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Impacts of government risk management policies on hedging in futures and options: 
LPM2 hedge model vs. EU hedge model 

 

The main objective of this study is to compare the impacts of government payments and 
crop insurance policies on the use of futures and options measured from a downside risk hedge 
model with the impacts analyzed by the expected utility (EU) hedge model. Understanding the 
effects of government-provided risk management tools on the private market risk management 
tools, such as futures and options, provides value to both crop farmers and policy makers. 
Comparison of the impacts from the two hedge models shows that crop farmer will hedge less in 
futures under the LPM2 model than under the EU hedge model. This finding indicates that model 
misspecification is another reason for the phenomenon that farmers actually hedge less in 
futures than predicted by the EU model. From the perspective of exploring new research 
techniques, this study applied two relatively new simulation concepts, copula simulation and 
conditional kernel density approach, to make the simulation assumptions less restrictive and 
more consistent with observations.  The copula simulation applied in this study allows yield and 
price to have more flexible joint distribution functions than multivariate normal; the conditional 
kernel density approach used in farm yield simulation enables the variance of  farm yield varies 
with county yield rather than being constant.  
 
Keywords  : Down-side Risk, LPM2 Hedge Model, Government Payments, Crop Insurance 
Policies, Copula Simulation, Conditional Kernel Density   
 
MOTIVATION 
 

The prevalence of government payments and government- initiated crop insurance 
policies has prompted the question, “how would government-provided risk management tools 
affect the use of private market risk management tools, such as futures and/or options contracts, 
by crop farmers?”  Investigating such effects provides value to all potential participants, both 
public and private.  Firstly, acknowledging that the availability of government-supported risk 
management tools will change the optimal hedging in futures and options contracts will benefit 
crop farmers in that they can adjust their risk management portfolio accordingly.  Secondly, 
examination of such impacts could provide policy makers with insights into to the question, “to 
what extent are the income risks faced by U.S. crop farmers managed under the interaction of 
government and private market risk management tools?” 

 
Previous studies have approached this question by assuming that the objective of the crop 

producer is to manage risk by maximizing the expected utility of a portfolio, which includes 
government payments, crop insurance, futures and/or options (Poitras, 1993; Hanson et al. 1999; 
Coble et al. 2000, 2004; Mahul 2003; Wang et al. 2004).  However, concerns with the expected 
utility (EU) hedge model enter from two perspectives. First, an expected utility function must be 
assumed in the analysis, which may result in misleading findings and lack of generality (Sakong 
et al., 1993). Second, EU maximization does not target the control of downside risk. If we 
assume that government payments and crop insurance reflect demands by farmers with respect to 
risk management, then a downside risk hedge model might be a more appropriate model than the 
EU hedge model, because the ultimate purpose of the government payments and federal crop 
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insurance plans is to protect crop farmers from receiving low farm incomes, as indicated by the 
often-cited “Safety net” concept in U.S. farm policy files. 

 
The main objective of this study is to compare the impacts of government payments and 

crop insurance policies on the use of futures and options measured from a downside risk hedge 
model with the impacts analyzed by the EU hedge model.  In particular, the downside risk hedge 
model applied is the second-order lower partial moment hedge model (LPM2), which minimizes 
the expected value of the squared shortfall from the target payoff.  The hypothesis is that a crop 
farmer will hedge less in futures contracts under the LPM2 model than under the EU hedge 
model.  If the results confirm this conjecture, then misspecification of the hedging objective 
would be at least partial explanation for the observation that farmers actually hedge less in 
futures than predicted by the EU model. 

 
METHODOLOGY  
 

The lower partial moment criterion has thus far had its primary applications in the finance 
literature.  Because the LPM2 hedge model is proposed to investigate the effects of government 
programs on the optimal hedge in commodity futures and options contracts rather than the 
expected utility model, we present an analytical and empirical comparison between LPM2 hedge 
ratios and the expected utility (EU) hedge ratios.  This study applies the copula method to 
simulate the dependence between crop prices and yields so that prices and yields can have a non-
normal univariate distribution and no explicit assumption on their joint distribution need to be 
made.  We also employ the cumulative conditional kernel density approach to simulate farm 
yields so that the individual, or representative, farm yield can vary with the levels of county 
yields, consistent with observed patterns between historical farm yields and county yields. 
Effects of government direct payments (DP), loan deficiency payments (LDP) and counter 
cyclical payments, as well as the effects of two typical crop insurance policies, actual production 
history (APH) and crop revenue coverage (CRC), are compared across the two models.  
 
Downside Risk Measures, LPM, and Stochastic Dominance 

Using LPM as downside risk measures originated in the investment literature. Roy (1952) 
proposed to apply the safety-first rule to make investment decisions under uncertainty. Roy’s 
safety-first rule determines the optimal investment portfolio by minimizing the probability of the 
investment return falling below some target threshold return while maintaining a specified 
expected return. Thus, Roy’s portfolio selection criterion reflects a downside risk measure which 
defines risk as the shortfall relative to the threshold return. This risk measure is in contrast with 
the traditional risk measure, variance, which counts both the upside potential and the downside 
misfortune from the expected return as risk. 

 
Fishburn (1977) suggested to measure risk with an t−α  model in the form 

,)()(∫
∞−

−=
t

xdFxtRisk α where 0>α  and F(x) is the cumulative distribution function. Fishburn’s 

risk measure is motivated by the observation that decision makers in the investment context 
usually associate risk with failure to attain at least a target return.  Bawa (1978) generalized 
Roy’s downside risk measure by constructing a set of downside risk measures, called lower 
partial moments, in the form 
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∫
∞−

−=
π

πππ )~()~( dFLPM n
n        (1), 

where 0≥n .  LPM0 is equivalent to Roy’s down-side risk measure. When n is positive integer, 
LPMn represents the probability-weighted nth-power of the shortfall below a target payoffπ . 
Thus, Bawa’s LPM risk measures are equivalent to risk measured by Fishburn’s t−α  model.  
 

The theoretical justification of using the LPM criterion to determine an optimal 
investment portfolio resides in the relationship between LPM risk measures and stochastic 
dominance. Stochastic dominance rules rank the alternative investment portfolios based on the 
payoff distribution of the portfolios. The nth-order stochastic dominance is defined as follows.  
Given two portfolios X and Y, and their respective cumulative payoff distribution F and G, 
if RtfortGtF nn ∈≤ )()( )()( , then X dominates Y by the nth-order stochastic dominance. 

Here, ),(,)()( )1()1()( tFFduuFtF
t

nn ≡= ∫
∞−

− 2≥n , and F(t) is the cumulative distribution function 

(Levy, 1998).  
 
In particular, the first-, second-, and third-order stochastic dominance are defined as 

follows (Levy, 1998). 
 

Definition 1:  If )()( tGtF ≤ for all values of t and if at least at some t* that )()( ** tGtF < , then 
portfolio X dominates portfolio Y by first-order stochastic dominance (X FSD Y).  
 

Definition 2:  If )()( )2()2( tGtF ≤ , (or ∫∫ ∞−∞−
≤

tt
duuGduuF )()( ) for all t and the inequality holds at 

least at some t*, then portfolio X dominates portfolio Y by second-order stochastic dominance 
(X SSD Y). 
 

