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Hedge Effectiveness Forecasting 

This study focuses on hedging effectiveness defined as the proportionate price risk reduction 
created by hedging.  By mathematical and simulation analysis we determine the following:  (a) 
the regression R2 in the hedge ratio regression will generally overstate the amount of price risk 
reduction that can be achieved by hedging, (b) the properly computed hedging effectiveness in 
the hedge ratio regression will also generally overstate the amount of risk reduction that can be 
achieved by hedging, (c) the overstatement in (b) declines as the sample size increases, (d) 
application of estimated hedge ratios to non sample data results in an unbiased estimate of  
hedging effectiveness, (e) application of hedge ratios computed from small samples presents a 
significant chance of actually increasing price risk by hedging, and (f) comparison of in sample 
and out of sample hedging effectiveness is not the best method for testing for structural change in 
the hedge ratio regression. 

Keywords:  out of sample, post sample, hedging, effectiveness, forecasts, simulation. 
 

Introduction 

Hedging studies typically proceed by posing a price risk minimization problem, collecting data, 
and estimating hedge ratios with regression analysis.  The regression R square is reported as the 
proportion of price risk eliminated by hedging.  To estimate the price risk reduction expected 
from future hedging, these studies then apply the estimated hedge ratios to out of sample data 
and compare the variance of unhedged outcomes to the variance of hedged outcomes.  This last 
step is the focus of this paper. 

Applying estimated hedge ratios to non sample data is intuitively appealing.  Claims about the 
robustness of a particular hedging strategy have merit as do claims that the effectiveness of 
estimated hedge ratios applied to nonsample data constitute a forecast of the effectiveness that 
can generally be expected from the hedging strategy.  However, the fundamental assumptions of 
this procedure need closer scrutiny.   

For example, the comparison of in sample and out of sample hedging effectiveness implicitly 
assumes that the in sample effectiveness estimator is unbiased for out of sample results.  While 
unbiasedness remains to be seen, a comparison of single observations for in sample and out of 
sample effectiveness is insufficient to determine either the absence of, or the magnitude and 
direction of bias.   

Second, the comparison of in sample and out of sample hedging effectiveness fails to address the 
notion that both measures are random variables, each with its own variance, and differences are 
to be expected.  The precision of each of the estimates is more telling than the magnitude of their 
difference as the comparison gives no indication of when the difference is significant.   

Third, the notion of the robustness of the estimated hedging strategy is tied to the assumption 
that the cash-futures price relationship did not change between the in sample and out of sample 
periods.  While such a structural change would render the estimated hedging strategy less 
effective under the new regime and hence less robust, this notion is better tested by re-estimating 
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the regression over the in sample and out of sample periods and testing for parameter equality 
over both periods.  This parameter equality test is girded with better understood statistical theory 
than is a test for effectiveness equality.   

Finally, this procedure of applying hedge ratios to out of sample data does not address the 
optimal allocation of data to the estimation period and the out of sample period.  With a fixed 
number of data points, using more of the data for estimation improves the precision of the hedge 
ratios but reduces the precision of the out of sample forecast.  As data are scarce the optimal 
allocation between the in sample and out of sample periods should be considered.   

The objectives of this paper are to examine the distributional properties of the hedging 
effectiveness statistic.  In particular we will explore whether in sample hedging effectiveness is 
an unbiased estimator for out of sample results and how sample size and influences effectiveness 
bias and precision.  This study will utilize simulation analysis in which thousands of random 
samples of various sizes are drawn.  For each sample, we will compute the hedge ratio and the 
corresponding hedging effectiveness.  We also draw random samples to which the estimated 
hedge ratios are applied so that we can examine out of sample hedging effectiveness.   
 

