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A Comparison of Threshold Cointegration and Markov-Switching Vector Error
Correction Models in Price Transmission Analysis

We compare two regime-dependent econometric models for price transmission analysis,
namely the threshold vector error correction model and Markov-switching vector error
correction model. We first provide a detailed characterization of each of the models which is
followed by a comprehensive comparison. We find that the assumptions regarding the nature
of their regime-switching mechanisms are fundamentally different so that each model is
suitable for a certain type of nonlinear price transmission. Furthermore, we conduct a Monte
Carlo experiment in order to study the performance of the estimation techniques of both
models for simulated data. We find that both models are adequate for studying price
transmission since their characteristics match the underlying economic theory and allow
hence for an easy interpretation. Nevertheless, the results of the corresponding estimation
techniques do not reproduce the true parameters and are not robust against nuisance
parameters. The comparison is supplemented by a review of empirical studies in price
transmission analysis in which mostly the threshold vector error correction model is applied.

Keywords: price transmission; market integration; threshold vector error correction
model; Markov-switching vector error correction model; comparison;
nonlinear time series analysis

1 Introduction

Economists have devoted considerable attention to testing the Law of One Price (LOP) in a
variety of settings, and agricultural economists in particular have generated an extensive
literature on the empirical analysis of price transmission (PT) along spatial (prices for a
homogeneous commodity at different locations - e.g. wheat in France and Germany) and
vertical (prices for a commodity at different stages of processing - e.g. wheat-flour-bread)
dimensions. Early studies focused on correlations or linear time series analysis involving
prices, but in recent years attention has increasingly turned to the use of models that can
capture the regime-dependent nature of relationships between prices. In a spatial context, the
key insight, derived from Takayama and Judge (1971), is that prices will only co-move if
spatial arbitrage conditions are binding (Baulch, 1994). If the difference between prices at
two locations is greater than the cost of trade between these locations, then arbitrage will
drive the price difference net of transaction costs to zero, and this equilibrating mechanism
will lead to an observable relationship between the prices in question. If the difference
between these prices is less than the transaction costs, however, arbitrage will not take place
and in the simplest case the prices will move independently of one another. The result is a
two-regime model of PT that extends to three regimes if the possibility of trade reversal is
considered, and possibly more regimes if factors such as links to third markets or
equilibrating mechanisms other than physical trade are accounted for.

The threshold vector error correction model has been used extensively in PT analysis
(Goodwin and Piggott, 2001, etc.). Recently, Brümmer et al. (2008) propose the use of the
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Markov-switching vector error correction model to study price transmission in a vertical
context between wheat and flour in Ukraine. So far no systematic attempt has been made to
contrast and compare these models as regards their theoretical underpinnings and their
performance and interpretation in the context of PT. In this paper we carry out such a
comparison in order to provide some indication regarding the common and differing features
of both models. Both models allow for regime-switching; does this characteristic imply that
they may be used interchangeably and lead to congruent results? We show that this is not the
case and that each approach suits best particular analytical objectives in PT analysis. The
comparison discusses the most important aspects for the empirical application of both models
in PT analysis in detail in order to give some indication for the application of both models.

Section 2 outlines the relationship of both models to other time series models by introducing
the class of nonlinear time series models in general and the subclass of threshold
autoregressive models. These considerations are followed by a detailed characterization of
the threshold and the Markov-switching vector error correction model, respectively, by
focusing on the basic idea, the model structure, the estimation and the interpretation of each.
Section 3 provides a conceptual comparison of the characteristics of both models outlined
before. It is supplemented by a simulation study which assesses the performance of the
estimation methods of each model. The last section summarizes and draws conclusions.
Appendix A provides a literature review of applications of the threshold vector error
correction model to PT analysis. Appendix B contains details on the simulation study.

2 Model Review

2.1 Classification of nonlinear time series models

Many model classes for nonlinear time series analysis were developed during the second half
of the seventies and the eighties of the past century.1 Tong (1978) introduced the class of
so-called threshold models. Fairly general formulations of nonlinear models have been
developed by Priestley (1980b) (the class of state-dependent models) and Tjøstheim (1986)
(the class of doubly stochastic models) which encompass a wide range of classes of less
general models, among others threshold models. Tong (1990) suggests a comprehensive
classification of model classes for nonlinear time series analysis (Figure 1). Model classes
characterized by a specific functional relationship which do not contain other subclasses are
called elementary model classes. On the next higher level, groups of such elementary classes,
which are called first-generation models, can be identified according to common properties.
In turn, first generation models can be generalized in various ways. The resulting
meta-classes such as the above-mentioned state-dependent and doubly stochastic models are
called second-generation models, which are very general in their specification and each of
which includes various first-generation models.2

Among the first-generation models, a wide variety of model classes has been developed.
Classes such as bilinear (BL) models, threshold autoregressive (TAR) models3 or

1 For a narrative about the “Birth of the Threshold Time Series Model” see Tong (2007).
2 However, Tong (1990), among others, questions their usefulness for practical analysis because of the high
degree of generalization.
3 TAR models are called nonlinear mean reversion (NMR) models in real exchange rate analysis; compare, for
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autoregressive models with conditional heteroscedasticity (ARCH) are examples. For the
purpose of this paper, the class of TAR models is most interesting. It subdivides into the three
groups of piecewise polynomial, piecewise linear and smooth autoregressive models
depending on the functional relationship f between the history {Xp}p∈Z,p<t of the time
series4 {Xt}t∈Z and its value Xt at time t:

Xt = f(Xt−1, . . . , Xt−k, εt−1, . . . , εt−k︸ ︷︷ ︸
history of the time series

) + εt. (1)

A general formulation of the threshold model might take the form

Xt = A(Jt)Xt−1 + H(Jt)εt + C(Jt) (2)

where Xt = (Xt, Xt−1, . . . , Xt−k+1)
> and Jt denotes a random variable which takes one of

the integer values {1, 2, . . . , l} at each time t. Jt is an indicator variable signaling the state
(regime) in which the series {Xt} is at time t. For a particular state Jt = j, the (k × k)
non-random matrices A(j) and H(j) contain the autoregressive coefficients and the
coefficients that reflect heteroscedasticity, respectively. The (k × 1) vector C(j) comprises
the constants of the relationship. {εt} denotes a sequence of identically and independently
distributed (iid) k-dimensional random vectors with zero mean and existing covariance
matrix. Thus, for each state Jt = j the relationship is locally linear5 with a particular set of
coefficients and/or a constant.

The determination of Jt remains unspecified in (2). One might think of various ways in
which the states of {Xt} are determined. This indicator variable is the key element of the
nonlinear character of the equation; as Tong (1983) puts it, “Jt indicates the mode of the
dynamic mechanism”. The realizations of Jt at all time points t form the series of the states
(regimes) {Jt} which is referred to as the regime-generating process (RGP) of the time
series. This generation mechanism of the regime process characterizes elementary model
classes within the class of piecewise linear TAR models. The state of a threshold model can
be generated by one of the following basic mechanisms:

Jt = f(Xt−p) (3a)
Jt = f(Yt−q) (3b)
Jt = f(Xt−p, Yt−q) (3c)

where t, p ∈ N+, q ∈ N and t > p, t > q.

The first case refers to the endogenous determination of the regimes of {Xt} by some part of
its history. Tong (1990) calls this the class of self-exciting threshold autoregression models
(SETAR)6 since the regimes of {Xt} are completely generated by the series itself. The

example, Norman (2007) and O’Connel and Wei (2002). However, we will stick to the former term throughout
this paper.
4 We use the abbreviated form {Xt} for denoting a time series in this paper.
5 As Priestley (1980a) notes, the term local refers in this setting not to the proximity to a particular point in time
but to a certain region of the state space of the series. Furthermore, linear refers to the constancy of parameters
in such a region. Local linearity is thus the key property of TAR models, namely that their parameters are not
constant over the whole range of observations, but take (constant) values depending on the current state/ the
regime of the time series. Hence they are only constant within each state and called state-dependent or regime-
dependent parameters.
6 The abbreviation may be complemented by the number of regimes and the lag length as
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second case denotes the exogenous determination by some other series {Yt} lagged by q
periods that is independent of {Xt}. One can think of a number of ways of exogenous
determination. The most obvious generation mechanism is a second time series {Yt} which is
known. Tong (1990) refers to this case as an open-loop threshold autoregressive system
(TARSO). If {Yt} itself follows a threshold model and its regimes are exogenously
determined by {Xt}, the model is called a closed-loop threshold autoregressive system
(TARSC), i.e., each of the two series is determining the states of the other one. Another
possibility, among others, is the determination of the states by a set of unknown (exogenous)
variables which cannot be identified or measured for some reason so that only quantify
conditional probabilities of staying in a state or switching to another can be quantified. Thus,
the states of a series {Xt} might be generated by a Markov chain. The resulting model is
called Markov-switching autoregressive (MSAR)7 which can easily be transformed into the
Markov-switching vector error correction model (MSVECM). The third type of regime
determination can be thought of as a mixture of the two above-mentioned ones in which the
states of {Xt} are determined by a combination of lagged values of the series itself and of
some exogenous series {Yt}. The case that the states of the second series {Yt} are in turn
determined by a combination some lag of itself and of {Xt} can be called simultaneous
TARSC. If regressands of such a system are not expressed in levels but in differences, the
resulting piecewise linear TAR model with mixed regime determination is called a threshold
vector error correction model (TVECM). Hence, the TVECM and the MSVECM both
belong to the class of piecewise linear TAR models.

2.2 Detailed Characterization

The Threshold Principle

In a simple market setting it is often postulated that quantity demanded will equal zero above
a certain price, or that quantity supplied will equal zero below a certain price. As a result, the
functional relationship between quantity (supplied or demanded) and price will be subject to
different regimes depending on whether the price is above or below certain values. Such
values are called thresholds. A threshold introduces nonlinearities into the functional
relationship and “specifies the operation modes of the system” (Tong, 1990). The
relationship between two or more variables might be locally linear8, however, globally it
exhibits nonlinear behavior because of the existence of one or more structural changes in the
relationship.

Tong (1990) notes that “threshold is a generic concept” resulting from the general property of
saturation9, i.e., the structural changes as found, for example, in the mentioned quantity-price
relationship. Tong defines the threshold principle as “the local approximation over the states,
i.e., the introduction of regimes via thresholds”. Such regime-dependent parameter stability
of some time series is usually referred to as threshold behavior. Balke and Fomby (1997, and

SETAR(l; k1, k2, . . . , kl) where l denotes the number of regimes and kj , j = 1, 2, . . . , l the lag-length in the jth

state as, for example, in Tong (1990), or only by the number of regimes SETAR(l) as, for example, in Hansen
(1999).
7 A multidimensional version of this class are the Markov-switching vector autoregressive (MSVAR) models
which are discussed in depth in Krolzig (1997).
8 Compare footnote 5 on page 4 for a definition of local linearity.
9 Tong (1990) and Tong and Lim (1980) provide a large number of examples in various disciplines of science.
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references therein) list several examples in which threshold behavior is found in economics,
e.g. prices, inventories, consumer durables or employment.

THRESHOLD VECTOR ERROR CORRECTION MODELS

Basic Idea

Although Whittle (1954) is first to suggest a statistical model based on the threshold idea, the
class of threshold models is formally introduced by Tong in 1978. He and many other
researchers subsequently extend this area of research. Bhansali suggests that, as early as
1980, “commodity price series [are] a possible class of economic time series where
applications of these models may be useful”. In the second half of the 1980s, cointegration
theory is developed to deal with the analysis of non-stationary time series.10 In 1997, Balke
and Fomby publish a paper on threshold cointegration in which they unite both
developments. Their essential insight is the assumption that the correction of deviations from
the long-run equilibrium, i.e., the equilibrium errors, might display threshold behavior. The
TVECM has attracted much attention in, among others, PT analysis since the publication of
Balke and Fomby (1997).11

The possible existence of nonlinear PT was first hypothesized by Heckscher (1916).12 In the
context of international trade, he proposed a band of inaction in which small deviations from
the equilibrium price are not adjusted because transaction costs are higher than potential
earnings due to the price differential. These transaction costs not only encompass transport
costs, but for example also costs of searching, negotiating, insurance and risk premia.
Heckscher termed the boundaries of this neutral band in which prices are supposed to move
freely, commodity points. In other words, the of transmission of price signals between
markets depends on whether deviations from the equilibrium price are inside the band of
inaction or not, i.e., PT changes structurally depending on the magnitude of the deviations.
Hence, PT is likely to follow threshold behavior. Such a regime-dependent nature of PT also
results from the Enke-Samuleson-Takayama-Judge spatial equilibrium model formulated in
Takayama and Judge (1971). The model implies that trade will only occur if the price spread
of some homogeneous commodity between two spatially separated markets is at least as
large as the transaction costs of trading between these two markets. Consequently, PT
depends on the magnitude of the price spread, i.e., it shows regime-dependent behavior.

Figure 2 depicts the threshold behavior of PT.13 It shows the quantity traded tradeABt from
market A to market B as a function of the price differential pBt − pAt between B and A. τ
denotes the price differential above which trade takes place. Rational traders will only
engage in trade if it is profitable, i.e., when they make a net profit. Thus, τ can be interpreted
as the commodity point for trade from A to B which is equivalent to the transaction costs
involved in the trading process. Price differentials below τ will not trigger trade flows and are

10 Compare, for example, Engle and Granger (1987), Johansen (1995), Hendry and Juselius (2000) or Hendry
and Juselius (2001).
11 We provide a review of publications which study PT in commodity trade using mainly the TVECM in the
econometric analysis in Appendix A, pp. 36.
12 This idea is based on the LOP as it was formulated by Marshall (1890, p. 325) who also mentioned the role of
transaction costs.
13 A cointegration vector β = (1 − 1)> is implicitly assumed here.
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not adjusted. However, if the price differential is greater than τ , trade, by shifting supply
from A to B, will cause pAt to rise and pBt to fall. This mechanism reduces the price
differential in a process that will continue until it returns to τ . pBt − pAt − τ = 0 is therefore
an equilibrium relationship. If both pAt and pBt are I(1), it will be a cointegrating relationship,
with an equilibrium error pBt − pAt − τ that is corrected by trade whenever it exceeds zero14;
values of the error that are less than zero are not corrected15. Hence, trade leads to the many
times studied price adjustment process. Consequently, the magnitude of PT will differ
depending on whether trade takes place or not, that is, PT shows regime-dependent behavior.
Thus, threshold models are both theoretically and intuitively appropriate in general for the
analysis of PT. Moreover, the regressands are usually expressed in first differences, i.e.,
∆pAt = pAt − pAt−1 and ∆pBt = pBt − pBt−1. The regimes of each price series, directly
corresponding to the regimes of PT, are determined by the error correction term, which is
itself a function of both series. Thus, a simultaneous TARSC in the form of the TVECM is an
appropriate model. Obstfeld and Taylor (1997) provide the first publication which explicitly
refers to the hypothesis of Heckscher. O’Connel and Wei (1997) and Trenkler and Wolf
(2003) derive this idea from economic theory. Several theoretical models in the area of real
exchange rate analysis yield results in line with Heckscher’s hypothesis; see, for example,
Dumas (1992), Uppal (1993), Sercu et al. (1995), Coleman (1995, 2004).

