season average 
farm price as measured by the squared deviation from a three-year moving average.  
 
 
Review of Literature 
 
Houck and Ryan (1972) suggested that planted acreage should be viewed as a function of 
expected market conditions, government programs, and other exogenous variables. Expected 
market conditions are typically expected own prices and prices of competing crops deflated by 
cost of production. Among other exogenous variables, proxies for risk and lagged acreage are 
also commonly included (Park and Garcia 1994). 

 
Price expectation is an important component of acreage response models, given the 

underlying uncertainty associated with the biological lags in agricultural production. Ferris 
(1998) describes some alternatives to estimate expected prices. Naive expectations utilize the 
price in the most recent period as a proxy for expected price. The distributed lag approach 
consists in including other lags of prices in generating expectations. The problem with this 
method resides in the fact that it is not clear how many lags should be included in the model. 
Ferris suggests that the appropriate lag structure may be found by introducing additional lagged 
Pt-i until the coefficients are not significant or turn negative. Nonetheless, the remedy proposed 
by Ferris can be potentially worse than the illness, since the side effects of this process are the 
introduction of multicollinearity and the loss of degrees of freedom, and depending on how it is 
done it can also create a generated regressor problem.  

 
Alternatively, price expectations can be estimated using the rational expectations model. 

This approach assumes that decision makers are able to formulate their beliefs about the future, 
taking all relevant information into consideration. This method is quite unrealistic in our context 
                                                 
2 Price and government expenditures were deflated using the consumer price index. Two steps were taken in order to 
obtain real prices and amount invested: first nominal values in several currencies adopted in Brazil in the period 
considered were converted to a common currency (Real, symbolized by R$), and in a second step nominal values in 
the common currency were deflated using the consumer price index. Deflation was performed to avoid the problems 
caused by the existence of several currencies and extreme high inflation rates observed in Brazil. The choice of the 
consumer price index as a deflator is of less importance given that deflators in Brazil for this period are highly 
correlated. 
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since it assumes, among other things, that decision makers have comprehensive information and 
that they know how to effectively use the information they have. Although the literature suggests 
a large array of methods to estimate expected prices, it seems reasonable that the researcher 
should resort to these models only when a theoretical base and/or a priory information is not 
readily available.  In this study we follow Shideed and White (1989) in using lagged cash prices 
as price expectations different crops. Different models are tested in order to determine which 
structure best forecast prices using past prices.   

 
Different strategies have been proposed in the literature to incorporate risk in the 

estimation of both supply and acreage response functions. These strategies vary from the simple 
incorporation of standard deviations of price and yield in past periods (Sadoulet and Janvry 
1995), difference between actual prices and expected prices (Just, 1975), to more sophisticated 
methods using GARCH procedures (Holt and Aradhyula 1990). In this study we follow Park and 
Garcia (1994) by employing a proxy for risk based on the variability of the season average farm 
price as measured by the squared deviation from a three-year moving average. This measure of 
risk has the interesting feature of aggregating in one measure price risk and yield risk. 

  
 

Methods 
 
Expected Prices 
 
Three alternatives to estimate expected prices are assessed: Naive expectation model, moving 
average model, and autoregressive model. The models tested are: 
 
Naive expectations model:  

1−= tt PP  
Moving average:  
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The diversity of methods proposed to estimate expected prices creates the question of 

how we are to compare the adequacy of these models to the data available. One way to evaluate 
the model is using the Bayesian Information Criterion (BIC). Models more adequate will have 
lower values of BIC. Another way is to compare forecasts is through the use of Theil’s U 
statistics. Although no consensus exists regarding the usefulness of these statistics, the following 
form referred to as U2 has useful interpretation: 
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where Ys and Ya are the simulated and the actual values of Yt respectively. Note that if we have 
perfect forecast, that is ( ) ( )a

t
s

t YY = , U2 will be zero. Note also that when we have naive expected 
prices, the numerator and the dominator in (1) are identical, and therefore U2 = 1. This implies 
that any forecast between zero and one is better than the naive model. 
 