Definition 3:  If )()( )3()3( tGtF ≤ , (or dzduuGdzduuF
t

z
t

z

∫ ∫∫ ∫
∞−

∞−
∞−

∞−
≤ )()( ) for all t and the 

inequality holds at least at some t*, and ∫∫ ∞−∞−
≤

bb
duuGduuF )()( , where b is the upper bound of t, 

then portfolio X dominates portfolio Y by third-order stochastic dominance (X TSD Y) 2. 
 

The nth-order stochastic dominance is consistent with expected utility maximization for 
all utility functions satis fying 0)1( )( ≤− kk U  (k = 1, 2, … , n, )(kU is the kth derivative of function 
U. (Yamai and Yoshiba, 2002; See pp.116-117 of Levy, 1998 for the proof). Because the utility 
functions discussed in the economics and finance literature are usually assumed to satisfy 
nonsatiation ( 0>′U ), risk-aversion ( 0<′′U ) and decreasing absolute risk aversion (a necessary 
condition is 0>′′′U ), the relationship between FSD, SSD, TSD and the expected utility with 
such properties are given by the following theorems.  
                                                 
2 That ∫∫ ∞−∞−

≤
bb

duuGduuF )()( is equivalent to EF(X) ≥ EG(Y) can be proved by applying 

integration by parts (Levy, 1998). 
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Theorem 1:  If and only if X FSD Y, then EFU(X) ≥  EGU(Y) for all the utility functions 
with 0>′U , and strict inequality exists for at least some 0U with 00 >′U . (See pp.48-49 of Levy, 
1998, for the proof.)  
 
Theorem 2:  If and only if X SSD Y, then EFU(X) ≥  EGU(Y) for all the utility functions with 

0>′U and 0<′′U , and strict inequality exists at least for some 0U with 00 >′U  and 00 <′′U . 
(See pp.69-72 of Levy, 1998, for the proof.) 
 
Theorem 3:  If and only if X TSD Y, then EFU(X) ≥  EGU(Y) for all the utility functions 
with 0>′U , 0<′′U  and 0>′′′U  and at least for some 0U . (See pp.92-96 of Levy, 1998, for the 
proof.) 
 

Both Fishburn (1977) and Bawa (1978) noted that LPMn criterion are consistent with 
(n+1)th order stochastic dominance rule for n = 0, 1, 2. That is:  

If X FSD Y, then )()( 00 YLPMXLPM ≤ for all target payoff; and 
If X SSD Y, then )()( 11 YLPMXLPM ≤  for all target payoffs; and  
If X TSD Y, then )()( 22 YLPMXLPM ≤  for all target payoffs.  

By means of integrating by parts, Ingersoll (1987) proved tn
n LPM

n
tF ,

)1(

!
1

)( =+ . Thus, 

the LPMn criterion is consistent with (n+1)th order stochastic dominance.  Because (n+1)th order 
stochastic dominance and the EU criterion result in the same ranking for all the utility functions 
with 0)1( )( ≤− kk U  (k = 1, 2, …, n), LPMn criterion is also consistent with the EU criterion for  
all the utility functions U satisfying 0)1( )( ≤− kk U  (k = 1, 2, …, n). In particular, LPM2 is 
consistent with the EU criterion when the EU criterion yields the same ranking for all the utility 
functions with 0>′U , 0<′′U , and 0>′′′U , of which the usually desired decreasing absolute risk 
aversion utility functions are members (Harlow and Rao, 1989).    Moreover, LPM2 is equal to 
the semivariance when the target payoff in LPM2 is set at the expected payoff, and thus LPM2 is 
the exact downside risk measure comparable to variance, which treats both upside and downside 
deviations from the expected payoff as risk. 

 
If the distribution of the portfolio payoffs is symmetric, then LPM2 risk measure would 

be equivalent to variance and result in the same ordering of risky portfolios (Eftekhari, 1998).  
However, for an asymmetric portfolio payoff distribution, a downside risk measure such as 
LPM2 is more intuitive than variance.  

Relationship between LPM2 Hedge Ratios and EU Hedge Ratios 
When the target payoff is set to be the mean payoff, the optimal LPM2 hedge ratios tend 

to increase the right skewness of the payoff distribution of the hedge portfolio. The reason is that 
the optimal LPM2 hedge ratios are solutions that minimize the lower part of the expected 
variation relative to the mean.  

 
On the other hand, how EU hedge ratios affect the payoff distribution of the hedge 

portfolio depends on many conditions, such as the presence of production risk and unbiased 
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futures prices3.  Under the assumptions of no production risk, unbiased futures prices, and 
linearity of the relationship of cash prices with futures prices, the optimal hedge ratios from the 
EU hedge model in such conditions are the same as the optimal hedge ratios under a minimum 
variance hedge model (Lence, 1995; Lien and Tse, 2002). By examining the Taylor expansion of 
the EU function at the mean payoff of the portfolio, one important implication can be drawn: if 
the utility function is continuous, risk averse, and has at least up to third-order derivatives, then 
optimal hedge ratios that maximize EU tend to limit the variance of the portfolio payoff but favor 
the right skewness of the payoff distribution. Thus, optimal hedge ratios from an EU model 
would be a balance between the smaller variance and the higher right skewness (Lapan et al. 
1991):   

],)([
!

1

)()(
)!1(

1
...)()(

!3
1

)()(
2
1

)(

)()()(

1132

nn

nn

UE
n

EU
n

EUEUU

dfUEU

δεδπ

µπµµπµµπµµ

δδδµπ

πππππππ

π π

++

−
−

++−′′′+−′′+=

+=

−−

∫
       (2) 

where 10 << ε  and πµ is the mean of incomeπ . 
 

Although both the LPM2 hedge and the EU hedge have preference for right skewness of 
the payoff distribution of the hedge portfolio, the analysis that the EU model favors smaller 
variance whereas the LPM2 hedge minimizes semivariance may indicate that the crop farmer will 
likely hedge less in futures contracts but more in options under the LPM2 model than under the 
EU hedge model. 

 
The next section discusses and explains the assumptions and components to build the 

LPM2 hedge model for several portfolios that include futures, put options, crop insurance and/or 
government payments. The second part clarifies the process to generate the desired data for 
numerical optimization. Because the LPM2 hedge model proposed by this study has not been 
used previously to investigate the planting- time hedge decision by crop farmers, we will 
concentrate on establishing the LPM2 hedge model. Compared to the LPM2 hedge model, an EU 
hedge model requires the same portfolio and probability information but a different objective 
function. Therefore, once the LPM2 hedge model is set up and solved, optimal hedge ratios for 
the EU hedge model can be easily obtained as an extension.   