Theoretical Background 

Hedging behavior assumes that an agent seeks to minimize the price risk of holding a necessary 
spot (or cash) market position by taking an attendant futures market position (Johnson, Stein).  
The profit outcome (π) of these combined positions is  

(1) π = xs (p1 - p0) + xf (f1 - f0), 

where xs is the agent's necessary cash market position, p is the commodity's cash price, xf is the 
agent's discretionary futures market position, f is the futures contract's price, and subscripts 1 and 
0 refer to points in time.  Risk is minimized by selecting the xf (xf

*) that minimizes the variance 
of π (V(π)) giving  

 xf*/xs = -σ∆p,∆s / σ2
∆f. 

This risk minimizing hedge ratio (xf*/xs) is estimated by �̂  in the regression 

(2) ∆H pt = α + β ∆H fMt + εt, t = 1, 2, … T  

where, in addition to the previous definitions, fMt represents the M-maturity futures contract's 
price at time t, ∆H represents differencing over the hedging interval1, εt represents stochastic error 
(possibly with serial correlation) at time t, and T represents the number of observations.  The risk 
minimizing futures position is xf

* = - �̂ xs.   

                                                 
1 All price changes occur during the assumed hedging period.  Henceforth,  ∆H will be represented more 

succinctly with ∆ where H is assumed. 
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Anderson and Danthine (1980, 1981) generalized this approach to accommodate positions in 
multiple futures contracts.  In this case, xf and (f1 - f0) in (1) are replaced by vectors of length k 
and hedge ratio estimation involves fitting the multiple regression model 

(3) ∆pt = α + � =
ε+∆βk

j tjtj f
1

, t = 1, 2, 3,  … T, 

where ∆fjt is the change in the price of futures contract j over the hedge period, and jβ̂  is the 
estimated hedge ratio indicating the number of units in futures contract j per unit of spot position. 

Other generalizations of this model include applications to soybean processing (Dahlgran, 2005; 
Fackler and McNew; Garcia, Roh, and Leuthold; and Tzang and Leuthold), cattle feeding 
(Schafer, Griffin and Johnson), hog feeding (Kenyon and Clay), and cottonseed crushing 
(Dahlgran, 2005; Rahman, Turner, and Costa).  In this case, the profit objective is  

 π = y py,1-x px,0 + xf (f1 - f0) 

where inputs (x) and outputs (y) are connected by the product transformation function 

 y = γ x. 

Hedge ratio estimation for this model involves fitting the regression  

(4) py,t - γ px,t-H = α + � =
ε+∆βk

j tjtj f
1

, t = 1, 2, 3,  … T. 

The hedge ratio regressions in (2), (3), and (4) can all be represented by the general regression 
model Y = Xββββ + εεεε, with T observations and K ( = k+1) explanatory variables in X.  ββββ is 
estimated with YX'X)(X'� 1−=ˆ .  Other pertinent statistics are �XY ˆˆ =  and YY� ˆˆ −= . 

Hedging effectiveness (e) was defined by Ederington as the proportion of price risk eliminated 
by hedging.  More specifically,  

(5) e = [ V(πu) – V(πh) ] / V(πu)  

where V is the variance operator, πu the agent's unhedged outcome and πh is the agent's hedged 
outcome.  The regression R2 serves as an estimator for e as well as the coefficient of 
determination.   

Marchand defines the coefficient of determination as follows.  Let [ Y : X ] =  
[ Y : X1, X2, …,Xk ] be distributed as a k+1-variate normal with covariance matrix Σ and let S be 
the covariance matrix obtained from a sample of size T where T > k > 1.  Partition Σ and S as  

 �
�

�
�
�

�

Σσ
σσ

=Σ
XXXY

YXYY  �
�

�
�
�

�
=

XXXY

YXYY

SS

SS
S  
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where σYY and SYY are scalars.  The multiple correlation coefficient between Y and [ X1, 
X2,…,Xk ] is defined as 2/111 )( XYXXYXYY σΣσσ=ρ −−  and ρ2 is the coefficient of determination.  The 
analogous sample quantities are 2/111 )( XYXXYXYY SSSSR −−=  and R2. 