Model Structure

The TVECM may generally be formulated as follows16:

∆pt = µ(j) +α(j)β>pt−1 + C(j)(L)∆pt + εt if θ(j−1) < β>pt−d ≤ θ(j) (4)

= µ(j) +α(j)ectt−d +
k−1∑
i=1

Ψ
(j)
i ∆pt−i + εt if θ(j−1) < ectt−d ≤ θ(j) (5)

= µ(Jt) +α(Jt)ectt−d +
k−1∑
i=1

Ψ
(Jt)
i ∆pt−i + εt (6)

where pt = (pAt pBt )> is the vector of prices in markets A and B, t = 1, . . . , T denotes the
time index and j ∈ {1, 2, . . . , l, l + 1} the index of the regimes. µ(j) denotes the
regime-dependent mean where the superscript (j) signals the regime-dependency of the
parameter. ectt−d = β>pt−d denotes the deviation from the long-run equilibrium, i.e. the
error correction term lagged by d periods.17 β = (βA βB)> denotes the cointegration
vector of the prices pt and α(j) = (αA αB)>(j) is called the loading vector. It contains the
regime-dependent parameters characterizing to what extent the price changes ∆pt react on
deviations from the long-run equilibrium lagged by d periods. These parameters are

14 Hence, the price spread pBt − pAt is directly proportional to the equilibrium error. Since, for example, the price
change in market B ∆pB = pBt − pBt−1 is a measure for trade from A to B, the error correction mechanism as
depicted, for example, in Meyer (2004) corresponds to Figure 2.
15 However, negative values of the error are bounded from below by a second threshold which measures the
transaction costs of trade in the opposite direction. This second threshold need not be of the same magnitude as
the first, as, for example, the costs of moving up- as opposed to downriver or with and without backhauls might
differ.
16 For a derivation see, for example, Balke and Fomby (1997) or Lo and Zivot (2001).
17 Here it becomes obvious, that the threshold variable ectt−d is a linear combination of the price series pt and
thus a function of those.
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interpreted as the magnitudes of error-correction of both prices which are equivalent to the
speed (the rate) of price adjustment to the long-run equilibrium and characterize the
regime-dependent magnitudes of PT. C(j)(L) denote lag polynomials of order k and,
alternatively, the Ψ

(j)
i are (2× 2) matrices containing the autoregressive coefficients of each

price difference (the coefficients for short-run adjustment of deviations). The errors εt are
(2× 1) vectors of iid random variables with mean zero and finite covariance matrix Σ.

The values θ(j) ∈ R are ordered so that θ(0) < θ(1) < . . . < θ(l) < θ(l+1) where θ(0) = −∞,
θ(l+1) = ∞. They are called threshold parameters or in short thresholds.18 We impose the
assumption on the thresholds to be time-invariant since this specification is almost
exclusively used in applied research.19 The variable determining the relevant regime at time t
is called threshold variable.20 It is assumed to be stationary and to follow a continuous
distribution. d ∈ N+ is called the delay parameter. Alternatively, the model can be
formulated using the indicator variable Jt introduced in (2). It takes the value j at time t if
θ(j−1) < ectt−d ≤ θ(j) .

Obviously, the nonlinear TVECM is a generalization of the linear vector error correction
model (VECM). Each threshold θ(j) is only meaningful if

0 < P(θ(j−1) < ectt−d ≤ θ(j)) < 1. (7)

That is, only if realizations of the threshold variable occur with a probability larger than zero,
i.e., are observable in each regime, the respective threshold exists.21 By introducing dummy
variables for each regime, the model can more compactly be formulated in terms of a
multivariate regression model similarly to Hansen and Seo (2002):

∆pt = A(1)>Xt−1d
(1)
t + . . .+A(l)>Xt−1d

(l)
t + εt (8)

=
l∑

j=1

A(j)>Xt−1d
(j)
t + εt (9)

= A(Jt)>Xt−1 + εt (10)

where A(j) denotes a ((2k + 2) × 2) matrix of coefficients. The vector of the regressors of
(5) with (2k + 2) elements is contained in Xt−1 = (1 β>pt−1 ∆pt−1 . . .∆pt−k)

>.
Furthermore, d

(j)
t = 1(θ(j−1)< ectt−d ≤θ(j)) denotes the dummy variable signaling the j’s

regime of the series at time t where 1(•) is the indicator function. By expressing the regimes
of the price series in terms of the indicator variable Jt, a special case of (2) is obtained.

In the analysis of PT, the thresholds are interpreted as the transaction costs for moving a

18 The thresholds θ(0) and θ(l+1) are usually not referred to as thresholds in the proper sense of the term. They
rather represent some kind of natural boundaries since the threshold variable of any meaningful model will
take values between −∞ and ∞. Hence, they exist also for each linear model and are only introduced for the
sake of the generality of (4) - (6). In general, if we speak of thresholds we refer only to the inner ones, i.e.,
θ(1), θ(2), . . . , θ(l). Thus in general, a TVECM of s regimes has s − 1 effective, i.e., inner thresholds and vice
versa. Thus, l denotes the number of effective thresholds.
19 For models relaxing this restriction see, e.g., Van Campenhout (2007) who models the threshold as a linear
function of time and Park et al. (2007) who derive formulae for dynamic thresholds varying on a daily basis.
20 In the case of the TVECM the threshold variable is always the deviation from the long-run equilibrium ectt−d.
21 If the realizations of the threshold variable are likely to occur only in one regime, no effective threshold exists
and the TVECM in (5) simplifies to a linear VECM of the form ∆pt = µ+αectt−d +

∑k−1
i=1 Ψi∆pt−i + εt.
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homogeneous commodity between any pair of markets which introduce the nonlinear
behavior into the PT process. The error-correction mechanism is usually assumed to react
immediately one period after some deviation from equilibrium, i.e., the delay parameter is
usually assumed to equal one and the error correction term becomes ectt−1. Furthermore, the
number of regimes is restricted, often either set to two or three implying one or two
thresholds respectively.22 In line with the above-mentioned theoretical background, a
TVECM(3) has much appeal since it accounts for trade into both directions between two
spatially separated markets.23

Balke and Fomby (1997) and Lo and Zivot (2001) suggest certain restrictions on the model
which might be particularly suitable for applied analysis. The two prices can, based on
Heckscher’s supposition, be expected not to be cointegrated inside the “band of inaction”
spanned by the two transaction costs implying that the price differences ∆pt move as random
walks around zero. Consequently, no error correction takes place in regime j = 2 between
the two thresholds, i.e., α(2) = 0, and the regime-dependent mean equals zero µ(2) = 0.
Depending on the center of attraction of the error correction mechanism, special cases of the
model can be distinguished. If the errors are corrected toward a band around the long-run
equilibrium which is spanned by the regime-specific means µ(1) and µ(3) the model is called
a BAND-TVECM as formulated in (11). However, if the errors are corrected toward the
long-run equilibrium itself, implying µ(1) = µ(3) = 0, the model is called an
Equilibrium-TVECM (EQ-TVECM). Moreover, the model is called continuous if
µ(1) = −α(1)θ(1) and µ(3) = −α(3)θ(2). If both (effective) thresholds are of the same
magnitude, i.e., if −θ(1) = θ(2), implying identical transaction costs in both directions of
trade, the model is called symmetric.

∆pt =


µ(1) +α(1)ectt−1+

∑k−1
i=1 Ψ

(1)
i ∆pt−i + εt if θ(0) < ectt−1 ≤ θ(1)∑k−1

i=1 Ψ
(2)
i ∆pt−i + εt if θ(1) < ectt−1 ≤ θ(2)

µ(3) +α(3)ectt−1+
∑k−1

i=1 Ψ
(3)
i ∆pt−i + εt if θ(2) < ectt−1 ≤ θ(3).

(11)

Figure 3 depicts a realization of an EQ-TVECM characterized by three regimes. The regime
Jt depends exclusively on the magnitude of the first lag of the error correction term ectt−d.
The price series pAt and pBt are plotted in the bottom panel. The variable causing regime
switches is deviation from the long-run equilibrium, i.e., the error correction term ectt which
equals the difference between the prices at each time t. It is separately plotted in the middle
panel. If it is either smaller or larger than the lower θ(1) or the upper threshold θ(2), Jt takes
the values j = 1 or j = 3, respectively, and error correction toward zero takes place.
However, prices move independently inside the band spanned by the two thresholds since
α(2) = 0. Whenever the threshold variable ectt crosses one of the thresholds, the regime
switches after a lag of d periods to the new regime as depicted in the middle and the upper
panel of Figure 3.24 The parameters of most interest in applied analysis are the thresholds
θ(j), the loading vectors α(j) and the cointegration vector β.

22 In order to refer to the number of regimes, the name of the specified model is sometimes supplemented by this
number, for example a TVECM with l thresholds has l + 1 regimes and can be denoted by TVECM(l + 1) or
TVECMl+1.
23 A TVECM(2) where θ(1) = 0 is suitable for the study of asymmetric PT, see, e.g., Chen et al. (2005).
24 The rationale for such a lag is that markets need some time to react. Nevertheless, this time may depend on
the product traded, the market infrastructure and the socio-economic environment of the market.
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Estimation

Several authors developed estimation techniques for threshold models in general or for the
TVECM in particular. Tong (1978) suggests the Entropy Maximization Principle based on
the Akaike Information Criterion (AIC) for the estimation of a general TAR model. Tsay
(1989), Chan (1993) and Hansen (2000) propose approaches for threshold models with two
regimes. Tsay (1998) shows that, asymptotically, the estimates of this sequential conditional
multivariate least squares estimation are strongly consistent and that the estimated
coefficients A(j) in equation (9) are independent of the thresholds θ(j) and the delay
parameter d and normally distributed.

Balke and Fomby (1997) suggest conditional least squares estimation for TAR models
applicable to any number of thresholds and delay parameters. Obstfeld and Taylor (1997,
Appendix A) give a detailed description of their applied maximum likelihood estimation
technique. Hansen (1999) presents an estimation technique for SETAR models with two or
more regimes based on sequential conditional least squares estimation through concentration.
Lo and Zivot (2001, Appendix A) suggest a combination of the methods of Hansen (1999)
and Tsay (1998) for estimating one threshold and the delay parameter of a multivariate
TVECM. Hansen and Seo (2002) propose a maximum likelihood estimation procedure for
the TVECM for the bivariate case, i.e., with two regimes, which allows for the simultaneous
estimation of the cointegration vector and the threshold, and provide a detailed description of
the algorithm proposed.

Table 5 summarizes estimation approaches of selected publications in chronological order. It
displays information on the underlying model such as the model class, the number of
estimated thresholds l and potential restrictions on the delay parameter d. Moreover, it
mentions whether the estimation follows the maximum likelihood or the least squares
principle. The latter is referred to differently in the literature as sequential, iterative or
conditional (multivariate) least squares.25 This is complemented by information on the
optimization method such as the considered optimization criterion, i.e., the objective
function, its parameters and the type of the optimization. The RSS criterion, in contrast to the
log-determinant of the variance-covariance matrix, ignores correlations across the regimes’
equations. Nevertheless, Serra and Goodwin (2002) have shown that both criteria yield the
same estimation results and might thus be considered to be equivalently suitable.

The functions of the presented criteria will usually not be smooth.26 Hence, a grid search
algorithm in form of SCLS is suitable for optimization. Its dimension depends on the number
of parameters of the optimization criterion.27 The challenge for estimation consists in the fact
that the unknown parameters of the model depend on each other. The coefficients matrices
A(j) in (9) additionally to the variance-covariance matrix Σ depend, among others, on the
unknown thresholds θ(j), however, the former are a precondition for estimating the latter.

The basic idea of the grid search is very pragmatic. In order to break the “vicious circle”, the
parameters of the optimization criterion, i.e., among others the thresholds, are pretended to

25 We refer to the method as sequential conditional least squares (SCLS) throughout the paper.
26 For examples of the shape of such criterion functions see Hansen and Seo (2002, p. 298).
27 The higher the dimension the higher the computational costs. Several authors have suggested alternatives, see,
for example, Hansen and Seo (2002), Lo and Zivot (2001), Hansen (1999), Bai and Perron (1998), Bai (1997) or
Dorsey and Mayer (1995).
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be known and are set to some constants.Conditionally on the combination of the chosen
optimization parameters, the remaining model parameters, i.e., the coefficients matrices A(j)

and the variance-covariance matrix Σ, and the optimization criterion are computed. The
computation is repeated for a number of combinations of possible values of the optimization
parameters, and the criterion is evaluated.28

Candidate values of the optimization parameters are generated by an evenly spaced grid
across the empirical support of the threshold variable and potentially a reasonable range of
the criterion’s other parameters. The combination which optimizes the criterion represents
the final estimates of the optimization parameters. Conditionally on these, the final estimates
of the remaining model parameters are obtained. In case of the maximum likelihood
approach of Hansen and Seo (2002), this idea is called concentrated or profile likelihood.