LPM2 Hedge Model for the Representative Crop Farmer 
Given the availability of Georgia’s farm-level yield data, the hedging decisions of a 

representative cotton farmer in Colquitt county of Georgia and of a representative soybean 
farmer in Bulloch county of Georgia will be investigated.  Colquitt and Bulloch counties are 
selected because of their high acreage devoted to cotton/soybean production4 and their larger 

                                                 
3 Lapan et al. (1991), Sakong et al. (1993), Mochini and Lapan (1995) defined that the futures 
price is unbiased if the expectation of the end-of-period futures price equals the current price of a 
futures contract. 
4 In 2005, Bullock had the largest number of harvested soybean acres in Georgia; Colquitt had the second 
largest number of harvested cotton acres (GA Statistics System in 2005-2006 Georgia County Guide). 
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numbers of farmers with more than six years of continuous records during the period of 1991-
2000. 

 
The representative farmer in a county is synthesized in such a way that for any year, the 

mean of the yield distribution equals the county yield, but the actual yield could be any actual 
farm-level yield realized in the county.  The dispersions of farm-level yield around county yield 
vary from year to year, indicating that the representative farm defined above should have 
variance conditional on the county yield.  

 
Other assumptions made for the  representative producer are as follows. First, the crop 

producer is assumed to make a one-time hedge through the crop year. That is, the crop farmer 
takes hedge positions in futures and options at planting time, and later offsets his positions in 
futures and/or options at harvest. This assumption rules out the scenario that the crop farmer sets 
hedge positions at multiple time points from planting to harvest. Specifically, both the cotton and 
soybean representative farmers are assumed to take on hedge position on the last trading day in 
March, 2006. The cotton farmer will lift the hedge in November 2006, while the soybean farmer 
will close the hedge in mid-October. 

 
Second, the representative farmer is assumed to have a portfolio composed of income 

from selling crops at spot market as well as from four risk management instruments – futures, 
options on futures, federal crop insurance and government payments. To simplify the analysis 
regarding government payments, the representative farmer is assumed to produce a single 
commodity for which he is qualified to receive government payments. Third, the representative 
farmer makes his/her hedging decision at planting time by utilizing information available at that 
time. Such information includes parameters determined by the policy makers regarding the 
federal crop insurance and government payments and the estimates of the yield and price 
distribution at harvest.  Fourth, the hedge decision for every acre of the crop planted is assumed 
to be independent of total acres planted.  That is, the hedge portfolio based on one acre of the 
planted crop can be analyzed for simplicity.  

 
Modifications to the Existing LPM2 Hedge Model 

The hedging problems examined so far by the LPM2 hedging literature have considered 
price uncertainty as the only source of risk. But for crop farmers to make hedging decisions at 
planting time to protect their harvest income, unknown harvest yield is another factor that 
contributes to the uncertainty of their hedge portfolio. Therefore, the existing LPM2 hedge model 
must be modified to include both price and production variables.  

 
The presence of production uncertainty generally calls for the use of options together 

with futures contracts (Sakong, 1993).  Thus, put options will be included in the LPM2 hedge 
model in this study, and the optimal hedge ratio in options will be determined simultaneously 
with the optimal hedge ratio in futures contracts. 

 
Hedge Portfolio in the Base Scenario 

When there are no insurance plans or government payments available to the 
representative farmer, that farmer is assumed to use only futures and options to manage risk. The 
net value of the hedge portfolio at harvest is  
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)(])0,[max()( 110 EyCEyvkfhEyffhpy ZZX −−−+−+=π .                                    (3) 
Here, py  is the revenue from selling the crop for cash at harvest, p is the cash price at harvest 
and y is the representative farm yield.  Production cost C is assumed to be determined by the 
expected farm yield Ey, and therefore is known at planting time. The production costs of per acre 
crop planted in 2006 were decided based on the cost estimated by Cooperative Extension at the 
University of Georgia 5.  The terms Xh and Zh are the hedge ratios for futures and options, 
respectively, measured as the ratios of yields hedged with futures contracts (or options contracts) 
to the expected farm yields.  Positive (negative) Xh means to sell (buy) futures contracts. Positive 
(negative) Zh  means to buy (sell) put options contracts. For example, if 5.0=Xh , the 
interpretation should be that the farmer hedge 50% of the expected yield on futures market with 
futures contracts. Conversely, 5.0−=Xh means that the farmer speculates in the futures market 
with the crop amount equal to 50% of his expected production.   
 

An implicit assumption to such a definition of hedge ratios is that the farmer can 
purchase any fraction of a standard futures contract or options contract. 0f  and 1f  are the prices 
of the close-to-harvest futures contract at planting and at harvest, respectively.  For cotton, 

0f and 1f  are the prices of the December contract, while for soybeans, they are prices of the 
November contract. k is the strike price of the put options, and Zv is the premium that the farmer 
pays to have the put options.  Harvest cash price p , harvest farm-level yield y and futures price 
at harvest 1f  are not known at planting and will be simulated based on historical data.  The 
assumption of unbiased futures and options prices will be imposed by simulating 1f in such a way 
that 01 fEf =  and by setting option premium ))0,(max( 1 kfEvZ −= . 

 
Hedge Portfolio Including APH or CRC Insurance Plan 

To investigate the impacts of federal crop insurance plans on the use of futures and 
options, insurance is added to the hedge portfolio.  The two most-used crop insurance plans, 
yield insurance plan APH and revenue insurance plan CRC, are considered as the alternative 
insurance policies that the representative farmer will choose from. To focus on the effects of crop 
insurance on the demand for hedging in futures and options contracts, the representative farmer 
is not given the choice to determine the coverage level and price election in the insurance plans. 
However, sensitivity tests of coverage level of the APH or CRC insurance plan on the demand 
for futures and options are performed, and the results are discussed in the next section.  

 
The value of the hedge portfolio including APH plan is given by 

 )(])0,[max()( 110 EyCNVEyvkfhEyffhpy APHZZXAPH −+−−+−+=π   (4), where 

APHAPHAPHAPH vyypNV −−⋅= )0,max(δ .  The APHy  is the APH yield of the representative 
farmer and is calculated by averaging the ten-year county yields from 1996 to 2005.  This APH 
yield is consistent with the former assumption for the representative farm that the mean of the 
farm yield distribution is equal to the county yield.  The coverage level δ  is arbitrarily set at 
70%. If the harvest yield y is less than the insured yield yδ , then the farmer gets an indemnity 

                                                 
5 Source: http://www.ces.uga.edu/Agriculture/agecon/printedbudgets.htm  
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payment equal to the product of yield shortfall and indemnity price APHp .  Indemnity price is the 
price determined by Risk Management Agency (RMA)6 of U. S. Department of Agriculture 
(USDA) multiplied by a price election factor selected by the insured farmer.  The representative 
farmer in this study is assumed to choose a price election factor of 100%.  For cotton insurance 
in Colquitt in 2006, APHp   is lb/53.0$ .  For soybeans in Bulloch in 2006, APHp  is 

bushel/15.5$ . 
 

The actual APH insurance premium APHv charged to the insured farmer is set by RMA 
according to a set of parameters including the farmer’s APH yield and selected coverage level. 
To make the insurance premium consistent with the data simulated in this study, the actuarially 
fair premium is used, which is obtained by setting  ))0,max(( yypEv APHAPHAPH −⋅= δ . 