The distribution of R2 can be derived from the distribution of the regression F statistic.  
Specifically, for regressions (2), (3), or (4) 

(6) F = �
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While the regression F statistic is used to test whether the noncentrality parameter of the 
numerator chi square random variable is zero, (i.e., whether ββββ = 0 in (2), (3) or (4)) this 
assumption negates the hedging motive.  Consequently, we recognize the noncentrality 
parameter and assume a noncentral F distribution for (6) so that  

(7a) { } ααλλ =< )( Pr ,, 1

2

1

2

n
n

n
n fF   

where F is the noncentral F random variable with n1 (numerator) and n2 (denominator) degrees of 
freedom, noncentrality parameter λ, and f(α) is the numerical value for which the probability of 
a smaller value of F is α.  The corresponding cumulative probability distribution for R2 is   

(7b) α
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where λ = 22 /)( σYT−�XX'�' . 

Chattamvelli provides an alternative approach.   

"If 2
1nχ and 2

2nχ  are independent central chi squared random variables with n1 and n2 

degrees of freedom, then F = ( 2
1nχ /n1) / ( 2

2nχ /n2) has an F distribution and B=n1 F / (n2 + 

n1 F) = 2
1nχ  / ( 2

1nχ + 2
2nχ ) has a beta distribution.  When both of the 2χ  are noncentral, F 

has a doubly noncentral F distribution.  When only one of the 2χ  is noncentral, F has a 
(singly) noncentral F distribution.  Analogous definitions hold for the beta case."   

As (6) is composed of the requisite independent chi square random variables, the regression R2 
follows a singly noncentral beta distribution with n1= k = K-1 and n2 = T-K = T-k-1 degrees of 
freedom and λ = 22 /)( σYT−�XX'�' .  The values of the beta random variable are apparent in 
the second form of the probability statement in (7b). 

Pe and Drygas (p. 313) state "if X1 and X2 are independently distributed as noncentral χ2 with ni 
degrees of freedom and noncentrality parameters λi (i = 1, 2), then Z = X1 / (X1+X2) is 
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distributed independently from X1+X2 as a doubly noncentral β1 distribution with parameters 
n1/2, n2/2, and λ1, λ2 respectively" then the rth moment about the origin is  

(8a) ��
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θΓ
+θΓ=θ k

k and Γ(n) = (n-1) Γ(n-1) = (n-1)! for integer n and Γ(1/2) = π  if n is half 

integer.  When applied to R2, λ2=0, n1=k, and n2=T-k-1 so (8a) reduces to  
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Marchand (p. 173) states "It is well known that, on average, R2 overestimates ρ2."  Consequently, 
R2 is a biased estimator of ρ2, E(R2) > ρ2, and as T → ∞ E(R2) = ρ2.   

The previous discussion applies to the regression R2, and while we next argue that the regression 
R2 is an incomplete expression of hedging effectiveness, this previous discussion is nonetheless 
valuable in establishing the properties of hedging effectiveness.  First, hedging effectiveness is 
more explicitly defined as 

(9) e = 
})]({[

})]ˆ(ˆ{[})]({[
2

22

tt

MttMtttt

pEpE
fpEfpEpEpE

∆−∆
∆−∆−∆−∆−∆−∆ ββ

. 

This definition establishes that the variances are for differences between actual and expected 
outcomes.  Accordingly, hedging effectiveness is based not on the variances of simple outcomes 
but on the variances of unanticipated outcomes.  This means that if the hedge ratio regression 
displays systematic behavior such as seasonality or serial correlation, then hedging effectiveness 
must be defined so that these systematic components become part of the expected outcome, 
whether or not hedging occurs.  To represent this, the hedge ratio regression in (2), (3), or (4) is 
expressed as 