Risk 
 
Here we adapt the method used by Park and Garcia (1994) to incorporate price and yield risk. 
Price risk is based on the variability of the season average farm price as measured by the squared 
deviation from a three-year moving average. We can also incorporate yield variability into the 
measure of risk as follows: 
 

( )
t

tt
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Risk

2
1 −= − , where ( ) 3/432 −−− ++= tttt RRRMA , and Rt is the season average price 

received by farmers in year t times the average yield in the same year. One may argue that this 
method is flawed since departures of revenue from the average are treated equally, that is, there 
is no distinction between gain and loss to the farmer. Obviously, in the farmer’s perspective, 
situations where ( ) 01 >−− tt MAR  are desirable and situations where ( ) 01 <−− tt MAR are 
undesirable. Thus, since a risk-averse agent would prefer ( ) 01 >−− tt MAR over ( ) ,01 ≤−− tt MAR  
the method used by Park and Garcia (1994) may not completely capture the risk perceived by 
farmers, especially if yield-boosting technologies are introduced over time. We tried to improve 
the model by adapting the risk measure such that 

 
( ) ( )

( )





>−

≤−
−

=

−

−
−

00

0

1

1

2
1

tt

tt
t

tt

t

MARif

MARif
MA

MAR
Risk  

 
The economic model 
 
Equations (2) through (5) represent the acreage response functions for soybeans (2), rice (3), 
corn (4), and cotton (5). For instance, equation (2) indicates that the soybean acreage (ASt) 
depends on own expected price and the expected price of land-competing crops, and government 
expenditures in agricultural support programs (GOV). Table 1 presents the definition of the 
variables used in equations (2) to (5). 

 
(2) ++++++= t
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The expected signs of the estimated coefficients are derived from simple economic logic. 
An increase in soybeans own price is expected to have a positive impact in soybean acreage, 
increases in the price of land-competing crops are expected to have a negative impact on soybean 
acreage. Also, government expenditures are expected to reduce acreage of soybeans since most 
of the government support programs benefited land-competing crops proportionally more.  
 
Model validation 
 

The credibility of the conclusions is built on efforts employed to construct a well 
specified model, avoiding biased and inconsistent estimation. In this line, McGuirk et al. (1993) 
and McGuirk et al. (1995) present a consistent strategy to test for model misspecification. Many 
misspecification tests have been proposed in the literature, but the difficulty in using isolated 
tests resides in the fact that a test is valid only when no other source of misspecification exists. 
McGuirk et al suggest a framework where a comprehensive set of individual and joint 
misspecification tests (for individual equations and for the system as a whole) can help identify 
misspecification sources and guide re-specification efforts.  We perform the tests for the system 
and for the soybean equation.  Individual and joint misspecification tests proposed by McGuirk 
et al are described in table 2. 

 
 

Results 
 
The results presented here focus on the estimation of the soybean equation. The first step towards 
the estimation of the system of equations consists in verifying the stationarity of the time series 
used. Table 3 suggests that the majority of the series are non-stationary in level (excluding 
logarithm of rice acreage (lnar), risk of cotton, rice, and soybeans). In general, the series become 
stationary in the first difference, except the logarithm of cotton, rice, and soybean prices. These 
series become stationary when differenced twice. Given the heterogeneity in the order of 
integration of the series, it seemed more adequate to estimate the models with variables in the 
first difference in order to avoid over-differencing some of the series.  

 
The next step consists in calculating expected prices that will be used in the regressions. 

Three alternatives to estimate expected prices were assessed: naive expectation model, moving 
average model, and autoregressive model. The criterion used to select the models was the 
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Bayesian Information Criterion (BIC), which yields more parsimonious models. Results are 
found in table 4. 

 
Table 4 suggests that none of the models selected by the BIC criterion forecasts better 

than the naive model. This is possibly explained by the fact that the crops included in this study 
are annual crops and it is not clear that there is a cyclical behavior in the price formation. Thus, 
there is no apparent reason to believe that the information contained for prices in years beyond t-
1 can help forecast prices. This problem could be potentially overcome by using futures markets 
as a proxy for expected prices. However, such information is not available since most 
agricultural futures contracts in Brazil suffer from lack of sufficient liquidity. Hence, in this 
study we choose to use naive expectations in the regressions. 

 
Table 5 presents the results of the seemingly unrelated regression for soybeans. The 

overall fit of the model is satisfactory (R2 = 0.80) and the signs of the significant coefficients are 
consistent with expectations. Table 5 suggests that soybean acreage is explained by expected 
prices of soybeans, rice, and corn, and lagged soybean acreage. Soybean expected price has a 
significant impact on current acreage, whereas the price of land-competing crops has a negative 
impact on soybean acreage. The validity of these results depends on the robustness of the model. 
Table 6 presents the results of the testing strategy suggested by McGuirk et al (1995). We 
present results for the whole system and for the soybean equation. 