 
When CRC is purchased by the representative farmer, the payoff from the hedge portfolio 

at harvest is 
  )(])0,[max()( 110 EyCNVEyvkfhEyffhpy CRCZZXCRC −+−−+−+=π    (5) 
with CRCAPHCRCCRC vyfyffNV −−= )]0,),max(max[ 110δ .  The coverage levelδ is still set at 70%.  
For cotton, 0CRCf  is defined as the daily average settlement price of December contract from 
January 15 to February 14 of 2006.  For soybeans, 0CRCf is the average of daily futures price of 
the November contract in February, 2006.  Premium CRCv  is set as the actuarially fair premium, 
which is )])0,),max((max[ 110 yfyffEv APHCRCCRCCRC −= δ .  According to RMA, the subsidized 
insurance premium can be obtained by multiplying the actuarially fair premium by (1-subsidy 
factor).  Therefore, the effects of premium subsidy on the optimal hedge ratio can be examined 
by comparing the hedge ratios under an actuarially fair premium with those under the subsidized 
premium. Results of such comparison will be discussed in the next section. 
 
Hedge Portfolio Including DP, LDP, CCP 

Direct payments (DP) are fixed in 2002-2007 and paid annually to eligible farmers 
enrolled in the government programs.  Thus, when DP is added to the hedge portfolio, it 
increases the harvest value of the hedge portfolio by the amount, DPDP ypDP ⋅= , which is 
already known at planting time. DPp  and DPy  are the direct payment rate and the base yield fixed 
from 2002 through 2007.  The portfolio with futures, options and DP has payoffs as 

)(])0,[max()( 110 EyCDPEyvkfhEyffhpy ZZX −+−−+−+=π   (6). 
Because DP is known at planting, the target payoff in the LPM2 hedge model with DP in the 
portfolio is set as DPpyE +)( .  Since DP increases the actual portfolio income and the target 
(expected) portfolio income by the same amount, DP has no effect on the LPM2 hedge ratios.  
 

Loan deficiency payments (LDP) are triggered when the market price is lower than the 
loan rate set by USDA. Thus, LDP received by the eligible farmer for per-acre yield can be 
expressed as yppLDP LDP ⋅−= )0,max( .  The amount of counter cyclical payments (CCP) paid 

                                                 
6 RMA provides a premium calculator which can be used to check the price used by RMA at the 
link http://www.rma.usda.gov/tools/premcalc.html. 
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to eligible farmers is calculated as DPLDPMYADPCCP yppppCCP ⋅−−= ]0),,max(max[ . 
The CCPp is the target price set in the 2002 farm bill. The MYAp  is the market year average price, 
which is not known until the end of the crop marketing year.  However, in order to evaluate the 
effects of CCP on the representative farmer’s hedging demand for futures and options at 
planting, MYAp  is forecasted based on the simulated futures price in this study.  

 
To identify the effects of the LDP and the CCP on hedge ratios, respectively, the two 

government payments are added to the portfolio (4.4) one by one, with the LDP added first. Such 
an order is justified by the design of the CCP, which has a target price higher than the loan rate 
in LDP and would provide extra price-risk protection in conjunction with LDP. The 
representative farmer’s portfolio, including DP and LDP, is given by 

)(])0,[max()( 110 EyCLDPDPEyvkfhEyffhpy ZZXLDP −++−−+−+=π  (7). 
When the impacts of CCP are under investigation, the hedge portfolio is given by 

)(])0,[max()( 110 EyCCCPLDPDPEyvkfhEyffhpy ZZXCCP −+++−−+−+=π  (8). 
By adding net value of APH or CRC (i.e., NVAPH, or NVCRC ) into (6), (7) and (8), the hedge 
portfolios including both insurance and government payments are obtained as follows:  
   )(])0,[max()( 110 EyCNVDPEyvkfhEyffhpy APHZZXDPAPH −++−−+−+=π        (9) 
   )(])0,[max()( 110 EyCNVDPEyvkfhEyffhpy CRCZZXDPCRC −++−−+−+=π         (10) 
   )(])0,[max()( 110 EyCNVLDPDPEyvkfhEyffhpy APHZZXLDPAPH −+++−−+−+=π  (11) 
   )(])0,[max()( 110 EyCNVLDPDPEyvkfhEyffhpy CRCZZXLDPCRC −+++−−+−+=π  (12) 
   )(])0,[max()( 110 EyCNVCCPLDPDPEyvkfhEyffhpy APHZZXCCPAPH −++++−−+−+=π  (13) 
   )(])0,[max()( 110 EyCNVCCPLDPDPEyvkfhEyffhpy CRCZZXCCPCRC −++++−−+−+=π  (14) 
The specific values of parameters in APH, CRC, DP, LDP and CCP are listed in Zhang (2007).  

 
The LPM2 hedge model used in this study has the objective function as 

∫
∞−

−=
π

πππ )()( 2

,
2 dFMinMinLPM

zx hh
, where π is the target payoff of the hedge portfolio. The EU hedge 

model has the objective function given by )(maxmax
,

owEUEU
zx hh

+= π , where U is assumed to 

be a constant relative risk-averse utility function of the form r

r
U −⋅

−
=⋅ 1)(

1
1)( . The ow is the 

original per-acre farm wealth, which is set to $800 so that it is large enough to guarantee the 
harvest wealth w1= ow+ 0>π .  The value of the risk aversion coefficient r is set to 2, the well 
accepted value by previous studies (Coble et al. 2000, 2004; Mahul, 2003; Wang et al. 1998, 
2004; Hauser et al. 2004).   

 
Substituting the values of the hedge portfolios under different scenarios into the two 

hedge models, numerical optimization methods are used to find the corresponding optimal hedge 
ratios.  By comparing the optimal hedge ratios in the presence of insurance or government 
payments with the hedge ratios from the baseline scenario, the effects of federal crop insurance 
or government payments on hedging demand for futures and options can be evaluated under each 
hedge model. By comparing the hedge ratios under the same scenario across the two hedge 
models, the different impacts on hedging between the two hedge models can be assessed.  
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In this presentation, the LPM2 and EU hedge ratios are compared under scenarios with 

DP and APH or CRC, or LDP, or LDP and CCP in the portfolios.  Inclusion of DP can increase 
the mean of the payoffs to be positive.  The target payoffs in the LPM2 hedge models for these 
scenarios with DP are set as the expected value of the hedge portfolio (6), which is )(pyE + DP – 
C(Ey).  The impacts of transaction costs associated with hedging on the use of futures have been 
discussed under the EU hedge model (Coble et al. 2000, 2004; Wang et al. 2004).  The effects of 
transaction costs on optimal LPM2 hedge ratios are examined here by comparing optimal hedge 
ratios with and without transaction costs.  We also perform sensitivity tests on how LPM2 hedge 
ratios vary with the levels of target payoff. 

Simulation of Harvest-Time Yield and Price Data 
To make the hedge decision at planting, the representative farmer must know the 

dependence and the harvest-time marginal probability distributions (at least intuitively) of four 
random variables – farm-level yield, local market price, futures price, and market year average 
price – in addition to the information known for certain at planting, such as the parameter values 
determined by USDA or the farm bill for the crop insurance and government payments. 