 ��X�XY 2211 ++=  

where the K columns of X have been partitioned into k1 deterministic components contained in 
X1, and k2 stochastic components contained in X2.  In addition to the column of ones for the 
intercept, X1 might also contain dummy variables or estimated lagged errors which account for 
serial correlation.  X2 contains the futures contract price changes.  Because the elements of X1 
are systematic, they form anticipations so hedging effectiveness is redefined as  
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This expression demonstrates that the regression R2 and hedging effectiveness are the same only 
when X1 consists of a sole column of ones.  Otherwise, effectiveness has the characteristics of 
the regression R2 in that it is bounded by zero and one but the regression R2 overstates hedging 
effectiveness by assigning too many degrees of freedom to the numerator (i.e., K-1 instead of K-
k1), thereby overstating the numerator sum of squares, and assigning too few degrees of freedom 
to the denominator (i.e., T-1 instead of T-k1), thereby understating the denominator sum of 
squares.  So in addition to R2 being an upwardly biased estimator for ρ2 it also overstates 
hedging effectiveness. 

The statistical properties of hedging effectiveness follow from analysis of variance definitions as 
SST = SSR( ββββ1, ββββ2) + SSE where SST = Y'Y, SSR( ββββ1, ββββ2) = �XX''�Y'Y ˆˆˆˆ =  = Y'X(X'X)-1X'Y, 
and SSE is the sum of squared errors (i.e., SSE = ]YX'X)X(X'[IY'�'� 1−−=ˆˆ ).  Searle (p. 247) 
shows (a) that SSR( ββββ1, ββββ2) = SSR( ββββ2 | ββββ1) + SSR(ββββ1), where SSR(ββββ1) = Y' X1 (X1'X1)-1 X1' Y, 
(b) that SSR( ββββ2 | ββββ1) = Y'[X(X'X)-1-X1(X1'X1)-1X1']Y, and (c) that  
SSR( ββββ2 | ββββ1) / σ2 has a noncentral χ2 distribution and is independent of both SSR(ββββ1) and SSE. 

Applying these definitions establishes   
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is distributed as a noncentral F random variable with k2 numerator and T-K denominator degrees 
of freedom, and λ = ββββ'X'[I-X1(X1'X1)-1X1] X ββββ / / / / σ2, and  

(11b) 
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is distributed as a singly noncentral beta random variable with degrees of freedom and λ 
corresponding to (11a).     

The cumulative distribution of hedging effectiveness is derived from the noncentral F random 
variable in (11a).  First, dividing both the numerator and denominator of (11a) by  
Y' [I-X1(X1'X1)-1X1] Y expresses (11a) in terms of hedging effectiveness as 

(12a) ��
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so that the probability statement  
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defines the cumulative probability distribution for hedging effectiveness. 
 

Methods 

Simulation analysis is used to explore (a) the relationship between the regression R2 and hedging 
effectiveness, (b) the impact of sample size on the precision of the regression R2 and hedging 
effectiveness, and (c) the relationship between estimated effectiveness and out of sample 
effectiveness.  In this analysis, 10,000 samples of size T will be drawn for the model  

(13) ∆pt = α + δ Dt + γ (∆pt-1 - α - δ Dt-1 - β ∆ft-1) + β ∆ft + εt,  

where Dt represents a generic dummy variable (Dt = 1 if t even, 0 otherwise), εt ~ NID(0,σε
2), 

and (∆pt-1 - α - δ Dt-1 - β ∆ft-1) represents first order autoregressive effects.  While this model 
appears somewhat specific, it encompasses features that are common in hedge ratio regressions 
as X1 contains a column of 1s to account for a long term spot price trend, systematic effects 
represented by dummy variables account for seasonal spot price variation, and the autoregressive 
term accounts for noninstantaneous spot price equilibration.  Another advantage of (13) is that 
parameter estimation requires the inversion of the 3x3 matrix X'X which is not computationally 
prohibitive.  This consideration is especially important when the autoregressive parameter γ is 
estimated iteratively.   