 
The results for the whole system are quite satisfactory, with only the Chow test 

significant at the 1% level. The hypothesis of normality is not rejected, heteroscedasticity, both 
static and dynamic, does not seem to be of concern. Also, the results of the RESET2 test for 
functional form suggest that the log-linear functional form adopted by Williams and Thompson 
(1984) is adequate for modeling soybean acreage response in Brazil.  

 
The results for the soybean equation suggest that the null hypothesis of stable parameters 

in the Chow test is rejected. This rejection is consistent with the fact that the Brazilian 
government strongly intervened in the soybean market in the 60’s and 70’s, (which motivated the 
work of Williams and Thompson 1984) and much less intervention was observed in recent 
periods, which caused the change in the market dynamics, with producers becoming more 
sensitive to market signals in recent years. The problem of parameter instability will be 
approached by dividing the data in two periods and by estimating soybean regressions for these 
two periods. 

 
Since the soybean market is the one we are interested in, we estimate two sets of 

equations using OLS. In the first set we use variables in level and in the second the first 
difference is used. This approach is used so that it is possible to compare the results of this 
research with the results obtained by Williams and Thompson (1984), especially because these 
authors used data in level in the analysis. Naturally, we also present results using variables in the 
first difference, since most of the variables are stationary only in the first difference. Results are 
presented in tables 7 and 8. 
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Some important insights can be gained by comparing tables 7 and 8 with Williams and 
Thompson (1984) results. Using data from 1960 to 1978, Williams and Thompson (1984) 
estimated the following supply response function: 

 
(6) DRTSSBACBPWTPSBSSB ttt 34.0log84.0log27.0log98.0log53.096.5log 111 −+−−+= −−−                         
s                       (0.94)   (1.01)                      (-1.67)                       (-0.64)                  (5.84)                     (-1.11) 

 
where SSB is the supply of soybeans, PWT is the price of wheat, ACB is acreage of coffee and 
DRT is a dummy variable to account for the drought in 1978. The values in parenthesis are t-
values and R2 is 0.981.  Apparently, the first lag of soybean supply is the only coefficient that is 
statistically significant. The short-run price elasticity of soybean supply is 0.53, whereas the 
long-run price elasticity of soybean supply is 3.45. Naturally, these elasticities must be 
interpreted with caution since the own price elasticity depends on a coefficient that is not 
statistically different from zero.  
 

 In terms of statistical significance, these results are similar to the results shown in table 7, 
panel a, table 8, panel a. Many of the coefficients are not significant. These panels suggest that 
the expansion of soybean acreage in the period of 1960-1968 (Williams and Thompson 1984) 
continuing through 1988, was not largely driven by market signals, and cannot be satisfactorily 
explained by the variables included. On the other hand, table 7, panel b, and table 8, panel b 
present a very different picture. In recent years, producers are much more sensitive to market 
signals, that is, changes in soybean prices, prices of land competing crops, and risk are important 
factors influencing decisions on soybean acreage in Brazil. 

 
The elasticities presented in table 8, panel b, are consistent with the limited intervention of 

the Brazilian government in the soybean market in recent years.  The short-run own price 
elasticity is estimated in 0.47 and the long-run own price elasticity is 1.02. Cross price elasticities 
are significant, and the signs of the coefficients are consistent with expectation.  Increase in the 
expected prices of cotton, rice, corn, and price and yield risk tend to reduce acreage planted to 
soybeans.  
 
 
Conclusions 
 
This paper advances Williams and Thompson (1984) by updating their work and by explicitly 
accounting for risk in the analysis of acreage response in Brazil for soybeans. Empirical 
equations were estimated using seemingly unrelated regression (SUR). The robustness of the 
model was evaluated in a battery of misspecification tests as suggested by McGuirk et al. (1993) 
and McGuirk et al. (1995).  
 

The results of the testing procedure proposed by McGuirk et al. suggest that the model 
estimated is fairly robust in terms of normality, heteroscedasticity and functional form. 
Parameter instability (in terms of variance) led us to divide data in two periods (1976-1988 and 
1989-2003). The signs of the significant coefficients were consistent with expectations, 
particularly during the last period. Short-run and long-run acreage elasticities seem reasonable 
and differ somewhat from those estimated by William and Thompson (1984). Differences may 
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be related to the specification of the acreage versus production response and to changes in the 
economic environment. Regardless, it seems clear that Brazilian producers respond actively to 
changes in market signals. This implies that if prices of soybeans continue favorable compared to 
other crops, it is likely that acreage of soybeans continue to increase, either by substituting other 
crops or by the addition of new land to the production system.  
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Table 1. Definition of Variables 
Variable Name               Definition 