 
Existing studies generally assume a multivariate normal distribution for the transformed 

yield and price data, based on the normality test results that each of the transformed historical 
yield and price data can not be rejected to be marginally normal (Coble et al. 2000, 2004; Wang 
et al, 2004; Hauser et al. 2004). However, the joint normality assumption is overly restrictive, as 
random variables with marginal normal distributions can have joint distributions other than 
multivariate normal. To allow for more flexible dependence structures between yield and price, 
this study uses the copula function to represent the relationship among yield and price variables. 
Specifically, two types of copula functions, the Gaussian copula and the Frank copula are used to 
simulate data.  Different types of copulas, together with different parameter values included in 
the copula function, result in different joint distributions.   

 
Another innovation of this study regarding data simulation is to apply a conditional 

kernel density approach to simulate farm-level yield with variance contingent on county yield. 
Due to the short period of the available farm-level yields (a yield record of maximum 10 years 
for each individual farm) in previous studies, farm-level yields were usually substituted by the 
rescaled longer county yield series, with the scale to be the ratio of farm yield standard error over 
county yield standard error. This way of augmenting farm yield assumes that farm-level yield 
has the same distribution as county-level yield, except for a larger variance. However, historical 
data show that farm yield variance varies with level of county yield rather than being constant 
(Zhang 2007).  

 
General Simulation Methods and Historical Data 
 

In Figure 1, a flowchart illustrates the general steps to simulate the random values of four 
variables, futures price at harvest (f1), harvest local cash price (p), market year average price 
(pMYA) and the representative farm’s yield at harvest (yf), which are necessary in order to solve 
the hedge models. The most important two steps in the simulation are first to generate harvest-
time futures price and county yield with the copula method, and then to simulate farm yield 
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based on the generated county yield.  Detailed simulation algorithms for harvest-time futures 
price, county yield and farm yield are provided in Zhang (2007). After futures price at harvest is 
simulated, harvest-time cash price and market year average price will be generated based on their 
linear relationships with futures price indicated by the historical data.  

 
Farm yield data for cotton in Colquitt county and farm yield data for soybeans in Bulloch 

county of Georgia from year 1991 to 2000 were obtained from RMA of USDA. Farm-level yield 
data were used to estimate the empirical conditional farm yield distribution. County- level yield 
of cotton in Colquitt county from year 1950 to 2005 and county-level yield of soybean in 
Bulloch county from year 1959 to year 2005 were collected on the website of the NASS of 
USDA. County yield data were used to estimate the empirical distribution of county yield as well 
as to estimate the correlation between yield and futures price7.  

 
Daily average futures prices at planting and at harvest were calculated based on the 

cotton futures data from the New York Board of Trade (NYBOT) from 1978 to 2006 and from 
soybean futures data from Chicago Board of Trade (CBOT) from 1979 to 20068. Harvest-time 
cash price was approximated by the average price received by Georgia producers collected by 
USDA from 1978 to 2005 for cotton and from 1979 to 2000 for soybeans 9. Market year average 
prices from 1978 to 2005 were obtained from NASS of USDA10. Cash prices and market year 

                                                 
7 Speaking more exactly, this is the correlation between detrended county yield and the 
difference of logarithm of futures price at harvest and at planting that will be estimated because 
significant correlation is detected between the two variables for cotton but is not found between 
detrended county yield and futures price at harvest. 
8 Specifically, cotton price of the December futures contract in March and in November were 
averaged, respectively; soybean prices of November futures in February and in October were 
averaged, respectively.  
9 Data source: 
http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1002  
10 Data source: http://www.nass.usda.gov/QuickStats/Create_Federal_Indv.jsp 
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Figure 1 Simulation Flowchart  

Note: yc is the simulated county yield; yf is the farm yield; f1 is futures price; 
p is the cash price; and pMYA is the estimated market year average price. 
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average prices in 2006 are simulated based on their linear relationships with harvest-time futures 
prices, respectively. Specifically, parameters in the linear regression of historical cash prices on 
harvest-time futures prices were estimated by ordinary least square (OLS). Then, cash price in 
2006 was simulated by the predicted cash price plus a random shock drawn from the assumed 
normal residual distribution. Market year average prices were simulated in the same way.  

 
The need to model the distribution of harvest-time yields and prices and the distributional 

flexibility associated with the copula method motivate this study to use copula simulation. 
Among the many well-known copulas, two copulas, Gaussian copula and Frank copula were 
selected to model the dependence between the county yields and the futures prices. The purpose 
of selecting two copulas is to (i) demonstrate that a variety of joint distributions of yields and 
prices can exist other than the bivariate normal and (ii) provide a sensitivity analysis of the 
results.  However, this study does not assert that these two copulas make the best fits to the 
relationships between the sample yields and prices (for copula selection criteria, see Gary, 2002). 

 
Bivariate Gaussian copula takes the form 

))(),((),( 11 vuvuCG
−− ΦΦΦ= ρ       (15) 

where ρΦ is the bivariate normal CDF with the Pearson’s coefficient ρ , representing the linear 
correlation between the two variables X1 and X2; Φ is the normal CDF; u and v are variates from 
two independent Uniform (0, 1) distributions. When the two marginal variables have normal 
distributions, a bivariate Gaussian copula is equivalent to a bivariate normal CDF, which means 

),())(),(( 2121 xxxxCG ρΦ=ΦΦ (See proof on p. 113 of Cherubini et al., 2004).  
 

Frank copula is a one-parameter copula function of the form 

1)exp(
)1))(exp(1)(exp(

1ln(
1
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−−
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+−=

θ
θθ

θ
vu

vuCF , 0≠θ   (16) 

When the ρ in Gaussian copula and θ  in Frank copula are positive (negative), the marginal 
distributions coupled by the copulas are positively (negatively) associated.   
 

In this work, the two marginal distributions coupled by the Gaussian copula or Frank 
copula are the distribution of county yield 

cyF and the marginal distribution of the logarithm 

difference between the futures prices at harvest and at planting, fdF ln . County- level yields must 
be simulated because the representative farm’s yields are modeled as conditional on the county 
yields. The marginal distribution of (dlnf) is used here because, on the one hand, this differenced 
variable has a significant negative correlation with county yields. On the other hand, it can be 
used to generate harvest-time futures price f1 when the planting- time futures price f0 is known. 
Significant dependence between yc and (dlnf) found in historical data determines the sign and 
magnitude of ρ  in Gaussian copula and θ  in Frank copula.  