For practical computation, the constraint formulated in (7) has to be accounted for in order to
ensure a reasonable number of observations for the estimation of A(j). It is modified in the
following way to ensure a minimal proportion of observations in each regime

π0 <
Tj
T
< 1− l · π0 (12)

where Tj denotes the number of observations in regime j and l the number of thresholds of
the model. The trimming parameter π0 is usually set to 0.05 or 0.1.

Interpretation

As sketched above, the TVECM specification, as long as the model is assumed or tested to
have two effective thresholds, has a immediate economic motivation, namely the concept of
commodity points suggested by Heckscher which corresponds to the transaction costs in a
Enke-Samuelson-Takayama-Judge spatial equilibrium. Price adjustment as a consequence of
trade only takes place if the price spread between two markets exceeds the “band of
inaction”. The latter is delimited by the two estimated thresholds. Prices move independently
within this band and are not cointegrated.

The thresholds are interpreted as transaction costs which render trade costly and thus inhibit
it to a certain extent. Hence, the assumption that the thresholds are symmetric around the
equilibrium error may not be appropriate in every case since economic theory does not give
indications for this assumption and transaction costs are likely to be direction-specific (e.g.
backhaul). The transaction costs encompass much more aspects than only the expenses for
transportation. They are any costs with respect to temporal and financial expenses connected
with the search for information, financing the trading process and legal duties (Shepherd,
1997). Barrett (2001) provides an extensive discussion of the components of such costs. A
large part consists, of course, of the freight rates. Additionally, variable costs associated with
insurance, financing or contracting are relevant. Exogenous costs such as underwriting fees
or testing charges might apply. Furthermore, average duties on the product and immeasurable
transaction costs such as opportunity and search costs or risk premia might also play a role.

Consequently, if the deviation ectt from the long-run equilibrium, as depicted in the middle

28 Detailed accounts of the algorithm are, for example, given in Serra and Goodwin (2003) and Park et al. (2007).
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panel of Figure 3, is less than the transaction costs θ(1) of trade from market B to market A it
is corrected upward toward zero, i.e., the long-run equilibrium, by trade into this direction. If
it exceeds the transaction costs θ(2) of trade from A to B then it is corrected downward
toward zero. Within the band spanned by the two transaction costs there is no incentive for
trade in either direction. Prices move independently in this corridor, thus α(2) = 0, until the
deviation from their long-run equilibrium exceeds either of the transaction costs once more,
trade becomes profitable and the deviation decreases in the following periods, i.e., error
correction takes place.

To our knowledge, only very few papers opt for a broader interpretation of the estimated
thresholds than only as transaction costs. Trenkler and Wolf (2003) suggest an extension of
the interpretation of these parameters which they call cost parameter to social, cultural and
technical aspects. Moreover, they discuss the potential impact of nominal fixed transaction
costs on market integration when aggregate price levels fluctuate. Obstfeld and Taylor (1997)
note that the estimated thresholds, which they call in line with Heckscher’s terminology
commodity points, may reflect more aspects than only costs of transport and restrictions to
trade. They refer to this additional component as sunk costs of arbitrage. O’Connel and Wei
(2002) provide a comprehensive discussion of the importance of fixed and variable market
frictions for deviations from the LOP. They hypothesize that also costs connected to the
change of preferences and technology such as costs of labor migration or of entering and
exiting a market might be relevant. Coleman (1995, 2004) addresses this argument as well.

MARKOV-SWITCHING VECTOR ERROR CORRECTION MODELS

Basic Idea

The underlying concept of the MSVECM emerged in the area of the econometrics of
time-varying parameters. Goldfeld and Quandt (1973) develop a switching regression model
characterized by parameter changes governed by a Markov chain. Hamilton (1989) extended
this approach to the analysis of time series. A nonlinear VECM whose equilibrium errors
follow a Markov process is suggested by several authors. Furthermore, the model is extended
to the cointegration framework. Jackman (1995) proposes such a model for analyzing the
determinants of presidential approval in the United States.Krolzig (1996, 1997) develops the
MSVECM as a special case of the more general Markov-switching vector autoregression
model whereas Hall et al. (1997) apply a MSVECM to the analysis of house prices in the
United Kingdom.29 Applications of the model are mainly found in business cycle and
financial research, e.g. Krolzig and Toro (2001), Francis and Owyang (2003) or Psaradakis et
al. (2004a), the latter suggesting further applications. Krolzig et al. (2002) analyze the British
labor market. In PT analysis, the model is much less frequently applied than the TVECM;
Brümmer et al. (2008) propose it to analyze vertical price transmission between wheat and
flour in Ukraine.

As mentioned above, the MSVECM, as an elementary subclass of TAR models, is in general

29 They suggest two specifications of the model with, first, constant transition probabilities and, second, transition
probabilities as function of the equilibrium error. However, we focus in this paper only on the former case which
represents the simplest form of the MSVECM with time-invariant transition probabilities. For extensions of this
framework, see also, for example, Diebold et al. (1994), Hamilton and Raj (2002a) or Camacho (2005).
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suitable for the analysis of PT due to the threshold behavior of trade as depicted in Figure 2.
Hamilton (1989) characterizes the particular form of nonlinearities Markov-switching
models are suitable for as “discrete shifts in regime-episodes across which the dynamic
behavior of the series is markedly different”. Hamilton (1994, chap. 22.4) emphasizes the
intuitively appealing characteristics of this class of models which are comprehensiveness and
great flexibility. Hamilton and Raj (2002b) mention that “normal behavior of economies is
occasionally disrupted by dramatic events that seem to produce quite different dynamics for
the variables that economists study”. Moreover, Psaradakis et al. (2004a) note that the
MSVECM is “best suited to situations where the change in regime is triggered by a sudden
shock to the economy, situations which might not be adequately described by models with
smooth transitions or threshold effects”.

The MSVECM can be characterized as a TAR model with exogenous determination of the
states, i.e., the regimes are not a function of the analyzed price series themselves but of
external determinants which, in contrast, do not have to be observed. Such determinants
might act as general driving forces of trade, prices and a number of further economic
variables. In the context of PT, regime-switching seems plausible which may no exclusively
be determined by the equilibrium error, but rather by the “general state” of the trading
process or even of the surrounding political or economic system. Price transmission behavior
is likely to change temporarily due to external factors such as general characteristics of the
political economic system. Raj (2002) mentions national policy changes, economic
recessions, financial panics or wars in the context of business cycles. Further “sources of
abrupt change” such as government actions in form of the introduction or the elimination of
legal regulations are alluded to in Hamilton (1995). Chamley (1999) shows that an unique
equilibrium may exist in a world characterized by imperfect information showing episodes of
high and low economic activity which may, among others, result in differing equilibrium
adjustment and short-run dynamics of PT. Furthermore he shows that switches between such
regimes occur randomly.

One can think of traders’ temporary insecurity about the future due to elections or turmoils in
politically unstable countries or due to exceptional positive or negative expectations about the
near economic future such as forecasts of strong price rises.30 Hence, traders face, for such
limited periods, quite differing conditions ranging from increased uncertainty to the
impossibility of trade and are likely to show, as a consequence, temporarily differing
behavior. Such periods are hardly measurable. Agricultural scandals as they occasionally
occur in Europe and the Unites States result in at least temporary changes of consumer
demand might lead to transitionally different transmission of price signals. Further events
such as temporal or new legal regulations, crop failures or transient demand changes are
likely to change the “normal” trade dynamics in an abrupt manner.31 Trade and hence price
adjustment dynamics are furthermore subject to the asymmetries of the business cycle which
first were hypothesized by Keynes (1936).

The importance of a further factor is stressed in the business cycle literature. Economic
behavior and thus regime switches might by driven by extrinsic uncertainty in the sense of
“random phenomena that do not affect tastes, endowments, or production possibilities” (Cass
and Shell, 1983). This uncertainty is referred to in the literature as nonfundamentals, market

30 For an example, see Agra Europe (2008, middle of page M/3): “Importers still panic buying...”.
31 Martinez Peria (2002) aims at identifying speculative attacks on the European Monetary System during the
first half of the 1990s by modeling a tranquil versus a speculative regime.

13



psychology, animal spirits, sunspots or self-fulfilling prophecies. Several publications show
that these phenomena are apt to create business cycle fluctuations in the absence of shocks to
fundamentals of the economy, see, for example, Azariadis (1981), Cass and Shell (1983),
Howitt and McAfee (1992), Jeanne and Masson (2000) or Thomas (2004). Hamilton and Raj
(2002b) see the cause of such potential impact in “agents’ believe such nonfundamentals
affect aggregate economic activity”. Such phenomena are likely to affect trade processes as
well causing random switches between regimes of PT.30

Model Structure

In general, the MSVECM is formulated identically to the TVECM in (6):

∆pt = µ(Jt) +α(Jt)β>pt−1 +
k−1∑
i=1

Ψ
(Jt)
i ∆pt−i + εt (13)

The number of regimes is denoted with M so that Jt = j ∈ {1, 2, . . . ,M}. The model can,
of course, compactly be written as in (10). Each regime-dependent variable takes a certain
value depending on the value of the indicator variable Jt at time t, for example
α(Jt) = α(j) if Jt = j, i.e.,

α(Jt) =


α(1) if Jt = 1
...
α(M) if Jt = M.

(14)

The regimes j of the MSVECM (13) are thought of as determined by a probabilistic process
which has M states, i.e., the are assumed to be realizations of a latent M-state Markov chain
with discrete state space in discrete time. The regime-dependent parameters are constant in
each state but are allowed to change across states. Hence, each state of the underlying
Markov chain directly corresponds to a regime of PT. Furthermore, the chain determines the
regime switching.

The key element of the model is the (M ×M) transition matrix Γ which contains the
transition probabilities γhj for switching from state h to state j

Γ =


γ11 γ12 · · · γ1M

γ21 γ22 · · · γ2M
...

... . . . ...
γM1 γM2 · · · γMM

 (15)

where γhj = Pr(Jt+1 = j|Jt = h). The Markov chain is assumed to be homogeneous, i.e.,
the transition probabilities are assumed to be time-invariant (compare footnote 29). Since
switching from state h can only take place to one of the M states, the rows of Γ sum up to
unity by construction, i.e., Γ1M = 1M where 1M = (1 1 . . . 1)> is a (1×M) vector, which

is equivalent to
M∑
j=1

γhj = 1, h = 1, . . . ,M . The state process {Jt} determined by the

transition probabilities γhj can thus be modeled quite flexibly. The larger, e.g., the probability
on the diagonal of Γ of some state is, the more persistent the behavior of this state will appear
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and the less switches from this state to others will occur on average.

Several assumptions on the properties of the Markov chain have to been made in order to
keep the model in a tractable complexity and to ensure desirable properties of the time series
and the regimes. The RGP is assumed to satisfy the Markov property:

Pr(Jt+1|Jt, Jt−1, . . . ,pt,pt−1, . . .) = Pr(Jt+1|Jt), (16)

which is also referred to as a first-order or a memoryless process. This property states that the
probability of switching to a new state in t+ 1 solely depends on the state of the preceding
period t or as Chung (1960) puts it “the past should have no influence on the future except
through the present”. Neither states before Jt nor any further variables such as the observed
price series contain additional information regarding the regime switching. This assumption
is not restrictive since each more complex model can be reparametrized into a first-order
model, see, for example, Hamilton (1994, chap. 22.4) or MacDonald and Zucchini (1997,
chap. 1.3). Moreover, the Markov chain has to be assumed to be ergodic and irreducible. The
first condition is necessary to ensure a stationary unconditional probability distribution of the
regimes.32 The second one is needed to ensure the stationarity of the resulting time series. It
requires that the ergodic probabilities of all states are larger than zero. Hence, it is assumed
that any state can be reached from any state, that is that there are no absorbing states.

Figure 4 depicts the transition graph of a Markov chain of trade with M = 2 states. It
displays the possibilities for switching between two subsequent periods and the associated
transition probabilities, i.e., it illustrates the information contained in the transition matrix Γ.
In state j = 1, trade is not inhibited by, e.g., governmental measures, in state j = 2 it is. The
realization of a MSVECM in Figure 5 is generated according to (13) and corresponds to the
Markov chain in Figure 4. If, say, the Markov chain is at t = 0 in state J0 = 2, as depicted in
the upper panel of the figure, the loading parameters α(Jt) take the values α(2), i.e., the
correction of deviations from the long-run equilibrium in this period takes place with a high
magnitude of PT of ±0.25. The switching to the state in the next time period t = 1 solely
depends on the previous state and the respective transition probabilities (Markov property).
For J0 = 2 is the state J1 of the following period generated by a random switch based on the
probabilities γ22 = 0.8 and γ21 = 1− γ22 = 0.2. Following this mechanism, the state in t = 1
will be, say, J1 = 2. PT in this period in turn is characterized by the adjustment speeds α(2).
These adjustment speeds will prevail until the Markov chain switches to state j = 1 at some
time t (the ninth time point in the figure).

Estimation

In contrast to the estimation of the TVECM, one method is used for the estimation of the
MSVECM as well as for general Markov-switching models in practice.33 The particular
challenge for estimation is similar to the TVECM. The researcher encounters uncertainty on

32 The expected unconditional probabilities of the of being in any of the M states at arbitrary time are called
the ergodic probabilities of the chain. Hence, the empiric frequencies of the regimes asymptotically equal the
ergodic probabilities.
33 Krolzig (1997, chap. 8) outlines with the multi-move Gibbs sampling a further estimation method which is
based on Bayesian statistics. Mizrach and Watkins (2000) mention hill climbing. However, they recommend the
EMA because of its superior properties.
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two levels. First, the state process {Jt} depends on A(j) in (9). It has to be estimated since it
is unknown. Second, the model parameters A(j) in turn depend on the unknown states Jt and
are also to be estimated.34

Due to this two-fold uncertainty, the estimation consists of two steps which are the
expectation step and the maximization step. These steps are iterated and the inference about
the states and the estimates is updated until some convergence criterion is met. The
procedure is called the Expectation-Maximization algorithm (EMA) (Figure 6). A particular
filter is used in its first step which is the Baum-Lindgren-Hamilton-Kim (BLHK) filter.35 The
EMA was introduced by Dempster, Laird, and Rubin in 1977. Hamilton (1990) proposes the
usage of the BLHK filter in connection with the EMA. Kim (1994) contributes an important
improvement of the expectation step. Krolzig (1997, chap. 6) provides a detailed account of
the method mentioning its major advantages which are computational simplicity and
desirable convergence properties and discussing various extensions.