AS Soybean acreage (harvested), 1000 ha 
AR Rice acreage (harvested), 1000 ha 
AC Corn acreage (harvested), 1000 ha 
ACT Cotton acreage (harvested), 1000 ha 

EPS  Expected price of soybeans, R$ per ton 
EPCT  Expected price of cotton, R$ per ton 

EPR  Expected price of rice, R$ per ton 
EPC  Expected price of corn, R$ per ton 

GOV  Total government expenditures in support programs, million (R$),   deflated 
by the Consumer Price Index    

RISKS Price/yield risk for soybeans 
RISKR Price/yield risk for rice 
RISKC Price/yield risk for corn 
RISKCT Price/yield risk for cotton 
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Table 2. Individual and Joint Misspecification Tests 
Aspect tested Test 
Individual misspecification tests  

Normality Doornik and Hansen, omnibus test 
Functional form RESET2 test 
Static heteroscedasticity White test 
Dynamic heteroscedasticity ARCH test 
Parameter stability Rao test (adjusted for small sample) 
Independence (no autocorrelation in the 
errors) Breusch-Godfrey test 

Joint misspecification tests  
Simultaneously asses stability of parameters,    
functional form, and independence Conditional mean 

Dynamic and static heteroscedasticity and 
stability of variance Conditional variance 
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Table 3. Results of the Dickey-Fuller Test in Level and First Difference.  
Variable Model* # lags Test 1% CV 5% CV 10% CV Stationary?

Statistic

lnact CT 7 -2.72 -4.38 -3.60 -3.24 N
lnar CT 1 -3.95 -4.37 -3.60 -3.24 Y
lnac CNT 4 -2.48 -3.75 -3.00 -2.63 N
lnas CT 7 -1.94 -4.38 -3.60 -3.24 N
lnpct NCNT 1 -1.29 -2.66 -1.95 -1.60 N
lnpr CT 1 -2.11 -4.37 -3.60 -3.24 N
lnpc CT 1 -1.96 -4.37 -3.60 -3.24 N
lnps CNT 7 -2.15 -3.75 -3.00 -2.63 N
lngov CT 1 -0.71 -2.66 -1.95 -1.60 N
RISKCT NCNT 1 -2.33 -2.66 -1.95 -1.60 Y
RISKR NCNT 1 -2.74 -2.66 -1.95 -1.60 Y
RISKC NCNT 7 -0.14 -2.66 -1.95 -1.60 N
RISKS CNT 1 -3.97 -3.74 -3.00 -2.63 Y

∆lnact CNT 1 -5.95 -3.75 -3.00 -2.63 Y
∆lnac NCNT 3 -3.57 -1.95 -1.95 -1.60 Y
∆lnas CNT 1 -6.63 -3.75 -3.00 -2.63 Y
∆lnpct CT 7 -1.49 -3.60 -3.24 -1.60 N
∆lnpr CT 5 -0.82 -4.38 -3.60 -3.24 N
∆lnpc NCNT 1 -3.41 -2.66 -1.95 -1.60 Y
∆lnps NCNT 6 -1.12 -2.66 -1.95 -1.60 N
∆lngov NCNT 1 -4.57 -2.66 -1.95 -1.60 Y
∆RISKC NCNT 6 -4.84 -2.66 -1.95 -1.60 Y

Difference

Level

 
*CT stands for constant and trend; CNT stands for constant and no trend; NCNT stands for no constant 
and no trend.  
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Table 4. Model Selection for Estimating Expected Prices 
Crop Model* BIC U2 

Soybeans 2ln 0.04 0.37 lnt tPS PS −∆ = − − ∆  
                   (-0.84)  (-1.70) 

0.13 1.81 

Cotton t-3ln 0.01 0.37 lnPCTtPCT∆ = − + ∆  
                     (-0.48)  (1.66) 

0.29 1.99 

Corn 1ln 0.04 0.30 lnt tPC PC −∆ = − − ∆  
                        (-1.05)  (-1.45) 

0.82 2.07 

Rice 4ln 0.04 0.22 lnt tPR PR −∆ = − − ∆  
                      (-1.19)   (-1.00) 

0.22 3.23 

* Several equations were estimated for each crop using a moving average and autoregressive models. 
The equation shown for each crop represent the one selected using the BIC.   
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Table 5.  Seemingly Unrelated Regression Results. 