 
Regression analysis on the soybean county- level yield of Bulloch county showed no 

linear trend in time. Therefore the county yield and farm yield of Bulloch county soybean 
production were used for the simulation without detrending.  Ordinary least squares analysis 
revealed that cotton yields of Colquitt county from 1950 to 2005 have a significant linear trend. 
To account for the temporal component, a simple detrending procedure was implemented by 
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scaling yields from year 1978 through 2005 to year 2006. The detrended county yields were then 
calculated as: 
  )2006(̂det tyy ctc −+= β         (17) 

where β̂ is the estimated coefficient for the year variable in the linear trend regression. Although 
the 6 to 10 years of available farm-level yield is unlikely to represent the underlying yield 
distribution for each farm (Deng et al., 2007), all the farm-level yield information within a 
county could be used to estimate the yield distribution of a representative farm in the county by 
assuming that the yield of the representative farm could be equal to any farm yield harvested in 
the county in a specific year. By further assuming that every year’s farm yield is multiplicatively 
conditional on that year’s county yield, random pseudo yields of the representative farm in 2006 
were generated as 

ct

ft
cf y

y
yy ⋅= detdet ,  

where t is any year of 1991-2000.  To simplify notation, detrended county yield and detrended 
farm yield will be also represented by cy  and fy  in the rest of the study.  
 

Yield distributions have been modeled by both parametric methods and nonparametric 
approaches (Ker and Goodwin, 2000; Wang et al. 2004).  This study applied a nonparametric 
kernel density approach to estimate the empirical distribution of the detrended county yields.  In 
particular, for any *

cy , the empirical cumulative probability was estimated by 

∫ ∑
=

−≈≤=
*

0 1

** )(
1
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c

c

y n

i
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yyPyF       (18) 

where ∑
=

−
n

i
cih YyK

n 1

)(
1 is the kernel density estimator. ciY  represents the detrended historical 

county yields, Kh is defined as )/()/1()( hKhKh ⋅=⋅ , h is the bandwidth or smoothing parameter 
which determines the smoothness of the estimated density, and K(.) is referred to as the kernel 
and is usually chosen to be a unimodal probability density function that is symmetric around zero 
(Wand and Jones, 1995). In this study, the Epanechinikov density function was used as the 

kernel with }1|{|1)1(
4
3

)( 2 <−= xxxK          (19). 

Jones et al. (1996) provided a survey for bandwidth selection methods. This study used the 
bandwidth determined by the Sheather-Jones plug- in method to determine the bandwidth for yc. 

)(̂ *
cyF  was calculated by applying Simpson’s rule of numerical integration (Miranda and Fackler, 

2002).  
 

Futures prices have been specified by the lognormal distribution in the literature (Coble 
et al. 2000, 2004; Hauser et al. 2004). Since dlnf )lnln( 01 ff −= calculated with historical cotton 
and soybean futures data passed several normality tests, this study assumes (dlnf) to be normally 
distributed with mean and variance determined by the historical data. That is, 

fdF ln = )ˆ,ˆ( lnln fdfd σµΦ . Once planting time futures price f0 is known, harvest futures price can be 

simulated by )lnexp(01 fdff ⋅= .  
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Three major steps are involved in simulating interdependent variables with copulas. First, 

the parameters in the selected copula need to be estimated.  This study applies maximum 
likelihood method to estimate the parameters in the Gaussian copula and the Frank copula. The 
second step is to generate unit uniform variates based on the estimated copula.  Different copulas 
will have different algorithms to generate unit uniform variates.  The third major step is to 
simulate variates of desired variables (e.g., county yield and transformed futures price) by 
substituting the generated uniform variates from the second step into the appropriate inverse 
cumulative distributions. 

 
By following algorithms for the Gaussian and Frank copulas detailed in Zhang (2007), 

10,000 pairs of (yc, fi) were simulated from the Gaussian copula and from the Frank copula, 
respectively. In order to investigate the hedging decision under the unbiased futures price 
assumption, the mean of the simulated futures price was adjusted to equal the futures price at 
planting time (Wang, et al. 2004).  Hedging decisions under biased futures price will also be 
examined after enlarging or shrinking the mean of the simulated futures by a certain percent. 

 
Both Gaussian copula and Frank copula are applied to simulate yield and price data for 

cotton. But only the Gaussian copula is used to simulate soybean yield and price data, since no 
significant dependence between the differenced soybean futures price and county yields is 
detected. Zero dependence between differenced soybean futures and county yield makes the 
simulation applying Frank copula no different from the simulation using Gaussian copula 
because in this case both copulas become the independence copula.  

 
To incorporate this relationship between farm yields and county yields into the simulated 

yield data, conditional kernel estimation was applied to simulate farm yield based on the 
generated county yield from Gaussian copula or Frank copula.  The simulated farm yields were 
adjusted to make their mean value equal to the mean of the simulated county yield, because the 
representative farm is assumed to have mean yield equal to the county yield 11.  

 
The derivative-free numerical optimization procedure, the Nelder-Mead algorithm, was 

used (Miranda and Fackler, 2002) to solve for the minimum LPM2 hedge ratios. Because the 
LPM2 for the hedge portfolio is generally not a globally convex function of the hedge ratios, a 
grid search approach is used to locate the local minimum LPM2 hedge ratios first and then based 
on the grid search results, the global optimal LPM2 hedge ratio can be quickly found. For the EU 
hedge model, the BFGS (Broyden, Fletcher, Goldfarb, & Shano) algorithm was used in search 
for the optimal hedge ratios (Miranda and Fackler, 2002). Model optimization results under 
various scenarios are reported and discussed in next section. 

 
COMPARATIVE RESULTS 

Optimal LPM2 Hedge Ratios vs Optimal EU Hedge Ratios 
Optimal hedge ratios for the LPM2 model and the EU model for five scenarios, including 

direct payments (DP), actual production history (APH), crop revenue coverage (CRC), Loan 
                                                 
11 The yf is adjusted by multiplying the ratio of mean (yc)/mean(yf). 
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deficiency payments (LDP), and counter cyclical payments (CCP) portfolio possibilities, are 
reported in Tables 1 through 5.  The effects of crop insurance policies and government payments 
on the optimal hedging in futures and put options contracts from the two models appear 
consistent in terms of the signs of the effects.  Thus, whether the LPM2 hedge model or the EU 
hedge model is used to evaluate such effects, the directions of the impacts are observed to be the 
same. 

 
The magnitudes of the optimal hedge ratios in futures contracts from the LPM2 model are 

all smaller than the futures hedge ratios suggested in the EU model. In other words, the producer 
hedges a smaller percentage of his expected production if he uses an LPM2 model to estimate the 
optimal hedge ratio instead of EU model. These results do not reject the hypothesis that model 
misspecification may be another reason for the fact that the observed hedge in futures by farmers 
is less than the predicted hedge by the EU model. If the hedging objective is to minimize 
perceived risk to the farming income, but not to maximize the expected utility, then the crop 
farmers would appear to under-hedge when they are judged by the EU model. 

 
Results presented in Tables 1 to 5 suggest that the hedge ratios in put options under the 

LPM2 hedge model exceed or equal the optimal hedge ratios estimated from the EU hedge model. 
That put options are preferred by the LPM2 model could be explained by the evidence that the 
asymmetric payoff distribution of put options is consistent with the skewed distributions of the 
hedge portfolios that the LPM2 hedge model generally yields. 

 
By comparing the basic distributional statistics of the hedge portfolios, it can be seen that 

when the means of the hedge portfolio are the same, the hedge portfolios from the LPM2 model 
always have a larger right skewness, a higher minimum payoff, and a higher maximum payoff 
than the portfolios from the EU hedge model. Although the EU hedge model yields portfolios 
with a smaller standard deviation than the LPM2 model, any producer who desires to hedge 
against low income events may prefer the hedging strategies resulting from the LPM2 hedge. 