The algorithm is initialized by assuming starting values for the model parameters, the
transition matrix and the probabilities of being in each of the M regimes at t = 1. The
following expectation step draws inference about the unobserved regimes. First, the
observations are filtered with the BHLK filter which yields the filtered probabilities. These
are the probabilities that the observation at time t has been generated by each of the M
regimes conditional on the data up to t and the estimated model parameters which are, in case
of the first iteration, the initially assumed ones. Afterwards, the full sample smoothed
probabilities are obtained on the basis of the filtered probabilities by a backward recursion.
They represent the probabilities for each of the M regimes that it has occurred at time t
conditional on the entire sample at hand. Equivalently, they might be interpreted as the
probabilities that the observation at time t has been generated by regime j conditional on the
entire sample.

The maximization step computes the update of the maximum likelihood estimates of all
parameters which include the transition probabilities, the vector error-correction parameters
and the probabilities of being in each of the M regimes at t = 1, that is, the initial state. The
transition probabilities γhj are updated as the ratio between the summed probabilities of
switches from h to j and of occurrences of regime h throughout the sample. Both quantities
are calculated on the basis of the smoothed probabilities from the performed expectation step.
The regime-dependent vector error correction parameters A(j) are calculated via generalized
least squares estimation in which the observations are weighted by their smoothed
probabilities. The second step finishes with the update of the probabilities of being in each of
the M regimes at t = 1 which are estimated by the smoothed probabilities for t = 1. The first
iteration has thus been completed. The second iteration starts with utilizing the updated
parameters from the previous one for the calculations in the expectation step where inference
about the states is updated again. The second iteration is then completed by the update of the
parameter estimates in the maximization step. The third iteration starts and so on until some
reasonable convergence criterion is met.

This algorithm works for the estimation of Markov-Switching models in general. For the
MSVECM in particular, Krolzig (1996) recommends a two-step estimation where first the
34 Hamilton (1990) mentions three problems of interest to the researcher which are the inference about the unob-
served regimes of the sample, the conditional forecast and the estimation of the model parameters including the
transition matrix.
35 For more details compare Krolzig (1997, chap. 5).

16



cointegration vector and the equilibrium errors are obtained. The equilibrium error may then
treated as an exogenous regressor in the model which becomes a general MSVAR model.
The EMA can then be applied to the latter as described above.

Interpretation

In the case of the MSVECM, the inference on the regimes is of probabilistic nature. The
RGP is assumed to follow an latent Markov chain. Hence, the researcher cannot say with
certainty which regime has occurred at some time t. The only measure allowing inference on
this question are the smoothed probabilities which lie between zero and one.

Allowing for such non-deterministic statements regarding the occurrence of regimes turns
out to be a reasonable and justified approach. Hamilton and Raj (2002b) note that there is a
“growing consensus among economists that regime changes might be more appropriately
modeled as arising from a probability process such as the Markov process”. Trade as well as
business cycles or presidential approval are highly complex processes generated by unknown
dynamics which are very likely to be of nonlinear character. Although the methodology finds
evidence in the data at hand that some observations seem likely to follow a different regime,
the researcher can, of course, not be completely sure about this evidence because the true
RGP remains unknown. This fact is acknowledged by considering probabilistic statements
regarding the incidence of the regimes. The regime with the highest smoothed probability for
some time t is most likely to occur.

The interpretation of the regimes is far from being obvious a priori. It is much less
straightforward as for the TVECM. The Markov-switching methodology is capable to
identify distinct regimes among the observations of the sample. However, it relies exclusively
on the sample by doing so. Hence, it is the researcher’s task to make sense of the identified
regimes since no immediate interpretation based on economic theory is available as, e.g., in
case of Heckscher’s supposition for the TVECM. The regimes have to be thoroughly
analyzed and contrasted. Furthermore, an instructive endeavor might be to hypothesize the
number and timing of regimes or at least potential determinants before performing the
econometric analysis. By carefully analyzing potentially relevant events in the political and
economic environment during the sample period, insights into the dynamics of the markets
under study may be gained. The data analysis might then be used less as an exploratory but
rather as a confirmatory tool. Jackman (1995) discusses the danger of the ex post “labelling
of states”. He argues that a thorough interpretation of the estimates of each regime is
necessary for characterizing the detected states. Alternatively, one might try to impose some
structure on the Markov process or approach the issue from a Bayesian point of view by
incorporating prior knowledge.36

The MSVECM allows, in a similar way as the TVECM does, not only for regimes
characterized by different speeds of error adjustment but also for periods where no error
correction takes place as, for example, in Psaradakis et al. (2004a). The latter case is
particularly interesting. Such a regime is in contrast to the TVECM not bounded so that the
longer the regime prevails the farer the prices, which are not cointegrated in this regime, may
wander away from the equilibrium relationship. Such random walk behavior leads to high

36 He provides in his article a comprehensive and detailed example of the first approach.
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deviations from equilibrium which are not corrected despite of their magnitude. Thus, such a
regime might be interpreted as being characterized by prohibitive transaction costs which do
not allow for any trade although deviations from equilibrium might become huge. Such a
extreme regime of PT might, for example, be caused by political intervention or other forms
of prohibitive trade barriers which either lead to immense costs of trade or even do not allow
for trade at all. Consequently, the MSVECM may be seen as being able to detect temporarily
changing transaction costs where the change takes place in form of discrete shifts.

3 Comparison

3.1 Conceptual Comparison

The application of TAR models to PT analysis is appropriate in general due to the
regime-dependent behavior of PT as depicted in Figure 2. The application of the TVECM in
particular possesses with Heckscher’s supposition and the spatial arbitrage models of
Takayama and Judge immediate economic justification; the MSVECM does have justification
only to a limited extend mainly due to the lack of attention it has attracted yet in the field.
Nevertheless, the application of the latter model in PT analysis seems intuitively very
reasonable, particularly in cases where “discrete shifts in regime-episodes” (Hamilton, 1989)
seem to be present in the data and the trade process was “occasionally disrupted by dramatic
events” (Hamilton and Raj, 2002b) or “a sudden shock” (Psaradakis et al., 2004a).

Both models can be formulated in terms of (9) which represents a special case of the general
threshold model specification in (2). Although both approaches model regime-dependent
behavior of time series and belong to the group of piecewise linear TAR models (Figure 1),
the philosophy regarding their underlying RGPs differs fundamentally. This leads to differing
estimation methods and interpretation of results.

The regime process {Jt} is in case of the TVECM assumed to exclusively be generated by
the first lag of some linear combination of the two price series under investigation, i.e.,
Jt = f(pAt−1, p

B
t−1). In case of the MSVECM, it is rather assumed to be a function of one or

more exogenous variables y, z, . . . which might be thought of as the “general state” of the
system Jt = f(yt, yt−1, . . . , yt−l, zt, zt−1, . . . , zt−r, . . .) where l, r ∈ N+. In contrast to the
former model, the state process is allowed to be latent. Consequently, no observations on the
regime generating variable(s) are required, they even may stay entirely unspecified. In this
light, the assumption of the TVECM that the equilibrium error ectt is the only variable
determining the regimes seems restrictive. However, if the time series to be analyzed
emerged in a stable economic and political environment in the absence of abrupt changes and
other events which are likely to influence trade, the TVECM is the more appropriate model.
It implies that there are at least two regimes in the data, in case of trade reversals even three
regimes, and that the deviations ectt from the long-run equilibrium is the only variable
causing regime switching.

In the case of the existence of only one spatial equilibrium condition in the data or a highly
unstable political and/ or economic environment, in which trade as one aspect of the
economy is embedded, regimes of PT are not likely to be (exclusively) determined by the
equilibrium error. Regime shifts due to exogenous factors may superimpose the (weak)
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regimes created by spatial equilibrium conditions and dominate the RGP. Consequently, ectt
does not represent the variable causing regime shifts. The MSVECM would in such a case be
more appropriate. Consequently, the assumption that the equilibrium error represents the
only variable causing nonlinear PT might in some settings not reflect reality.

These diverging suppositions regarding the RGP entail differing inference concerning the
regime incidences. Whereas statements about the regime occurred at some time t can be
made with certainty for the TVECM, they can only be of probabilistic nature in case of the
MSVECM. Allowing for non-deterministic statements regarding the regime incidences turns
out to be a reasonable and justified approach. Trade as well as business cycles or presidential
approval are highly complex processes generated by unknown dynamics which are likely to
be of nonlinear character. Although the methodology is capable to detect evidence in the data
at hand that some observations are likely to follow a different regime, the researcher can, of
course, not completely be sure about such findings because the true data generating process
(DGP) remains unknown. This remaining uncertainty is acknowledged by considering
probabilistic statements regarding the occurrence of the regimes.

In the case of the TVECM, the statements about the occurrence of regimes are deterministic
in the sense that a certain regime j has or has not occurred at time t with certainty, i.e., the
point estimates of ectt can uniquely be assigned to the l regimes of the model which is
implicitly formulated in (9). The binary variable d

(j)
t takes the value 1 if the regime j occurs

at time t or zero otherwise. Clearly, such a deterministic all-or-nothing statement is more
restrictive than the corresponding probabilistic statement of the MSVECM, however on the
other hand, it allows for an easier interpretation. Whereas the Markov-switching approach
acknowledges the uncertainty concerning the unknown true DGP, the TVECM approach does
not. It instead suggests that always when the estimated threshold variable falls into a certain
interval, the corresponding regime prevails with certainty. This implication is quite strong
and may, of course, not be true for all observations. This assignment may have occurred
occasionally by chance instead of being caused by the supposed underlying RGP.

Both models are capable to detect regimes characterized by different rates of error correction
as well as regimes in which no adjustment behavior takes place. Although the TVECM does
not explicitly model transaction costs, the threshold estimates are, at least in case of a
TVECM(3) specification, usually interpreted as such. Moreover, they are often assumed to be
constant during the sample period. The MSVECM does not model transaction costs either.
Nevertheless, it might be understood as to allow the transaction costs to shift during the
sample period since an identified regime without adjustment may potentially be caused by
temporary prohibitive transaction costs.

The estimation of both models faces the same challenge. The parameters of the
regime-dependent VECM are unknown and depend on the regime process {Jt}. This process
itself is unknown because the quantities characterizing it, which are the thresholds and the
transition probabilities, respectively, are unknown as well. Their estimates in turn depend on
the unknown vector error correction parameters. The estimation methods of SCLS and EMA,
though variants of the maximum likelihood principle, tackle this task in different ways. In the
former case, a number of modifications are easily implemented to estimate the model in
dependence of various optimization parameters (Table 5). The researcher determines
candidate values of the optimization parameters which typically form a regular spaced grid.
Conditionally on these, a optimization criterion is evaluated. The combination of parameters
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optimizing the criterion is selected as the final estimates. The EMA, in contrast, iterates
conditionally on one set of starting values until a convergence criterion is met. Inference on
the unobserved regimes is recursively drawn for all observations conditional on the parameter
estimates of the previous iteration. Parameter estimates, in turn, are obtained conditionally on
the evidence on the regimes from the preceding step. In case of both methods, the number of
regimes may either be justified theoretically, evaluated by econometric tests or determined by
using a model selection criterion.37

Differences between both methods concerning the interpretation have already been
addressed. Of course, regime frequencies and regime-dependent half-lives of the adjustment
process may be calculated in both cases. Additionally, the expected duration of the regimes
may be calculated for the MSVECM. The regime frequency is estimated by the proportion of
observations generated by the regime. In the case of the MSVECM is it the proportion of
observations which is likely to be generated by the regime whereat the meaning of the term
“likely” has be be determined by the researcher. The regime with the highest smoothed
probability among all regimes for some time t is considered to be most likely. The half-life of
a adjustment process is the time which is required to correct half of the deviation from
equilibrium of a given shock (Van Campenhout, 2007) and can easily be obtained.38

However, the calculation of half-lives is more complicated for vector autoregressions of
higher order as pointed out by Ben-Kaabia and Gil (2007). The expected duration λj of
regime j can be calculated as λj = E[λ|Jt = j] = 1

1−γjj
as outlined in Krolzig (1997, section

11.3.4). γjj denotes the transition probability of staying in regime j as depicted in the
transition matrix Γ (15).

Furthermore, it has been noted that the interpretation of the regimes of the TVECM is
relatively straightforward. However, the results are occasionally interpreted in a narrower or
broader sense. In case of the MSVECM, some effort has to be devoted to carefully analyzing
the identified regimes. The parameters and further descriptive variables have to be interpreted
and consulted in detail in order to receive insights regarding the distinguishing characteristics
and the nature of the regimes.

Distinct Regime Generating Processes: Exogenous vs. Endogenous Switching

As mentioned above, both models may be formulated in terms of the general specification
(10). Nevertheless, the RGPs differ fundamentally. A formulation in terms of a common
notation permits insights from one perspective regarding their similarities and differences. In
particular, the RGP of the TVECM can be reformulated by using the notation of the
MSVECM. The key distinction in the philosophies underlying both approaches becomes
apparent and can well be contrasted by using a unified notation. In the following, we restrict

37 We do neither address the issue of testing for nonlinearity nor impulse response analysis in this paper since it
is beyond its scope. However, we will briefly discuss the issue of model selection below.
38 The half-life κ is the solution in zt+κ = zt

2 based on a SETAR specification of the equilibrium error process
as, for example, in Balke and Fomby (1997, equation (1)). As they have shown, the SETAR and the TVECM
specification are equivalent, the former represents a reparametrization of the latter and vice versa. Hence, the
half-life is calculated as κ = ln(0.5)

ln(1+ρ(j))
based on the SETAR specification. In the TVECM specification, ρ(j) is

not estimated. It thus has to be replaced by ρ(j) = 1 + β>α(j) = 1 + αA(j) − βBαB(j) where αA(j) denotes
the magnitude of PT of the j’s regime of the price series of market A and β = (βA βB)> = (1 βB)> the
cointegration vector between both prices.
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the comparison to the simplest specification of l + 1 = M = 2 regimes for each of the
models.