The model can be subjected to a variety of assumptions by changing its parameters.  The 
parametric assumptions are specified by (a) the structural parameters α, β, γ, and δ  (b) the 
variances of the random variables ∆ft and εt as ∆ft ~ N( 0, σ∆f

2), εt ~ N( 0, σε
2), (c) the covariance 

between ∆ft and εt, σ∆f,ε, and (d) the size of each sample.  While the values selected for these 
parameters are arbitrary, the results are nonetheless illustrative. 

Once the parameter values are selected, a sample of size T is drawn and the hedge ratio and 
hedging effectiveness ( ê ) are estimated for the sample.  Another sample of size T is drawn and 
the estimated hedge ratio is applied to these data and the out of sample hedging effectiveness (η̂ ) 
is computed by comparing the unhedged outcome with the hedged outcome.  This process is 
repeated 10,000 times for each sample size.  The estimates from each sample are used to form 
the empirical cumulative probability distribution for the regression R2, hedging effectiveness 
( ê ), and out of sample hedging effectiveness (η̂ ).  The empirical distributions are compared to 
the theoretical distributions specified by (7b) and (12b).  Also, because the population 
parameters are known, R2 can be compared to ρ2, and effectiveness ( ê ) and out of sample 
effectiveness (η̂ ) can be compared to η.  The sampling distributions for R2, effectiveness, and of 
out of sample effectiveness are reported via summary statistics and cumulative probability 
distribution plots.   
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Results 

Sample sizes (T) of 10, 50, 100, and 500 were selected.  A sample size of 10 allows the small 
sample properties of our three measures to be studied.  A sample size of 50 represents an 
empirical study that uses a year's weekly observations, or four years of monthly observations.  
Similarly, a sample size 100 represents an empirical study that uses two years of weekly 
observations, or eight years of monthly observations.  Finally, a sample size of 500 represents an 
empirical study that uses ten years of weekly observations or two years of daily observations. 

Parameter values of ( 0, 1, 0, -2 ) were selected for ( α, β, γ, δ ).  These values were chosen 
because α = 0 implies no trend in the spot price.  γ = 0 simplifies the model by eliminating serial 
correlation so that preliminary results can be explored and established.  β = 1 represents a direct 
hedging application.  Finally, δ = -2 is assumed so that the effect of the dummy variable is 
significant and the distinction between R2 and hedging effectiveness can be demonstrated and 
emphasized.   

The variances of ∆ft and εt are both set to 1 while the covariance between ∆ft and εt is set to zero.  
Applying Marchand's definition of the coefficient of determination to the variables that define 
effectiveness, we have σyy = V( β ∆ft + et) = 2, σyx = C( β ∆ft + et, ∆ft) = 1, and σxx = V(∆ft) = 1, 
so η (the true value of effectiveness) is XYXXYXYY σσσ 11 −− Σ = ½.   

In contrast, the regression R2 includes the effect of the dummy variable.  So σyy = 
V( δ Dt + β ∆ft + et) = (-2)2 × 0.25 + 12 × 1 + 1 = 3, σDD = V(Dt) = E(Dt

2) - E(Dt)2 = 0.25, σ∆f,∆f = 
1, σyD = C( δ Dt + β ∆ft + et, Dt) = -2 × 0.25 = -0.5, and σy,∆f = C( δ Dt + β ∆ft + et, ∆ft) = 1.  

Accordingly, [ ] �
�

�
�
�

�−
�
�

�
�
�

�
−=Σ=

−
−−−

1

5.0

10

025.0
 15.03

1

1112
XYXXYXYY σσσρ = �. 

Figure 1 summarizes simulations for sample sizes of 10, 50, 100, and 500 with each panel 
corresponding to a different sample size.  Each panel shows the empirical cumulative distribution 
for the regression R2, hedging effectiveness, and the out of sample hedging effectiveness.  Each 
panel also shows the theoretical cumulative probability distribution of R2 and effectiveness as 
defined by (7b) and (12b), respectively.  The theoretical distributions (indicated by dashed lines) 
and the empirical distributions match so closely that they are indistinguishable.   