Effects of Insurance Coverage, Premium Subsidy  
Sensitivity analysis in Table 6 shows that the effects of crop insurance policy (APH or 

CRC) on the futures and put options hedge ratios are amplified as the coverage level increases. 
That is, the higher the coverage level, the stronger the effects the crop insurance has on the hedge 
ratios. For example, as the coverage level increases from 60% to 70% and from 70% to 80%, the 
optimal portfolio consistently sells more and more futures contract and buy less and less options 
(sell options can be viewed as buy negative options).  

Table 6 also shows that effects of subsidy to hedge ratios are relatively small. With the 
maximum subsidy rate, the hedge ratios are only affected by as little as 0.05. This suggests that 
crop insurance premium subsidies may not have notably impacted the hedging decision of the 
crop farmers, although such subsidies have already amounted to billions of dollars per year.  
Conversely, government subsidies in the form of LDP and CCP appear to greatly change the 
hedging demands by these cotton and soybean producers.  

 
Transaction Costs and Target Payoff 

The optimal LPM2 hedge ratios with transaction costs on futures contracts are reported in 
Table 7. The effects of transaction cost can be obtained by comparing Table 7 with Tables 1 to 5 
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for the corresponding scenarios and crops. Consistent with findings in Wang et al. (2004), the 
introduction of transaction cost decreases the hedging demand for futures.  

Table 8 shows that increasing the target payoff in the LPM2 hedge model increases the 
optimal hedge ratio in futures slightly. But the effects on put options seem to depend on the 
specific crop/county combination and could lead to a slightly higher or a lower use of put options. 
The insensitivity of the optimal LPM2 hedge ratios to the target income indicates that even if the 
target income can not be determined precisely, the optimal hedge ratios would not be 
substantively different. 

 
CONCLUSIONS 
 
The insurance policies and government payments evaluated in the EU model have the same 
directional influences as they are in the LPM2 hedge model. However, the LPM2 model may be 
preferred by crop farmers, because the payoff distribution of the hedge portfolio from the LPM2 
hedge model has a higher minimum value, a higher maximum value and a higher right skewness 
compared to the hedge portfolio of equal mean from the EU hedge model.  Thus, if it is lower 
income that producers desire to hedge against, the LPM2 hedge model is more appropriate than 
the EU hedge model to evaluate the portfolio effects of government payments and crop insurance 
on the expected hedging behavior of crop farmers.  
 

Compared to the EU hedge model, the LPM2 model also yields a consistently smaller 
optimal proportion of the expected production to be hedged with futures and put options. Such a 
result supports the hypothesis that model misspecification is a likely reason for the fact that the 
observed hedging in futures by farmers is less than the predicted optimal hedge by using the EU 
model.  If the hedging objective is to minimize the perceived risk to (lower) farm income, but not 
to maximize the expected utility, then crop farmers would appear to under-hedge from the 
perspective of the EU model.  

 
The finding that the LPM2 hedge model generally yields a lower hedge ratio in futures 

but a higher hedge ratio in put options compared to the EU hedge model may result from the 
reality that the asymmetric payoff distribution of put options is consistent with the more skewed 
distributions of the hedge portfolios that the LPM2 hedge model generally yields. Transaction 
costs associated with trading in futures are assumed to be composed of commissions and interest 
forgone on margin deposits. By model design, the commissions would not affect the optimal 
hedge ratios. However, transaction costs incurred by the interest loss of margins decreases the 
hedging demand for futures. 

 
Sensitivity tests on effects of insurance coverage levels on hedge ratios suggest that the 

higher the coverage level, the stronger the effects that the crop insurance policies will have on 
the hedge ratios. The relatively small effects of insurance premium subsidy rates on the hedge 
ratios indicate that, compared with government subsidies in forms of LDP and CCP, the crop 
insurance premium subsidies may have little impact on the hedging decisions of the crop farmers 
even though such subsidies amount to billions of dollars every year lately. The robustness of the 
optimal LPM2 hedge ratios to the target incomes indicates that even if the target income can not 
be determined precisely, the optimal hedge ratios would vary minimally. 
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This study makes two primary contributions to agricultural risk management literature. 
First, we developed a downside risk hedge model, the LPM2 hedge model, which is more 
suitable model than the existing EU hedge model, to evaluate the interactions of government and 
private risk management tools used by U.S. crop farmers.  Second, this study initiated the  
application of the conditional kernel density method and the copula approach in simulating the 
crop prices and yields. Such simulation techniques can be extended to model joint distributions 
of various variables of research interest.  
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Table 1.  Optimal Hedge Ratios from LPM2 and EU Model (Baseline, Futures and Options plus direct payments, FOD) 
 

 Cotton  Gaussian Copula  Cotton Frank Copula  Soybean Gaussian Copula  
Futures+Options+DP 

 LPM2 EU  LPM2 EU  LPM2 EU  

hx  0.14 0.18  0.32 0.33  0.35 0.61  

hz  0.26 0.23  0.16 0.16  0.27 0.20  

Mean  44.06 44.06  46.24 46.24  9.27 9.27  

Std Dev  163.40 163.12  163.84 163.73  76.54 76.10  

Skewness  0.147 0.132  0.118 0.112  0.712 0.654  

Kurtosis  0.459 0.439  0.362 0.361  0.753 0.656  

Min  -445.03 -449.66  -497.47 -500.19  -162.07 -182.07  

Q1  -59.21 -59.03  -59.28 -59.07  -49.21 -48.23  

Q3  148.97 148.55  150.20 149.87  51.89 51.58  

Max  882.65 847.24  834.67 832.09  473.56 450.84  

 
Note: hx, hz are hedge ratios in futures and put options. A positive hx means sell futures at planting time and a positive hz means buy put options at 
planting time.  
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Table 2.  Optimal Hedge Ratios from LPM and EU Model (adding protection of Actual Production History, APH, coverage) 
 

 Cotton  Gaussian Copula  Cotton Frank Copula  Soybean Gaussian Copula Futures+Options+DP 
+APH  LPM2 EU  LPM2 EU  LPM2 EU 

hx  0.27 0.34  0.40 0.46  0.44 0.70 

hz  0.17 0.16  0.13 0.13  0.20 0.10 

Mean  44.06 44.06  46.24 46.24  9.27 9.27 

Std Dev  143.94 143.57  144.86 144.45  64.68 64.25 

Skewness  0.662 0.637  0.637 0.612  1.349 1.283 

Kurtosis  0.376 0.305  0.230 0.185  2.007 1.822 

Min  -206.04 -224.62  -249.61 -267.24  -93.59 -116.09 

Q1  -69.73 -69.38  -69.50 -68.77  -44.79 -42.21 

Q3  137.27 137.75  138.62 139.48  41.55 41.19 

Max  847.50 833.87  807.14 793.93  456.47 433.77 

 
Note: hx, hz are hedge ratios in futures and put options. Positive hx means sell futures at planting time and positive hz means buy put options at 
planting time. 
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Table 3. Optimal Hedge Ratios from LPM and EU Model (adding protection of crop revenue coverage, CRC) 
 