The transition matrix of a MSVECM with M = 2 regimes has the following structure

Γ =

(
γ11 γ12

γ21 γ22

)
=

(
γ11 1− γ11

1− γ22 γ22

)
(17)

because Γ1M = 1M . Thus, the corresponding Markov-chain is characterized by only two
transition probabilities. It is assumed to be homogeneous, i.e., the transition probabilities are
assumed to be constant, and irreducible, i.e., for the transition probabilities holds that
0 < γ11 < 1 and 0 < γ22 < 1. The process is assumed to satisfy the Markov property.
Alternatively, the transition matrix can be rewritten in terms of a set of conditional
probabilities

Pr(Jt = 1|Jt−1 = 1) = γ11 (18)
Pr(Jt = 1|Jt−1 = 2) = 1− γ22 (19)
Pr(Jt = 2|Jt−1 = 1) = 1− γ11 (20)
Pr(Jt = 2|Jt−1 = 2) = γ22. (21)

A TVECM of l + 1 = 2 regimes possesses one (effective) threshold θ(1). The RGP is
characterized as implicitly formulated in (6)

Jt =

{
1 if ectt−1 ≤ θ(1)

2 if ectt−1 > θ(1).
(22)

As mentioned above, Jt takes the values j with certainty. Depending on the size of the
threshold variable which is in this case the first lag of the error correction term ectt−1, the
regime j prevails with a probability of 100% at time t. Hence, it becomes evident that the
RGP may be formulated in terms of conditional probabilites which can be summarized into a
transition matrix. However, due to the mentioned certainty these probabilites take either of
the values 0 or 1. They are conditional on the previous state Jt−1, however, they additionally
depend on the treshold variable ectt−1 of the previous period. The corresponding transition
probabilities are as follows

for ectt−1 ≤ θ(j) for ectt−1 > θ(j)

Pr(Jt = 1|Jt−1 = 1, ectt−1) = ω
(1)
11 = 1 Pr(Jt = 1|Jt−1 = 1, ectt−1) = ω

(2)
11 = 0 (23)

Pr(Jt = 1|Jt−1 = 2, ectt−1) = ω
(1)
21 = 1 Pr(Jt = 1|Jt−1 = 2, ectt−1) = ω

(2)
21 = 0 (24)

Pr(Jt = 2|Jt−1 = 1, ectt−1) = ω
(1)
12 = 0 Pr(Jt = 2|Jt−1 = 1, ectt−1) = ω

(2)
12 = 1 (25)

Pr(Jt = 2|Jt−1 = 2, ectt−1) = ω
(1)
22 = 0 Pr(Jt = 2|Jt−1 = 2, ectt−1) = ω

(2)
22 = 1. (26)

These probabilities can be summarized into the following transition matrix Ω which depends
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on the threshold variable ectt−1

Ω = Ωt =



Ω(1) =

(
ω

(1)
11 ω

(1)
12

ω
(1)
21 ω

(1)
22

)
=

(
1 0

1 0

)
if ectt−1 ≤ θ(1)

Ω(2) =

(
ω

(2)
11 ω

(2)
12

ω
(2)
21 ω

(2)
22

)
=

(
0 1

0 1

)
if ectt−1 > θ(1).

(27)

This transition matrix Ω is equivalent to the usual specification of the RGP of a TVECM as,
e.g., formulated in (22). It highlights the similarities and the differences of the TVECM in
comparison to the transition matrix Γ of the MSVECM. In case that the error correction term
is smaller than the threshold, it does not matter in which state the process was in the
preceding period t− 1 it takes the regime j = 1 in time t with probability 1. This regime is
either reached by staying in the regime 1 which is expressed by ω(1)

11 or by switching from
regime 2 to one 1 expressed by ω(1)

21 . In case that the error correction term is larger than the
threshold, the process will be in regime 2 at time t with probability 1.

It becomes apparent that the transition matrix Ω is not constant over time because the
respective transition probabilities take values depending on the magnitude of the error
correction term. Thus, the matrix symbol is augmented by the time index t and denoted as Ωt.
Consequently, this RGP is, in contrast to the MSVECM in (17), not homogeneous. Second,
the transition probabilities are restricted to take either of the values 0 or 1. In this sense, the
switching is purely deterministic. It either occurs or it does not, each of both with certainty.

Third, the process does not satisfy the Markov property because
Pr(Jt|Jt−1, ectt−1) 6= Pr(Jt|Jt−1). It has been mentioned that the size of the error correction
term determines not only the regime but also the transition probabilities in Ωt. Hence, it
contains additional information for the switching of the regimes. In contrast, the entire
information relevant for switching is encompassed in the previous state in case of the
MSVECM as denoted in (18) to (21). Moreover, the transition probabilities in Ωt do
exclusively depend on the threshold variable because a state j is reached at time t from any
preceding state with certainty, exclusively determined by the magnitude of the threshold
variable. This view corresponds to the usual interpretation of the TVECM that the switching
exclusively depends on the error correction term. Hence, it holds that
Pr(Jt|Jt−1, ectt−1) = Pr(Jt|ectt−1) and (23) to (26) and the transition matrix Ωt simplify to

Ω′t =

(
ω′11 ω′12

ω′21 ω′22

)
=

(
1 0
0 1

)
(28)

where ω′1j = Pr(Jt = j|ectt−1 ≤ θ(1)) and ω′2j = Pr(Jt = j|ectt−1 > θ(1)) , j = 1, 2. This
formulation emphasizes the fact that the switching is exclusively governed by the observed
threshold variable in a deterministic way whereas, in the case of the MSVECM, the
switching is governed by the unobserved previous state in a probabilistic way as formulated
in (17) to (21). Furthermore, the threshold variable is in case of the TVECM a linear
combination of the two price series under study.

Consequently, the regime switching of the TVECM, in contrast to the MSVECM, is not
exogenous. It has been shown that the probabilities ω′hj , h, j = 1, 2 for switching to regime j
from time t− 1 to time t depend exclusively on the error correction term ectt−1. This
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threshold variable itself is a function of the observed price series {pAt } and {pBt } of markets
A and B because it represents a linear combination of the first lags of both series
ectt−1 = β>pt−1. Hence, the transition probabilities are as well a function of the two price
series ω′hj = f(ectt−1) = f(pAt−1, p

B
t−1) and the switching is thus endogenous. The switching

of the MSVECM is exogenous since the variable causing the switching remains unknown.

Model Selection

The characterization of either of the considered approaches has been motivated in the
previous sections by economic theory and heuristic evidence. To our knowledge, no
econometric tests exist which explicitly test nonlinear model classes against each other.
Mellows (1999) notes that this constitutes a common problem in nonlinear time series
analysis. Although a number of tests have been developed to check for nonlinear behavior
such as Hansen (1997), Hansen (1999) or Hansen and Seo (2002) for TAR or Hansen (1992)
for Markov-switching models, the determination of the most appropriate model class for the
data at hand remains an issue for future research. Mellows (1999, chap. 5) suggests a
classification method based on a idea of Tong (1990) which uses parametric bootstrap and
discriminant analysis. However, a simulation study reveals that a model class is more likely
to be identified correctly by the approach the more pronounced the specific nonlinearities of
the underlying process are. Under weak nonlinearities, one quarter to more than half of the
models are wrongly classified as linear. However, diagnostic tests as, for example, developed
in Hamilton (1996) help to assess the adequacy of the chosen model.

Considerations of testing one model against another might not be of immediate interest in the
context of applied research in price transmission analysis since the application of a certain
model class has to go along with an appropriate interpretation of results. Qualitative
reasoning of the appropriateness of the chosen model accompanied by formal tests of
nonlinearities in the time series and a thorough interpretation of estimation results might be a
recommendable approach to tackle this issue.

Besides the questions which of the nonlinear models to choose, the question whether
nonlinear are superior to linear time series models has to be addressed. It has been discussed
above that both models considered here possess much appeal from an economic perspective.
Clements and Krolzig (1998) assess the performance of two nonlinear time series models in
comparison with linear AR models in business cycle analysis. They find that although both,
Markov-switching autoregressive and SETAR models, are well capable to model the
particular features of the data, their performance in forecasting is not as superior relatively to
AR models. This question is not discussed for the models considered in this paper. However,
more complex models are in general more capable to capture the distinctive features of the
data. In contrast, their forecasting performance does not necessarily increase due to their
complexity. This general fact is supposed also to hold for the TVECM and the MSVECM.

3.2 A Simulation Study

Additionally to the conceptual comparison of the TVECM and the MSVECM, we are
interested in assessing the performance of the estimation methods under ideal circumstances.
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In particular, we apply the sequential conditional least squares (SCLS) and the
Expectation-Maximization-Algorithm (EMA) to simulated data which is generated by a
TVECM and a MSVECM respectively.39 Problems of the SCLS estimation have rarely been
addressed in applied research. Lo and Zivot (2001) study the performance of the method for
data generated according to a TAR and a TVECM for symmetric thresholds of 3,5 and 10 and
time series of 100, 250 and 500 observations respectively. They find “considerable
uncertainty in the estimates [of the thresholds] for moderate sample sizes” in case of the
unrestricted model. However, the estimates of restricted TAR and TVECM models have a
much smaller bias and also a smaller variance. Furthermore, Trenkler and Wolf (2003) note
that the estimates of the unrestricted TVECM are very unreliable.

We extend with this simulation study the works of Clements and Krolzig (1998), Lo and
Zivot (2001) and Psaradakis et al. (2004b). The first article assesses the forecast performance
of Markov-switching and TAR models relative to linear autoregressive models in business
cycle analysis via a simulation study. Lo and Zivot study the performance of tests for
threshold cointegration, threshold nonlinearity and specification tests and evaluate the
estimation of the TVECM by an extensive simulation study. Psaradakis et al. (2004b)
examine tests for cointegration, parameter instability, neglected nonlinearity,
Markov-switching and a model selection procedure based on data which follows
Markov-switching error correction.

We follow Lo and Zivot (2001) by generating data according the simple cointegration model
as outlined in Balke and Fomby (1997).40 Lo and Zivot generate data with varying lengths of
the time series and magnitudes of the true thresholds which they assume to be symmetric.
However, we adopt a more comprehensive setting by generating time series of length 150,
500 and 1500, respectively. We vary the thresholds θ(j), the transition probabilities γhj and
the error correction parameters α(j). The data is generated according to a TVECM and a
MSVECM respectively. Each model is assumed to have three regimes one of which is not
showing error correction. In the following we briefly present some results of the simulation
study for T = 500. Further results may be obtained from the authors.

Case I: SCLS and TVECM Data

A very low share, namely only around 56% of all observations are correctly identified by the
method. Hence, SCLS seems not to be able to identify the true regimes of TVECM-data as
generated by ((B.2)) to a satisfying extent. The reason lies in the very high and varying MSE
as depicted for θ̂(1) in Figure 7. The MSE is of considerable magnitude and strongly depends
on the true thresholds θ(1), θ(2) as well as on the nuisance parameters ρ(1), ρ(3) which govern
the autoregressive process of the ectt as formulated in (B.2). The bias is the smallest for
|θ(j)| = σ2

νt
. Hence, not only the magnitude of the thresholds themselves but rather the ratio

between the absolute values of the thresholds and the variance of the innovations νt in (B.2)
seems also to have influence on the MSE. Both, the bias and the variance tend to increase
with decreasing α(j) and with increasing T . This result is plausible since both, a small α(j)

and a large T , lead to more realizations of the data away from the true thresholds and thus

39 The Bayesian approaches of Luoma et al. (2004) and Balcombe et al. (2007) for estimating the TVECM are
not considered here. We focus on SCLS and EMA since they are the predominant estimation methods in applied
research in PT.
40 For more details see Appendix B.
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tend to increase bias and variance.

Case II: SCLS and MSVECM Data

Table 7 shows the classification of true vs. estimated regime incidences as percentages of all
observations of the dataset. By summing up each of the columns the ergodic probabilities of
the MSVECM-data may be obtained. The percentages on the diagonal denote the correctly
identified regimes which sum up to only 40%. SCLS performs here even worse as in case I.
Hence, SCLS does not seem to be suitable to detect the true regimes in the data which is
simulated by a MSVECM-DGP.

Case III: EMA and TVECM Data

Table 8 shows the classification of true vs. estimated regime incidences as estimated by the
EMA on TVECM-data. A share of only about 30% was correctly identified indicating that
EMA does not perform well with data that follow a TVECM.

Case IV: EMA and MSVECM Data

Figure 8 provides some evidence on the performance of the EMA on data that are generated
by a MSVECM. The share of correctly identified regimes lies at about 42%. Similarly to case
I, the MSE of, say, the estimate of π(1), i.e., the ergodic probability of the first regime, is
heavily influenced by the true ergodic probabilities as well as by the nuisance parameters
ρ(j). Nevertheless, a strange pattern appeared in the estimation results. The bias for the first
two regimes is very high in tendency and decreases as the true ergodic probabilities approach
1
3

and increases with decreasing α(j). The variance is small and increases slightly with
increasing α(j). Both, the bias as well as the variance, decrease with the increasing number of
observations per time series.

Summary

This Monte Carlo analysis leads to rather pessimistic results regarding the perfomance of the
assessed estimation methods since only one third to one half of the regimes have correctly
been identified. Lo and Zivot (2001) demonstrated that the estimates of the thresholds are
biased. We extended this evidence and demonstrated that the estimates of the thresholds
seem also heavily influenced by the true error-correction parameters. The EMA did yield
satisfying results neither. However, these results cannot be generalized since they depend on
the assumptions made beforehand, particularly the specification of the DGPs. In order to
derive general statements further experiments have to be conducted.
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4 Conclusion

This paper compares two time series models which are relevant for PT analysis and allow for
nonlinear adjustment of deviations from the long-run equilibrium. Both model classes, the
TVECM as well as the MSVECM, are characterized by parameters which may take different
values depending on the regime of the data. They are constant within one regime but may
differ across regimes. Such regime-dependent models allow the study of trade processes from
a dynamic point of view in which the transmission of price signals between markets changes
temporarily. Such sophisticated models may thus enhance the understanding of the
interaction of markets. Although both models seem at first glance very similar due to their
common property of regime switching, their underlying statistical concepts differ
fundamentally. Consequently, each model is suited for a particular type of nonlinearity.