To interpret the cumulative distributions we note that the farther to the right the cumulative 
distribution function lies, the higher the mean of the random variable.  Accordingly, we observe 
in all four panels that mean R2 exceeds the mean in sample hedging effectiveness.  We 
previously established that the mean R2 should be 0.67 while the mean effectiveness should be 
0.50 so this ordering is as expected.  Furthermore, the difference between R2 and in sample 
hedging effectiveness appears constant across all four panels so the difference appears to be 
unaffected by sample size.   
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Figure 1 also shows that the mean in sample effectiveness exceeds the mean out of sample 
effectiveness.  This difference diminishes as the sample size increases and with 500 observations 
the means in sample and out of sample effectiveness are approximately the same. 

Figure 1 also reveals that even though hedging effectiveness is theoretically bounded by zero and 
one (i.e., hedging in theory can never increase price risk and will potentially reduce price risk), it 
is possible that the application of estimated hedge ratios might actually increase price risk.  This 
result occurred approximately ten percent of the time when hedge ratios are estimated from a 
sample of size 10 and occurred occasionally (though rarely) with samples of size 50.   

The second general principle in interpreting figure 1 is that the steeper the cumulative probability 
distribution function, the smaller the variance of the random variable.  Figure 1 reveals that the 
cumulative probably distributions get steeper as sample sizes increase.  Also, figure 1 indicates 
that for a given sample size the variances for R2 and in sample effectiveness are generally the 
same while variance for out of sample effectiveness is larger.  As the sample size increases, this 
relationship becomes less pronounced.   

While figure 1 illustrates these relationships graphically, table 1 illustrates these and other 
comparisons more precisely.  We cited Marchand's statement that generally, the E(R2) > ρ2.  
Given the correspondence between R2 and hedging effectiveness, this also suggests that E( ê ) > 
η.  While E(R2) > ρ2 is apparent only for a sample of size 10, E( ê ) > η is more readily evident 
for samples of size 10 and 50.  The results in table 1 suggest that the bias diminishes as the 
sample size increases.  The numerical results in table 1 also suggest that while in sample hedging 
effectiveness is biased upward, out of sample hedging effectiveness is unbiased.  This creates a 
new justification for researchers to forecast out of sample hedging effectiveness in that the 
estimate obtained is an unbiased estimator of hedging effectiveness.  
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Figure 1.  Cumulative probability distributions for R2, effectiveness and out of sample effectiveness for various sample sizes. 

Model:  ∆pt = α +δ Dt+ β ∆ft + εt, t = 1, 2, … T. α = 0, δ = -2, β = 1, σεε = 1, σ∆f,∆f = 1, σ∆f,ε = 0. 
 

T=10 T=50 

T=100 T=500 



11 

Table 1.  Aggregate simulation statistics.  
      

 Descriptive Regression In sample Out of sample 
 T statistic R square effectiveness effectiveness 
  (R2) ( ê ) (η̂ ) 
      

Population mean 0.67 0.50 0.50 
 
Model: ∆pt = α + δ Dt + β ∆ft +εt, α =0, δ =-2, β =1 
 
 10 Average 0.755 0.593 0.341 
  Std Dev 0.125 0.190 0.360 
  Min-max 0.103-0.993 0.000-0.987 -4.460-0.944 
  90 %'tile range 0.401 0.631 1.007 
 
 50 Average 0.639 0.526 0.470 
  Std Dev 0.069 0.086 0.109 
  Min-max 0.365-0.847 0.200-0.803 -0.142-0.767 
  90 %'tile range 0.227 0.283 0.255 
 