 tASln∆  (SUR) 
 Coefficient S.E. p-value 

E
tPSln∆  0.4216 0.0612 0.0000 

E
tPCTln∆  -0.0184 0.0710 0.7960 

E
tPRln∆  -0.1030 0.0547 0.0600 
E
tPCln∆  -0.1059 0.0585 0.0700 

tGOVln∆  -0.0178 0.0283 0.5290 
tRISKS∆  0.0001 0.0001 0.4890 
1ln −∆ tAS  0.3356 0.0769 0.0000 

Constant 0.0273 0.0091 0.0030 
R2 = 0.80 
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Table 6. Brazilian Acreage Response Functions: P-Values for Full-System and Soybean 
Equation Misspecification Tests 

Item   Whole System Soybean equation 

Individual Tests   

       Normality     
         Omnibus  0.114 0.393 
  Functional form:   
         RESET2  0.730 0.283 
       Heteroscedasticity   
         Static:  WHITE 0.194 0.075 
         Dynamic ARCH 0.497 0.471 
  Autocorrelation   
         Breusch-Godfrey  0.113 0.066 
  Parameter stability:   
         Chow 0.049 2.27e-18 
Joint Tests    
  Overall mean test 0.690 0.076 
  Overall variance test 0.533 0.144 
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Table 7. Soybean Regression Using Data from 1976 to 1988 (Panel a), 1989 to 2003 (Panel b), 
Level. 
 
  ln tAS  (1976-1988) (panel a)  ln tAS  (1989-2003) (panel b) 

Variable (Adj. R2 = 0.84)  (Adj. R2 = 0.97) 
 Coefficient S.E. t P>|t|  Coefficient S.E. t P>|t| 
ln E

tPS  0.3781 0.1648 2.29 0.0830  0.5177 0.0787 6.5800 0.0010 
ln E

tPCT  -0.2822 0.1911 -1.48 0.2140  -0.3579 0.1143 -3.1300 0.0200 
ln E

tPR  -0.3306 0.1550 -2.13 0.1000  -0.1991 0.0772 -2.5800 0.0420 
ln E

tPC  0.1759 0.1980 0.89 0.4240  -0.2269 0.0880 -2.5800 0.0420 
ln tGOV  -0.1107 0.0493 -2.25 0.0880  0.0429 0.0563 0.7600 0.4750 

tRISKS  0.0001 0.0002 0.59 0.5850  -0.0006 0.0002 -2.4700 0.0480 
1ln tAS −  0.4619 0.1700 2.72 0.0530  0.6637 0.0704 9.4200 0.0000 

Constant 6.8626 2.1070 3.26 0.0310  4.5730 1.0771 4.2500 0.0050 
Normality (p-value): 0.305;   Normality (p-value): 0.992;  
Homoscedasticity (p-value): ARCH: 0.325, White: 0.956   Homoscedasticity (p-value): ARCH: 0.3600, White: 0.803 
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Table 8. Soybean Regression Using Data from 1976 to 1988 (Panel a), 1989 to 2003 (Panel b), 
First Difference. 
 
  tASln∆  (1976-1988) (panel a)  tASln∆  (1989-2003) (panel b) 

Variable (Adj. R2 = 0.31) (Adj. R2 = 0.97) 
 Coefficient S.E. t P>|t|  Coefficient S.E. t P>|t| 

E
tPSln∆  0.2030 0.2414 0.8400 0.4620  0.4775 0.0387 12.3300 0.0000 

E
tPCTln∆  -0.1511 0.2107 -0.7200 0.5250  -0.1380 0.0660 -2.0900 0.0910 

E
tPRln∆  -0.2591 0.1760 -1.4700 0.2380  -0.1058 0.0348 -3.0400 0.0290 
E
tPCln∆  0.1216 0.1987 0.6100 0.5840  -0.1940 0.0335 -5.7900 0.0020 

tGOVln∆  -0.2311 0.1988 -1.1600 0.3290  0.0148 0.0196 0.7500 0.4850 

tRISKS∆  0.0002 0.0003 0.5300 0.6320  -0.0004 0.0001 -4.8600 0.0050 
1ln −∆ tAS  0.9055 0.8582 1.0600 0.3690  0.5333 0.0596 8.9400 0.0000 

Constant -0.0161 0.0493 -0.3300 0.7660  0.0200 0.0064 3.1400 0.0260 
Normality (p-value): 0.978;   Normality (p-value): 0.253;  
Homoscedasticity (p-value): ARCH: 0.807, White: 0.408   Homoscedasticity (p-value): ARCH: 0.979, White: 0.315  
 