The TVECM is characterized by endogenous switching. The variable causing regime
switches is assumed to be fully determined by the prices under study. The restriction of the
switching mechanism to a particular relationship facilitates the interpretation of the model
which matches economic theory very well. Such a constraint implies two aspects. First, if the
explicit information contained in the threshold variable is correct, the model will yield more
reliable results than more general ones. However, if the opposite is the case, then it will be
farer away from the thruth than general models.

The MSVECM is more general with respect to the switching mechanism since it allows for
exogenous switching independent of the price series analyzed. Furthermore, the determinants
causing switching may even remain completely unspecified. Its key element is a latent
Markov chain modelling the transition of regimes between subsequent points in time. The
higher flexibility of the model comes at the cost of limited straightforward interpretability.
Making sense of the identified regimes requires more effort than in the case of the former
model.

The two models reflect different aspects of the complex economic reality, spatial equilibrium
conditions on the one hand and unobserved states of the system on the other. If the price data
to be analyzed were predominantly not subject to external impacts such as changing political,
economic or natural interferences, it can be assumed that markets and trade processes were
the main forces generating the data. A TVECM would be the more approriate model in such
a case since it explicitly draws on the economic information contained in the prices.
Nevertheless, a TVECM requieres at least two regimes in the data to be estimable. It
requires, for example, changing spatial equilibrium conditions. If, however, trade took
mainly place into one direction or external interferences dominated the markets during the
time period studied then a MSVECM might be more suitable. Most often, the reality will lie
inbetween these two extreme cases. In such a case, the most appropritate model depends on
the dominating impact. The two models can be expected to yield differing results since each
emphasizes a certain aspect of PT.

Although both models, from an economic perspective, seem capable to lead to interesting
insights into PT, the simulation study confirmed and extended evidence that the empiric
application and the applicability constitutes a drawback of these models. However,
improving the estimation of such models is not the only area for future research. Most often,
the quantitative components of the theoretically postulated and econometrically estimated
thresholds, i.e., the determinants causing nonlinear price adjustment, receive little attention.
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Acquiring empirical evidence regarding their structure might help to develop adapted
models. As a consequence, the interpretation of the estimated thresholds only in terms of
transaction costs might turn out to be too narrow in some cases. The magnitude of the time
lag d of the TVECM is likely to depend on the product traded, infrastructure etc. so that by
relaxing the assumption that prices react to deviations from equilibrium within a time lag of
only one period, insights into the dynamic processes of trade might extended.

27



References

Agüero, J.M. “Asymmetric Price Adjustments and Behavior Under Risk: Evidence from
Peruvian Agricultural Markets.” Working paper, University of California, Riverside, USA,
2007.

Agra Europe. “Grain prices hit records again.” Agra Europe, No. 2301(2008):M/2–M/3.

Alemu, Z.G. and G.R. Biacuana. “Measuring Market Integration in Mozambican Maize
Markets: A Threshold Vector Error Correction Approach.” Contributed paper prepared for
presentation at the International Association of Agricultural Economists Conference, Gold
Cost, Australia, August 12-18 2006.

Azariadis, C. “Self-Fulfilling Prophecies.” Journal of Economic Theory, 25(1981): 380–396.

Bai, J. “Estimating multiple breaks one at a time.” Econometric Theory, 13(1997): 315–352.

Bai, J. and P. Perron. “Estimating and Testing Linear Models With Multiple Structural
Changes.” Econometrica, 66(1998): 47–78.

Bakucs, L.Z. and I. Fertö. “Spatial Integration on the Hungarian Milk Market.” Paper
prepared for presentation at the Joint IAAE - 104th EAAE Seminar Agricultural Economics
and Transition, Corvinus University, Budapest, Hungary, September 6-8 2007.

Balcombe, K., A. Bailey, and J. Brooks (2007). “Threshold Effects in Price Transmission:
The Case of Brazilian Wheat, Maize, and Soya Prices.” American Journal of Agricultural
Economics, 89(2): 308–323.

Balke, N.S. and T.B. Fomby. “Threshold Cointegration.” International Economic Review,
38(1997): 627–645.

Barrett, C.B. “Market Analysis Methods: Are Our Enriched Toolkits Well-Suited to
Enlivened Markets?” American Journal of Agricultural Economics, 78(1996): 825–829.

Barrett, C.B. “Measuring Integration and Efficiency in International Agricultural Markets.”
Review of Agricultural Economics, 23(2001):19–32.

Baulch, R.J. “Spatial Price Equilibrium and Food Market Integration.” Dissertation, Food
Research Institute, Stanford University, USA, 1994.

Ben-Kaabia, M. and J.M. Gil. “Asymmetric Price Transmission in the Spanish Lamb Sector.”
European Review of Agricultural Economics, 34(2007): 53–80.

Ben-Kaabia, M., J.M. Gil, and M. Ameur. “Vertical Integration and Non-linear Price
Adjustments: The Spanish Poultry Sector.” Agribusiness, 21(2005): 253–271.

Ben-Kaabia, M., J.M. Gil, and L. Boshnjaku. “Price Transmission Asymmetries in the
Spanish Lamb Sector.” Paper prepared for presentation at the Xth EAAE Congress
‘Exploring Diversity in the European Agri-Food System’, Zaragoza, Spain, 28-31 August
2002.

28



Bhansali, R.J. Discussion of Tong and Lim (1980), 1980, p. 270.

Brümmer, B., S. von Cramon-Taubadel, and S. Zorya. “A Markov-Switching Vector Error
Correction Model of Vertical Price Transmission between Wheat and Flour in Ukraine.”
Under revision for the European Review of Agricultural Economics, 2008.

Camacho, M. “Markov-Switching Stochastic Trends and Economic Fluctuations.” Journal of
Economic Dynamics and Control, 29(2005): 135–158.

Cass, D. and K. Shell. “Do Sunspots Matter?” Journal of Political Economy, 91(1983):
193–227.

Chan, K.S.. “Consistency and Limiting Distribution of the Least Squares Estimator of a
Threshold Autoregressive Model.” The Annals of Statistics, 21(1993): 520–533.

Chamley, C. “Coordinating Regime Switches.” The Quarterly Journal of Economics,
114(1999): 869–905.

Chen, L.-H., M. Finney, and K.S. Lai. “A Threshold Cointegration Analysis of Asymmetric
Price Transmission from Crude Oil to Gasoline Prices.” Economics Letters, 89(2005):
233—239.

Chung, K.L. Markov Chains with Stationary Transition Probabilities. Springer-Verlag,
Berlin, Germany, 1960.

Clements, M.P. and H.-M. Krolzig. “A Comparison of the Forecast Performance of
Markov-Switching and Threshold Autoregressive Models for US GDP.” Econometrics
Journal, 1(1998): C47–C75.

Coleman, A.M.G. “Arbitrage, Storage and the ’Law of One Price’: New Theory for the Time
Series Analysis of an Old Problem.” Working paper, Princeton University, USA, 1995.

Coleman, A.M.G. “Storage, Slow Transport, and the Law of One Price: Evidence from the
Nineteenth Century U.S. Corn Market.” Discussion Paper No. 502, University of
Michigan, USA, 2004.

Dercon, S. and B. van Campenhout. “Dynamic Price Adjustment in Spatially Separated Food
Markets with Transactions Costs.” Working paper, Katholieke Universiteit Leuven,
Belgium, 1998.

Dempster, A.P., N.M. Laird, and D.B. Rubin. “Maximum Likelihood from Incomplete Data
via the EM Algorithm (with Discussion).” Journal of the Royal Statistical Society, B
39(1977): 1–38.

Diebold, F.X., J-H. Lee, and G. Weinbach. “Regime Switching with Time-Varying Transition
Probabilities”, in C.P. Hargreaves (ed), Nonstationary time series analysis and
cointegration, Oxford University Press, Oxford, UK, 1994, chapter 10.

Doornik, J.A. Object-Oriented Matrix Programming Using Ox, Timberlake Consultants
Press, London, and http://www.doornik.com/index.html, Oxford, UK, 2002.

29



Dorsey, R.E. and W.J. Mayer. “Genetic Algorithms for Estimation Problems with Multiple
Optima, no Differentiability, and Other Irregular Features.” Journal of Business and
Economic Statistics, 13(1995): 53–66.

Dumas, B. “Dynamics Equilibrium and the Real Exchange Rate in a Spatially Separated
World.” Review of Financial Studies, 5(1992): 153–180.

Ejrnæs, M. and K.G. Persson. “Market Integration and Transport Costs in France 1825–1903:
A Threshold Error Correction Approach to the Law of One Price.” Explorations in
Economic History, 37(2000): 149—173.

Enders, W. Applied Econometric Time Series. John Wiley & Sons, 2nd ed., Hoboken, NJ,
USA, 2004.

Engle, R.F. and C.W.J. Granger. “Co-Integration and Error Correction: Representation,
Estimation and Testing.” Econometrica, 55(1987): 251-76.

Enke, S. “Equilibrium Among Spatially Separated Markets: Solution by Electrical
Analogue.” Econometrica, 19(1951): 40–47.

Escobal, J. “The Role of Public Infrastructure in Market Development in Rural Peru.”
Dissertation, Wageningen University, The Netherlands, 2005.

P.L. Fackler and B.K. Goodwin. “Spatial Price Analysis” in B. Gardner and G. Rausser (eds),
Handbook of Agricultural Economics, Vol. 1, Elsevier, Amsterdam, The Netherlands,
2001, pp. 971-1024.

Fanizza, D.G. “Multiple Steady States and Coordination Failures in Search Equilibrium: New
Approaches to the Business Cycle.” Dissertation, Northwestern University, USA, 1990.

Federico, G. “Market Integration and Market Efficiency: The Case of 19th Century Italy.”
Explorations in Economic History, 44(2007): 293—316.

Francis, N. and M. Owyang. “Asymmetric Common Trends: An Application of Monetary
Policy in a Markov-Switching VECM.” Federal Reserve Bank of St. Louis Working Paper
2003-001B, St. Louis, USA, 2003.

Goldfeld, S.M. and R.E. Quandt. “A Markov Model for Switching Regressions.” Journal of
Econometrics, 1(1973): 3–16.

Goodwin, B.K. and T.J. Grennes. “Tsarist Russia and the World Wheat Market.”
Explorations in Economic History, 35(1998): 405—430.

Goodwin, B.K. and D.C. Harper. “Price Transmission, Threshold Behavior, and Asymmetric
Adjustment in the U.S. Pork Sector.” Journal of Agricultural and Applied Economics,
32(2000): 543—553.

Goodwin, B.K. and M.T. Holt. “Price Transmission and Asymmetric Adjustment in the U.S.
Beef Sector.” American Journal of Agricultural Economics, 81(1999): 630–637.

30



Goodwin, B.K. and N. Piggott. “Spatial Market Integration in the Presence of Threshold
Effects.” American Journal of Agricultural Economics, 83(2001): 302–317.

Goodwin, B.K., T.J. Grennes, and L.A. Craig. “Mechanical Refrigeration and the Integration
of Perishable Commodity Markets.” Explorations in Economic History, 39(2002):
154—182.

Hall, S., Z. Psaradakis, and M. Sola. “Switching Error-Correction Models of House Prices in
the United Kingdom.” Economic Modelling, 14(1997): 517–527.

Hamilton, J.D. “A New Approach to the Economic Analysis of Nonstationary Time Series
and the Business Cycle.” Econometrica, 57(1989): 357–384.

Hamilton, J.D. “Analysis of Time Series Subject to Regime Changes.” Journal of
Econometrics, 45: 39–70.

Hamilton, J.D. Time Series Analysis. Princeton University Press, Princeton, USA, 1994.

Hamilton, J.D. “Rational Expectations and the Economic Consequences of Changes in
Regime”, in K.D. Hoover (ed), Macroeconometrics: Developments, Tensions, and
Prospects, Kluwer Academic Publishers, Boston, USA, 1995, chapter 9.

Hamilton, J.D. “Specification Testing in Markov-Switching Time Series Models.” Journal of
Econometrics, 70(1996): 127–157.

Hamilton, J.D. and B. Raj (2002a)(eds). Advances in Markov-Switching Models. Applications
in Business Cycle Research and Finance. Physica-Verlag, Heidelberg, Germany, 2002.

Hamilton, J.D. and B. Raj (2002b). “New Directions in Business Cycle Research and
Financial Analysis”, in Hamilton, J.D. and B. Raj (eds), Advances in Markov-Switching
Models. Applications in Business Cycle Research and Finance, Physica-Verlag,
Heidelberg, Germany, 2002.

Hansen, B.E. “The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov
Switching Model of GNP.” Journal of Applied Econometrics, 7(1992): S61–82; Erratum
(1996) 11, 195–198.

Hansen, B.E. “Inference in TAR Models.” Studies in Nonlinear Dynamics and Econometrics,
2(1997): 1–14.

Hansen, B.E. “Testing for Linearity.” Journal of Economic Surveys, 13(1999): 551–576.

Hansen, B.E. “Sample Splitting and Threshold Estimation.” Econometrica, 68(2000):
575–603.

Hansen, B.E. and B. Seo. “Testing for Two-Regime Threshold Cointegration in Vector
Error-Correction Models.” Journal of Econometrics, 110(2002): 293–318.

Heckscher, E.F. “Växelkurens Grundval vid Pappersmynfot.” Economisk Tidskrift, 18(1916):
309–312.

31



Hendry, D.F. and K. Juselius. “Explaining Cointegration Analysis: Part I.” The Energy
Journal, 21(2000): 1–42.

Hendry, D.F. and K. Juselius. “Explaining Cointegration Analysis: Part II.” The Energy
Journal, 22(2001): 75–120.