100  Average 0.647 0.501 0.484 
  Std Dev 0.047 0.061 0.074 
  Min-max 0.425-0.806 0.227-0.713 0.000-0.708 
  90 %'tile range 0.155 0.202 0.238 
 
500 Average 0.651 0.490 0.497 
  Std Dev 0.021 0.028 0.032 
  Min-max 0.561-0.722 0.387-0.581 0.374-0.603 
  90 %'tile range 0.069 0.091 0.104 
 
      

 

Conclusions 

This study is a preliminary investigation of the problem of forecasting how a hedging strategy 
will perform out of sample.  Nonetheless, we have established some definitive conclusions.  
First, we have established that the R2 for the hedge ratio regression is an incomplete measure of 
hedging effectiveness and is appropriate only when the spot price displays neither systematic 
effects nor serial correlation.  When spot prices are characterized by seasonality, serial 
correlation, day of the week effects, or relationships with other conditioning variables such as 
inventory levels or planted acreage, these systematic effects should be modeled as part of the 
hedge regression and hedging effectiveness should not include these variables' effect on the spot 
price.   

Second, we have established that even after accounting for these systematic effects, measured 
hedging effectiveness overstates the expected out of sample effectiveness.  This occurs because 
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of upward bias in measured hedging effectiveness due to the selection of parameter estimates 
that maximize R2 and its subcomponent, effectiveness.  When the estimated hedge ratios are 
applied out of sample, this maximization cannot be exercised so the expected in sample 
effectiveness will exceed the expected out of sample effectiveness.   

We have also established that the difference between the expected in sample effectiveness and 
out of sample effectiveness diminishes with larger sample sizes.  In light of this finding, we 
expect that the standard practice of fitting a hedging strategy to out of sample data will result in a 
lower out of sample effectiveness than measured in sample.  This result should not be interpreted 
as a lack of robustness of the hedging strategy or that structural change has occurred but instead 
that the in sample effectiveness naturally overstates what will be experienced out of sample.  In 
fact, the lower out of sample estimate is an unbiased estimate of hedging effectiveness.   

Related to issues of robustness of our estimated hedging strategy and/or structural change, we 
have argued that a comparison of in sample and out of sample hedging effectiveness is not the 
best way to test for these conditions.  A procedure that is better grounded in statistics and 
probability is to test for parameter equality across the sample period and the out of sample 
period.  A rejection of the hypothesis of parameter equality means that the hedging strategy 
estimated in the in sample period is not appropriate for the out of sample period. 

We also have shown that out of sample effectiveness is more variable than the in sample result 
and that the variance of both the in sample and the out of sample hedging effectiveness fall as the 
number of observations increase.  This gives rise to an interesting question.  Suppose the 
objective is to find an unbiased estimate of hedging effectiveness using the out of sample 
estimator.  Then how should the available observations be allocated so as to obtain the most 
precise estimate?  If more observations are allocated to hedge ratio estimation, then the hedge 
ratios will be more precise, but there will be fewer observations from which to compute out of 
sample hedging effectiveness causing its variance to increase.  Conversely, using more 
observations for the computation of out of sample hedging effectiveness will leave fewer 
observations from which to compute hedge ratios so they become less precise.  Is there a rule for 
the determination of the most efficient estimator given the number of observations?  

This study leaves many issues unaddressed which gives rise to other questions.  For example, 
many model specifications have not been examined.  In particular, suppose the hedge ratio 
regression displays serial correlation.  How does the distribution of hedging effectiveness and out 
of sample hedging effectiveness change?  Also, the hedge ratio regression is but one equation out 
of a potentially simultaneous system.  Suppose changes in futures prices and errors are 
correlated.  How does this affect the distributions of the in sample and out of sample hedging 
effectiveness statistics?  And finally, only one specification with η = 0.5 was studied.  This level 
of risk reduction would be considered low under many direct hedging applications while in cross 
hedging applications it might be something that managers could only hope for.  These topics will 
be studied as the scope of this paper is increased.   
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