 Cotton  Gaussian Copula  Cotton Frank Copula  Soybean Gaussian Copula  Futures+Options+DP 
+CRC  LPM2 EU  LPM2 EU  LPM2 EU  

hx  0.38 0.44  0.49 0.55  0.64 0.82  

hz  -0.10 -0.07  -0.14 -0.10  -0.28 -0.20  

Mean  44.06 44.06  46.24 46.24  9.27 9.27  

Std Dev  137.39 136.98  138.43 137.91  60.80 60.41  

Skewness  0.813 0.787  0.794 0.763  1.555 1.494  

Kurtosis  0.573 0.504  0.447 0.394  2.630 2.451  

Min  -192.43 -193.88  -186.97 -195.43  -54.70 -71.90  

Q1  -70.96 -68.71  -68.35 -65.65  -38.23 -36.52  

Q3  132.02 131.87  132.46 133.00  36.74 36.39  

Max  828.41 816.23  792.02 778.49  438.04 421.60  

 
Note: hx, hz are hedge ratios in futures and put options. Positive hx means sell futures at planting time and positive hz means buy put options at 

planting time.  
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Table 4. Optimal Hedge Ratios from LPM and EU Model (adding LDP) 
 

 Cotton  Gaussian Copula  Cotton Frank Copula  Soybean Gaussian Copula  DP+Futures+Options 
+LDP  LPM2 EU  LPM2 EU  LPM2 EU  

hx  0.15 0.22  0.33 0.37  0.39 0.71  

hz  - .23 - .28  - .33 - .34  0.04 - .19  

Mean  60.91 60.91  63.17 63.17  10.64 10.64  

Std Dev  165.69 165.36  166.21 166.01  77.08 76.69  

Skewness  0.078 0.060  0.056 0.046  0.696 0.643  

Kurtosis  0.387 0.357  0.286 0.279  0.6925 0.601  

Min  -429.06 -435.36  -482.65 -489.56  -162.70 -185.63  

Q1  -43.94 -43.70  -44.91 -44.87  -48.66 -47.65  

Q3  169.98 170.76  170.95 171.46  54.39 53.47  

Max  897.51 885.84  849.65 843.15  472.56 446.31  
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Table 5. Optimal Hedge Ratios from LPM and EU Model (adding LDP and CCP) 
 

 Cotton  Gaussian Copula  Cotton Frank Copula  Soybean Gaussian Copula  DP+Futures+Options 
+LDP + CCP  LPM2 EU  LPM2 EU  LPM2 EU  

hx  - .34 - .17  - .19 - .02  0. 37 0.68  

hz  - .02 - .16  - .09 - .22  - .33 - .51  

Mean  125.91 125.91  128.06 128.06  14.46 14.46  

Std Dev  167.36 166.38  168.38 167.28  77.11 76.68  

Skewness  0.112 0.061  0.087 0.037  0.698 0.644  

Kurtosis  0.537 0.437  0.355 0.309  0.709 0.612  

Min  -387.01 -394.46  -409.92 -415.84  -157.52 -180.06  

Q1  20.23 20.64  17.96 19.49  -44.42 -43.83  

Q3  235.57 234.64  236.38 237.24  58.07 57.63  

Max  1033.24 977.00  955.29 922.53  477.95 452.21  
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Table 6 Optimal LPM2 hedge ratios for alternative insurance coverage levels and premium subsidy rates 
 

 Cotton  Gaussian Copula  Cotton Frank Copula  Soybean Gaussian Copula  Insurance guarantee level 
(Premium subsidy rate)  hx hz  hx hz  hx hz  

DP + Futures + Options + APH  

60%   0.225 0.197  0.372 0.141  0.416 0.202  

70%   0.268 0.174  0.401 0.129  0.436 0.195  

80%   0.319 0.153  0.431 0.123  0.461 0.182  

DP + Futures + Options + APH with premium subsidy  

60% (0.64)  0.222 0.197  0.369 0.140  0.403 0.200  

70% (0.59)  0.265 0.173  0.397 0.128  0.417 0.192  

80% (0.48)  0.317 0.150  0.426 0.122  0.439 0.178  

DP + Futures + Options + CRC  

60%  0.301 0.036  0.429 0.009  0.564 - .143  

70%  0.381 - .097  0.488 - .137  0.643 - .281  

80%  0.477 - .280  0.552 - .303  0.734 - .450  

DP + Futures + Options + CRC with premium subsidy 

60% (0.64)  0.298 0.030  0.425 - .013  0.551 - .167  

70% (0.59)  0.381 - .112  0.486 - .150  0.630 - .321  

80% (0.48)  0.482 - .307  0.553 - .328  0.723 - .502  

 

Note: premium subsidy rates are obtained from the actuarial files of risk management agency (RMA), USDA.  
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Table 7 Effects of Transaction Cost of Trading Futures and Options on the Optimal LPM2 Hedge Ratios 
 

 Cotton  Gaussian Copula  Cotton Frank Copula  Soybean Gaussian Copula  
Scenarios 

 hx  hz   hx  hz   hx  hz   

Futures + Options +DP (FOD)  0.11  0.30   0.30  0.19   0.32 0.31  

FOD + APH  0.25  0.21   0.38  0.16   0.41 0.23  

FOD + CRC  0.36  - .07   0.47  - .11   0.62 - .25  

FOD + LDP  0.13  - .19  0.31 - .29  0.36 0.09  

FOD + APH + LDP  0.27 - .29  0.40 - .33  0.45 - .01  

FOD + CRC + LDP  0.40 - .61  0.50 - .64  0.67 - .52  

FOD + LDP + CCP  - .32 - .06  - .17 - .13  0.34 - .28  

FOD + APH + LDP + CCP  - .13 - .17  - .03 - .19  0.43 - .38  

FOD + CRC + LDP + CCP  0.02 - .58  0.08 - .58  0.65 - .90  

 
Note: Transaction cost is calculated as the interest forgone on the margin. 

Margin requirement is $900/ contract for cotton futures contract and is $750/contract for soybean futures. 
The LPM2 hedge ratios are not affected by DP since DP increases the actual income and the expected income by the same amount.  
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Table 8 Optimal LPM2 Hedge ratios at Varying Target Income Levels in Base Scenario 
 

 Cotton   
Gaussian Copula 

 Cotton  
Frank Copula 

 Soybean Gaussian 
Copula 

 
 Target Income 

 hx hz  hx hz  hx hz  

0.5*(Epyf  - C)  0.12 0.262  0.29 0.163  0.34 0.263  

0.8*(Epyf  - C)  0.13 0.261  0.31 0.157  0.35 0.265  

Epyf  – C  0.14 0.259  0.32 0.158  0.35 0.266  

1.2*(Epyf  - C)  0.15 0.257  0.33 0.159  0.36 0.266  

1.5*(Epyf  - C)  0.16 0.255  0.34 0.157  0.37 0.267  

 