Howitt, P. and R.P. McAfee. “Animal spirits.” The American Economic Review, 82(1992):
493–507.

Jackman, S. “Re-Thinking Equilibrium Presidential Approval - Markov-Switching Error
Correction.” Paper presented at the 12th Annual Political Methodology Summer
Conference, Indiana University, Bloomington, USA, 1995.

Jacks, D.S. “Intra- and International Commodity Market Integration in the Atlantic Economy,
1800–1913.” Explorations in Economic History, 42(2005): 381—413.

Jacks, D.S. “What Drove 19th Century Commodity Market Integration?” Explorations in
Economic History, 43(2006): 383—412.

Jeanne, O. and P. Masson. “Currency Crises, Sunspots and Markov-Switching Regimes.”
Journal of International Economics, 50(2000): 327–350.

Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models.
Oxford University Press, Oxford, UK, 1995.

Keynes, J.M. The General Theory of Employment, Interest, and Money. Macmillan, London,
UK, 1936.

Kim, C.-J. “Dynamic Linear Models with Markov-Switching.” Journal of Econometrics,
60(1994): 1–22.

Krolzig, H.-M. “Statistical Analysis of Cointegrated VAR Processes with Markovian Regime
Shifts.” SFB 373 Discussion Paper 25/1996, Humboldt-Universität zu Berlin, Berlin,
Germany, 1996.

Krolzig, H.-M. Markov-Switching Vector Autoregressions. Modelling, Statistical Inference,
and Applications to Business Cycle Analysis. Springer, Berlin, Germany, 1997.

Krolzig, H.-M. MSVAR - An Ox Package Designed for the Econometric Modelling of
Univariate and Multiple Time Series Subject to Shifts in Regime, Version 1.31k. URL
http://www.economics.ox.ac.uk/research/hendry/krolzig/msvar.html, 2004.

Krolzig, H.-M. and J. Toro. “A New Approach to the Analysis of Business Cycle Transitions
in a Model of Output and Employment.” Department of economics discussion paper series
No. 59, University of Oxford, Oxford, 2001.

Krolzig, H.-M., M. Marcellino, and G. Mizon. “A Markov-Switching Vector Equilibrium
Correction Model of the UK Labor Market.” Empirical Economics, 27(2002): 233–254.

Lo, M.C. and E. Zivot. “Threshold Cointegration and Nonlinear Adjustment to the Law of
One Price.” Macroeconomic Dynamics, 5(2001): 533–576.

32



Luoma, A., J. Luoto, and M. Taipale. “Threshold Cointegration and Asymmetric Price
Transmission in Finnish Beef and Pork Markets.” Pellervo Economic Research Institute
Working Papers No. 70, Helsinki, Finland, 2004.

Lutz, C., W.E. Kuiper, and A. van Tilburg. “Maize Market Liberalisation in Benin: A Case of
Hysteresis.” Journal of African Economies, 16(2006): 102–133.

MacDonald, I.L. and W. Zucchini. Hidden Markov and Other Models for Discrete-valued
Time Series. Chapman and Hall, London, UK, 1997.

Marshall A.. Principles of Economics. Macmillan Company, 8th ed., New York, USA, 1890.

Martinez Peria, M.S. “A Regime-Switching Approach to the Study of Speculative Attacks: A
Focus on EMS Crises”, in J.D. Hamilton and B. Raj (eds), Advances in Markov-Switching
Models. Applications in Business Cycle Research and Finance, Physica-Verlag,
Heidelberg, Germany, 2002.

McNew, K.P. and P.L. Fackler. “Testing Market Equilibrium: Is Cointegration Informative?”
Journal of Agricultural and Resource Economics, 22(1997): 191–207.

Mellows, M. Testen und Auswählen von nichtlinearen Zeitreihenmodellen mit dem
Bootstrap-Verfahren. Peter Lang Europäischer Verlag der Wissenschaften, Frankfurt am
Main, Germany, 1999.

Meyer, J. “Measuring Market Integration in the Presence of Transaction Costs — a Threshold
Vector Error Correction Approach.” Agricultural Economics, 31(2004): 327–334.

Mizrach, B. and J. Watkins. “A Markov Switching Cookbook”, in P. Rothman (ed),
Nonlinear Time Series Analysis of Economic and Financial Data, Kluwer Academic
Publishers, Boston, USA, 2000, chapter 2.

Moschini, G. and K.D. Meilke. “’Modelling the Pattern of Structural Change in U.S. Meat
Demand”. American Journal of Agricultural Economics, 71(1989): 253–261.

Noack, T. Probleme der SETAR-Modellierung in der Zeitreihenanalyse. Logos Verlag,
Berlin, Germany, 2003.

Norman, S. “How Well does Nonlinear Mean Reversion Solve the PPP Puzzle?” Working
Paper University of Washington, Tacoma, USA, 2007.

O’Connel, P.G.J. and S.-J. Wei. “The Bigger They Are, the Harder They Fall: How Price
Differences Across U.S. Cities Are Arbitraged.” Working paper 6089, National Bureau of
Economic Research, Cambridge, USA, 1997.

O’Connel, P.G.J. and S.-J. Wei. “’The Bigger They Are, the Harder They Fall’: Retail Price
Differences Across U.S. Cities”. Journal of International Economics, 56(2002): 21–53.

Obstfeld, M. and A.M. Taylor. “Nonlinear Aspects of Goods-Market Arbitrage and
Adjustment: Heckscher’s Commodity Points Revisited.” Journal of the Japanese and
International Economies, 11(1997): 441–479.

33



Park, H., J.W. Mjelde, and D.A. Bessler. “Time-Varying Threshold Cointegration and the
Law of One Price.” Applied Economics, 39(2007): 1091–1105.

Pede, V.O. and A.M. McKenzie. “Integration in Benin Maize Market: An Application of
Threshold Cointegration Analysis.” Selected Paper prepared for presentation at the
American Agricultural Economics Association Annual Meeting, Providence, Rhode Island,
USA, July 24-27 2005.

Prakash, G. and A.M. Taylor. “Measuring Market Integration: A Model of Arbitrage with an
Econonometric Application to the Gold Standard, 1879–1913.” Working Paper No. 6073,
National Bureau of Economic Research, USA, 1997.

Priestley, M.B. (1980a). Discussion of Tong and Lim (1980), 1980, p. 273.

Priestley, M.B. (1980b). “State-Dependent Models: A General Approach to Non-linear Time
Series Analysis.” Journal of Time Series Analysis, 1(1980): 57–71.

Priestley, M.B. Nonlinear and Non-Stationary Time Series Analysis. Academic Press,
London, UK, 1988.

Psaradakis, Z., M. Sola, and F. Spagnolo. “On Markov Error-Correction Models.” Working
Paper, Birkbeck College, London, UK, 2001.

Psaradakis, Z., Sola, M. and F. Spangolo (2004a). “On Markov-Switching Models, with an
Application to Stock Prices and Dividends.” Journal of Applied Econometrics, 19(2004):
69–88.

Psaradakis, Z., Sola, M. and F. Spangolo (2004b). Appendix of “On Markov-Switching
Models, with an Application to Stock Prices and Dividends”. Journal of Applied
Econometrics Data Archive, URL
http://qed.econ.queensu.ca/jae/datasets/psaradakis002/pss-appendix.pdf, 2004.

R Development Core Team. R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org, 2007.

Raj, B. “Asymmetry of Business Cycles: The Markov-Switching Approach”, in A. Ullah,
A.T.K. Wan and A. Chaturvedi (eds), Handbook of Applied Econometrics and Statistical
Inference, Dekker, New York, USA, 2002.

Samuelson, P. “Spatial Price Equilibrium and Linear Programming.” American Economic
Review, 42(1952): 283–303.

Sephton, P.S. “Spatial Market Arbitrage and Threshold Cointegration.” American Journal of
Agricultural Economics, 85(2003): 435–450.

Sercu, P., R. Uppal, and C. Van Hulle. “The Exchange Rate in the Presence of Transaction
Costs: Implications for Tests of Purchasing Power Parity.” Journal of Finance, 10(1995):
1309—1319.

34



Serra, T. and B.K. Goodwin. “Specification Selection Issues in Multivariate Threshold and
Switching Models.”, in Proceedings of the AAEA-WAEA Annual Meeting, 2002.

Serra, T. and B.K. Goodwin. “Price transmission and asymmetric adjustment in the Spanish
dairy sector.” Applied Economics, 35(2003): 1889–1899.

Serra, T. and B.K. Goodwin. “Regional Integration of Nineteenth Century U.S. Egg
Markets.” Journal of Agricultural Economics, 55(2004): 59–74.

Serra, T., J.M. Gil, and B.K. Goodwin. “Local Polynomial Fitting and Spatial Price
Relationships: Price Transmission in EU Pork Markets.” European Review of Agricultural
Economics, 33(2006): 415–436.

Serra, T., B.K. Goodwin, J.M. Gil, and A. Mancuso. “Non-parametric Modelling of Spatial
Price Relationships.” Journal of Agricultural Economics, 57(2006): 501–521.

Shepherd, A.W. Market Information Services. Theory and Practice. FAO Agricultural
Services Bulletin 125, Rome, Italy, 1997.

Siklos, P.L. and C.W.J. Granger. “Regime-Sensitive Cointegration with an Application to
Interest-rate Parity.” Macroeconomic Dynamics, 1(1997): 640–657.

Takayama, T. and G. Judge. Spatial and Temporal Price Allocation Models. North-Holland,
Amsterdam, The Netherlands, 1971.

Thomas, J.K. “Do Sunspots Produce Business Cycles?” Working paper, University of
Minnesota, Minneapolis, USA, 2004.

Tjøstheim, D. “Some Doubly Stochastic Time Series Models.” Journal of Time Series
Analysis, 7: 225–273.

Tong, H. “On a Threshold Model”, in C.H. Chen (ed), Pattern recognition and signal
processing, Sijthoff and Noordhoff, Amsterdam, The Netherlands, 1978.

Tong, H. Threshold Models and Non-linear Time Series Analysis. Springer-Verlag, New
York, USA, 1983.

Tong, H. Non-linear Time Series. A Dynamical System Approach. Clarendon Press, Oxford,
UK, 1990.

Tong, H. “Birth of the Threshold Time Series Model.” Statistica Sinica, 17(2007): 8–14.

Tong, H. and K.S. Lim. “Threshold Autoregression, Limit Cycles and Cyclical Data (with
Discussion).” Journal of the Royal Statistical Society, B42(1980): 245–292.

Trenkler, C. and N. Wolf. “Economic Integration in Interwar Poland - A Threshold
Cointegration Analysis of the Law of One Price for Poland (1924–1937).” European
University Institute Working Paper ECO, No. 2003/5, San Domenico, Italy, 2003.

Trenkler, C. and N. Wolf. “Economic Integration Across Borders: The Polish Interwar
Economy 1921–1937.” European Review of Economic History, 9(2005): 199 – 231.

35



Tsay, R.S. “Testing and Modeling Threshold Autoregressive Processes.” Journal of the
American Statistical Association, 84(1989): 231–240.

Tsay, R.S. “Testing and Modeling Multivariate Threshold Models.” Journal of the American
Statistical Association, 93(1998): 1188–1202.

Uchezuba, D.I. “Measuring Market Integration for Apples on the South African Fresh
Produce Market: A Threshold Error Correction Model.” Master thesis, University of the
Free State Bloemfontein, South Africa, 2005.

Uppal, R. “A General Equilibrium Model of International Portfolio Choice.” Journal of
Finance, 48(1993): 529–553.

Van Campenhout, B. “Modelling Trends in Food Market Integration: Method and an
Application to Tanzanian Maize Markets.” Food Policy, 32(2007): 112–127.

Whittle, P. “The Statistical Analysis of a Seiche Record.” Journal of Marine Research,
13(1954): 76–100.

36



Appendix A: Review of Applications of the TVECM

Table 4 provides a review of studies of PT in commodity markets which are in most cases
applications of the TVECM. We focus in the review on the data, models and estimation
approaches used in the studies. It covers 35 publications of which 26 are journal articles.
Tables 1 to 3 summarize the reviewed publications according to their publication type,
research field and publication year. Table 4 lists the publications according to the initial letter

Table 1: Publication per Type

Type Journal article Conference paper Working paper Dissertation MSc thesis
Number 26 4 3 1 1

of the first author’s name. The first two columns give information on the type Ty of the article,
where j denotes “journal article”, c “conference paper”, w “working paper”, d “dissertation”
and m “MSc thesis”, and the field of research Fi, where ae denotes “agricultural economics”,
eh “economic history”, ee “energy economics” and e “economics” in general. The following
four columns provide information on the analyzed data. They outline the product(s) and the
geographic region studied, their frequency Fr, where q denotes “quarterly”, m “monthly”, b
“bi-weekly”, w “weekly”, d “daily” and n.m. “not mentioned”, and the length of the time
series T in number of periods. The next five columns of Table 4 summarize features of the

Table 2: Publications per Research Field

Type Agricultural economics Economic history Economics Energy economics
Number 23 7 3 2

estimated model(s). The column Model classifies the used model(s) according to the
discussion of equation (11), p.9, Reg denotes the number of regimes in the model; Cont
indicates whether the model, in case it has three regimes and is of the Band-type, is
continuous. Sym indicates, in case the model has three regimes, whether the model is
symmetric and Adj states whether the model allows for a nonzero adjustment coefficient in
the middle regime, i.e., whether α(2) 6= 0. The last two columns provide information about

Table 3: Publications per Year

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Number 1 2 1 2 2 3 2 3 7 5 7

the applied estimation method. Est outlines the (reference of) the estimation method applied
where HS denotes the method of Hansen and Seo (2002), B denotes “Bayesian estimation”,
LZ, LS, PT, OT, BF the method of Lo and Zivot (2001), “multivariate least squares”, Prakash
and Taylor (1997), Obstfeld and Taylor (1997) and Balke and Fomby (1997) respectively.
Par denotes the parameters used in the optimization as defined in (6).
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Appendix B: Simulation Study

We perform a simulation study in order to assess the performance of the estimation methods
almost exclusively used in applied research which are sequential conditional least squares
(SCLS) in case of the TVECM and the Expectation-Maximization-Algorithm (EMA) in case
of the MSVECM. We generate 1000 replications of two prices pAt and pBt per dataset which
follow a certain TVECM-specification and MSVECM-specification respectively. Each DGP
is assumed to consist of l + 1 = M = 3 regimes in one of which no error correction takes
place, i.e. where the two prices are not cointegrated.41 Since the equilibrium errors are
corrected toward the long-run relationship itself and not toward a band around it in case of
the MSVECM, we assume the error correction process of the TVECM to be of
equilibrium-type in order to ensure comparability of the adjustment processes, i.e., the
equilibrium errors of the threshold model are also assumed to be corrected toward the
long-run relationship itself which means that we assume µ(j) = 0 in (11), p. 9. Furthermore,
we assume the short-run dynamics Ψ

(j)
i = 0 for the sake of simplicity. Hence, the DGP

corresponds to the simple nonlinear VECM as outlined in Balke and Fomby (1997, p. 629):

∆pt = α(Jt)ectt−1 + εt (B.1)

=

(
∆pAt
∆pBt

)
=

(
αA (Jt)

αB (Jt)

)
ectt−1 +

(
εAt
εBt

)
.

Each dataset is generated containing t = 1, . . . , T ; T = 150, 500, 1500 time points
respectively.42 The lengths T are based on the time series used in the studies of the literature
review in Table 4. The first two values of T denote a short and a long time series as typically
used in empirical research. They roughly correspond to the first (162 measurements) and the
third quartile (564 measurements) of the lengths of the time series of all studies except the
five publications which use daily data. Very long time series of T = 1500 observations will
typically rarely be available in PT analysis. They correspond roughly to the mean length
(1560 measurements) of the time series of daily observations used in Escobal (2005), Park et
al. (2007) and Agüero (2007); the datasets of Goodwin et al. (2002) and Sephton (2003) with
2645 daily observations are not regarded since they are exceptionally long.

In particular, we assume the parameter of the cointegration relationship and the common
trend to β = −1 and φ = 1 respectively. We generate the equilibrium error process {ectt}
and the common stochastic trend {Bt} according to

ectt = ρ(Jt) · ectt−1 + νt where ectt = pBt + β pAt and νt
iid∼ N(0, 1) (B.2)

Bt = Bt−1 + ηt where Bt = pBt + φ pAt and ηt
iid∼ N(0, 1) (B.3)

The corresponding error correction parameters α(j) and the price series pAt , p
B
t in (B.1) may

41 In case of the TVECM, it is the middle regime that does not show error correction, i.e., α(2) = 0; for the
MSVECM it is the first, i.e., α(1) = 0.
42 We actually generate T + 200 observations of each dataset and throw away the first 200 in order to reduce the
influence of the starting value.
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then be calculated based on the generated values of ectt and Bt in via the identities

pAt =
Bt − ectt
φ− β

pBt =
φ · ectt − βBt

φ− β

αA (j) =
1− ρ(j)

φ− β
αB (j) = −φ(1− ρ(j))

φ− β
.

We generate datasets for the four cases in Table 6, p. 43. In cases I and IV, we are interested
in the performance of the estimation methods depending on the true parameters introducing
nonlinearity, i.e., the thresholds and the transition matrix.43 Hence, we focus on the
estimation of the thresholds and the ergodic probabilities in dependence on a set of varying
true thresholds and ergodic probabilities incorporating the error correction parameter as a
nuisance parameter in order to study if and to what extent they influence the estimation
results.44 The parameters varied in the DGPs of the TVECM and the MSVECM are the
thresholds θ(1), θ(2) and the error correction parameters ρ(1), ρ(3) of the outer regimes and the
ergodic probabilities π(2), π(3) and the error correction parameters ρ(1), ρ(3) respectively.45

As criterion measuring the performance of the estimation of the thresholds via SCLS and the
ergodic probabilities via EMA we choose the mean squared error

MSEλ̂ = E(λ̂− λ)2 =
[
Bias(λ̂)

]2
+ σ2(λ̂). Hence, the MSE of SCLS is estimated for

λ̂ ∈ {θ̂(1), θ̂(2)} and the MSE of the EMA for λ̂ ∈ {, π̂(1), π̂(2), π̂(3)}. We approximate the
functional relationship between the MSE and the varying true parameters of the DGPs by

M̂SEλ̂ =

[
B̂ias(λ̂)

]2

+ σ̂2(λ̂). The evaluation of MSESCLS
λ̂

= f(θ(1), θ(2), ρ(1), ρ(3)) and

MSEEMA
λ̂

= f(π(2), π(3), ρ(1), ρ(3)) for grids of true parameters is first computationally very
demanding and can hardly graphically be illustrated due to its five dimensions. We thus
reduce the number of dimensions to three by evaluating the MSE function by holding its third
and fourth parameters constant MSEA

λ̂
= f(θ(1), θ(2)|ρ(1), ρ(3)),

MSEC
λ̂

= f(π(2), π(3)|ρ(1), ρ(3)) ) and evaluating it by holding its first and second parameters
constant (MSEB

λ̂
= f(ρ(1), ρ(3)|θ(1), θ(2)), MSED

λ̂
= f(ρ(1), ρ(3)|π(2), π(3)) ) respectively.

Despite we restrict the simulation on these two subspaces, detailed insights into the behavior
of the estimation methods can be expected.

43 Since the transition matrix of the MSVECM-DGP considered contains nine elements, we use the three cor-
responding ergodic probabilities π = (π(1) π(2) π(3))> instead. These are, technically spoken, the normalized
eigenvector of the matrix associated with its unit eigenvalue (cf. Hamilton, 1994, pp. 681). The transition matrix
and the ergodic probabilities are connected via Γ = TΛT−1 (Hamilton, 1994, p. 730) where T is the M ×M
matrix of the eigenvectors and Λ the M ×M diagonal matrix of the eigenvalues of Γ. Hence, by holding all ele-
ments of Λ constant and only plugging in varying π in the column of T associated with the unit eigenvalue, the
corresponding transition matrices can be obtained. The ergodic probabilities corresponding to an estimated tran-
sition matrix Γ̂ can be obtained, in turn, by the eigenvalue decomposition of the latter and normalization of the

respective eigenvector. We obtained Λ and T from the eigenvalue decomposition of Γ =

0.95 0.03 0.02
0.15 0.8 0.05
0.2 0.1 0.7


since it implies ergodic probabilities of π = (0.769 0.154 0.077)>, i.e., it assigns quite distinct unconditional
probabilities to the three regimes.
44 Since we simulate according to (B.2) and (B.3), we vary the autoregressive parameter ρ(j) in (B.2) instead of
α(j).
45 Note thatα(2) = 0 implying that ρ(2) = 1 in both cases and π(1) = 1−(π(2)+π(3)). As mentioned before, the
ergodic probabilities denote the expected unconditional probabilities π(j) of the j = 1, . . . ,M ; M = 3 regimes.
The frequencies of the regimes generated by a MSVECM-DGP should hence equal them asymptotically.
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In cases II and III it is not possible to estimate the bias by simulation since the respective
method estimates thresholds and the transition matrix although the data was generated by a
MSVECM and a TVECM respectively. We therefore try to assess for each observation
whether its regime was correctly classified by the estimation method. However, this kind of
inference has two identification problems in case of the EMA. First, the method only allows
probabilistic statements regarding the regime incidences. The approach of considering the
regime with the highest smoothed probability at some time t as the one that most likely
occurred may, of course, randomly lead to incorrect identification. Second,
Markov-switching models in general suffer from the problem regime identification regarding
the transition matrix. This means that for repeated estimations the numbering of the regimes
may change so that the first regime of the first estimation needs not to be identical to the first
one of the second estimation. One can try to identify the regimes by the magnitudes of its
estimated parameters, however, a considerable amount of uncertainty remains since the
estimates vary randomly so that one can indeed obtain a wrong reordering.

Case I

First, we generate TVECM datasets of the 16 combinations of θ(1) = −0.5,−1,−2,−3 and
θ(2) = 0.5, 1, 2, 3 so that

MSEA
λ̂

= f(MA|ρ(1) = 0.9, ρ(3) = 0.9) (B.4)

where

MA =


−0.5, 0.5 −1, 0.5 −2, 0.5 −3, 0.5
−0.5, 1 −1, 1 −2, 1 −3, 1
−0.5, 2 −1, 2 −2, 2 −3, 2
−0.5, 3 −1, 3 −2, 3 −3, 3

 (B.5)

and the MSE is evaluated for each combination, i.e., for each element of MA individually.

Second, we generate TVECM datasets of the 16 combinations of ρ(1) = 0.98, 0.9, 0.8, 0.5
and ρ(3) = 0.98, 0.9, 0.8, 0.5 so that

MSEB
λ̂

= f(MB|θ(1) = −1, θ(2) = 1) (B.6)

where

MB =


0.98, 0.98 0.9, 0.98 0.8, 0.98 0.5, 0.98
0.98, 0.9 0.9, 0.9 0.8, 0.9 0.5, 0.9
0.98, 0.8 0.9, 0.8 0.8, 0.8 0.5, 0.8
0.98, 0.5 0.9, 0.5 0.8, 0.5 0.5, 0.5

 . (B.7)

For T = 1500, we only generate 9 combinations of θ(1) = −0.5,−1,−2, θ(2) = 0.5, 1, 2 and
ρ(1) = 0.98, 0.9, 0.5, ρ(3) = 0.98, 0.9, 0.5, respectively, due to the high computational cost
involved for such long time series.
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Case II

We generate one MSVECM dataset with Γ =

 0.8 0.15 0.05
0.03 0.95 0.02
0.1 0.2 0.7

 and ρ(1) = 0.9,

ρ(3) = 0.5.

Case III

We generate one TVECM dataset with θ(1) = −1 and θ(2) = 1 and ρ(1) = 0.9, ρ(3) = 0.5.

Case IV

First, we generate MSVECM datasets of the 16 combinations of π(2) = 1
12
, 1

6
, 1

4
, 1

3
and

π(3) = 1
12
, 1

6
, 1

4
, 1

3
so that

MSEC
λ̂

= f(MC |ρ(2) = 0.9, ρ(3) = 0.5). (B.8)

where

MC =


0.08, 0.08 0.17, 0.08 0.25, 0.08 0.33, 0.08
0.08, 0.17 0.17, 0.17 0.25, 0.17 0.33, 0.17
0.08, 0.25 0.17, 0.25 0.25, 0.25 0.33, 0.25
0.08, 0.33 0.17, 0.33 0.25, 0.33 0.33, 0.33

 . (B.9)

Second, we generated MSVECM datasets of the 16 combinations of ρ(2) = 0.98, 0.9, 0.8, 0.5
and ρ(3) = 0.98, 0.9, 0.8, 0.5 so that

MSED
λ̂

= f(MD|π(2) =
1

6
, π(3) =

1

12
) (B.10)

where

MD =


0.98, 0.98 0.9, 0.98 0.8, 0.98 0.5, 0.98
0.98, 0.9 0.9, 0.9 0.8, 0.9 0.5, 0.9
0.98, 0.8 0.9, 0.8 0.8, 0.8 0.5, 0.8
0.98, 0.5 0.9, 0.5 0.8, 0.5 0.5, 0.5

 . (B.11)

For T = 1500, we only generate 9 combinations of π(2) = 1
12
, 1

6
, 1

3
,π(3) = 1

12
, 1

6
, 1

3
and

ρ(2) = 0.98, 0.9, 0.5, ρ(3) = 0.98, 0.9, 0.5, respectively, due to the high computational cost
involved for such long time series. We do not present all results in this paper. Further results
may be obtained from the authors.
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Table 5: Estimation Approaches of Selected Publications46

Publication Model l d Principle Criterion Par’s Optim.

Balke and Fomby (1997) SETAR any est. LS RSS θ, d Min
Obstfeld and Taylor (1997) SETAR 147 1 ML LR48 θ Max
Hansen (1999) SETAR 0-2 est. LS RSS θ, d Min
Lo and Zivot (2001) TVECM 1 est. LS RSS θ, d Min
Hansen and Seo (2002) TVECM 1 1 ML log |Σ| θ, β Min

Table 6: Design of the Simulation Study

Estimation DGP
TVECM MSVECM

SCLS I II
EMA III IV

Table 7: True vs. Estimated Regime Incidences (Case II)

R1 true R2 true R3 true

R1 est 0.339 0.076 0.041
R2 est 0.216 0.039 0.018
R3 est 0.214 0.039 0.019

Table 8: True vs. Estimated Regime Incidences (Case III)

R1 true R2 true R3 true

R1 est 0.088 0.105 0.028
R2 est 0.133 0.152 0.044
R3 est 0.186 0.199 0.065

46 Obstfeld and Taylor estimate a symmetric TVECM(3), i.e. in absolute terms, only one symmetric threshold is
to be estimated.
47 LR denotes the likelihood ratio between a SETAR(3,1,1,1) and an AR(1). The latter model might also be called
a SETAR (1,1), for the notation of SETAR models see footnote 6, p. 4.
48 l denotes the number of thresholds (compare footnote 18, page 8), d the delay parameter, ML maximum like-
lihood, LS least squares, RSS = trace(Σ) residual sum of squares, log |Σ| the log determinant of the variance-
covariance matrix of the residuals; θ means threshold, est. estimated and β the cointegration vector.
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Figure 1: Classification of Nonlinear Models after Tong (1990)
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Figure 2: Transactions Costs and Regime-Dependent PT
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Figure 3: Realization of a TVECM(3)
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Figure 4: Transition Graph of a Two-State Markov Chain
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Figure 5: Realization of a MSVECM(2)
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Figure 6: The Expectation-Maximization Algorithm
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Figure 7: M̂SEθ̂(1) = f(θ(1), θ(2)) vs. M̂SEθ̂(1) = f(ρ(1), ρ(3))
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Figure 8: M̂SEπ̂(1) = f(π(2), π(3)) vs. M̂SEπ̂(1) = f(ρ(1), ρ(3))
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