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The Relative Performance of In-Sample and Out-of-Sample  
Hedging Effectiveness Indicators 

 
 

Practitioner's Abstract 
 

Hedging effectiveness is the proportion of price risk removed through hedging.  Empirical 
hedging studies typically estimate a set of risk minimizing hedge ratios, estimate the hedging 
effectiveness statistic, apply the estimated hedge ratios to a second group of data, and examine 
the robustness of the hedging strategy by comparing the hedging effectiveness for this "out-of-
sample" period to the "in-sample" period.  This study focuses on the statistical properties of the 
in-sample and out-of-sample hedging effectiveness estimators.  Through mathematical and 
simulation analysis we determine the following:  (a) the R2 for the hedge ratio regression will 
generally overstate the amount of price risk reduction that can be achieved by hedging, (b) the 
properly computed hedging effectiveness in the hedge ratio regression will also generally 
overstate the true amount of risk reduction that can be achieved, (c) hedging effectiveness 
estimated in the out-of-sample period will generally understate the true amount of risk reduction 
that can be achieved, (d) for equal numbers of observations, the overstatement in (b) is less that 
the understatement in (c), (e) both errors decline as more observations are used, and (f) the most 
accurate approach is to use all of the available data to estimate the hedge ratio and effectiveness 
and to not hold any data back for hedge strategy validation.  If structural change in the hedge 
ratio model is suspected, tests for parameter equality have a better statistical foundation that do 
tests of hedging effectiveness equality. 
 
Keywords:  out-of-sample, post sample, hedging, effectiveness, forecasts, simulation. 
 
Introduction 
 
Hedging studies typically proceed by posing a price risk minimization problem for a specific 
commodity, collecting data, and estimating hedge ratios with regression analysis.  The regression 
R square is reported as the proportion of price risk eliminated by hedging.  To estimate the price 
risk reduction expected from future hedging, these studies then apply the estimated hedge ratios 
to out-of-sample data and compare the variance of unhedged outcomes to the variance of hedged 
outcomes.  This paper focuses on the last step. 
 
Applying estimated hedge ratios to nonsample data is intuitively appealing.  Claims about the 
robustness of a particular hedging strategy have merit as do claims that the effectiveness of 
estimated hedge ratios applied to nonsample data constitute a forecast of the effectiveness that 
can generally be expected from the hedging strategy.  But, given the prevalence of this practice, 
its fundamental assumptions merit closer scrutiny.   
 
For example, the comparison of in-sample and out-of-sample hedging effectiveness implicitly 
assumes that in-sample effectiveness is a biased estimator of out-of-sample results.  While the 
bias of the in-sample estimator remains to be seen, a comparison of a single observation for in-
sample and out-of-sample effectiveness is not sufficient to determine either the presence of, or 
the magnitude and direction of bias.   



2 

Second, the comparison of in-sample and out-of-sample hedging effectiveness fails to address 
the notion that both are random variables, each with its own variance.  Differences are to be 
expected.  The precision of each estimate is more telling than the magnitude of their difference 
as the comparison gives no indication of whether the difference is significant.   
 
Third, the notion of the robustness of the estimated hedging strategy is tied to the assumption 
that the cash-futures price relationship did not change between the in sample and out-of-sample 
periods.  While such a structural change would render the estimated hedging strategy less 
effective under the new regime and hence less robust, this notion is better tested by re-estimating 
the regression over the in-sample and out-of-sample periods and testing for parameter equality 
over both periods.  This parameter equality test is girded with better understood statistical theory 
than is a test for effectiveness equality.   
 
Finally, this procedure of applying hedge ratios to out-of-sample data does not address the 
optimal allocation of data to the estimation period and the out-of-sample period.  With a fixed 
number of data points, using more of the data for estimation improves the precision of the 
estimated hedge ratios and estimated effectiveness but reduces the precision of the out-of-sample 
effectiveness forecast because fewer observations are available to do this.  As data are scarce the 
optimal allocation between the in-sample and out-of-sample periods should be considered.   
 
The objectives of this paper are to examine the distributional properties of the hedging 
effectiveness statistic.  In particular we will explore whether in-sample hedging effectiveness is 
an unbiased estimator for out-of-sample results and how sample size influences the bias and 
precision of the effectiveness estimators.  This study will utilize simulation analysis in which 
thousands of random samples of various sizes are drawn.  For each sample, we will compute the 
hedge ratio and the corresponding hedging effectiveness.  We also draw random samples to 
which the estimated hedge ratios are applied so that we can examine out-of-sample hedging 
effectiveness 
 
Theoretical Background 
 
Hedging behavior assumes that an agent seeks to minimize the price risk of holding a necessary 
spot (or cash) market position by taking an attendant futures market position (Johnson, Stein).  
The profit outcome (π) of these combined positions is  
 
(1) π = xs (p1 - p0) + xf (f1 - f0), 
 
where xs is the agent's necessary cash market position, p is the commodity's cash price, xf is the 
agent's discretionary futures market position, f is the futures contract's price, and subscripts 1 and 
0 refer to points in time.  Risk is minimized by selecting the xf (xf

*) that minimizes the variance 
of π (V(π)) giving  
 
 xf*/xs = -σ∆p,∆s / σ2

∆f. 
 
This risk minimizing hedge ratio (xf*/xs) is estimated by the least-squares estimator �̂  in the 
regression 
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(2) ∆H pt = α + β ∆H fMt + εt, t = 1, 2, … T  
 
where, in addition to the previous definitions, fMt represents the M-maturity futures contract's 
price at time t, ∆H represents differencing over the hedging interval1, εt represents stochastic error 
at time t, and T represents the number of observations.  The risk minimizing futures position is 
xf

* = - �̂ xs.   
 
Anderson and Danthine (1980, 1981) generalized this approach to accommodate positions in 
multiple futures contracts.  In this case, xf and (f1 - f0) in (1) are replaced by vectors of length k 
and hedge ratio estimation involves fitting the multiple regression model 
 
(3) ∆pt = α + � =

ε+∆βk

j tjtj f
1

, t = 1, 2, 3,  … T, 

 
where ∆fjt is the change in the price of futures contract j over the hedge period, and jβ̂  is the 
estimated hedge ratio indicating the number of units in futures contract j per unit of spot position. 
 
Other generalizations of this model include applications to soybean processing (Dahlgran, 2005; 
Fackler and McNew; Garcia, Roh, and Leuthold; and Tzang and Leuthold), cattle feeding 
(Schafer, Griffin and Johnson), hog feeding (Kenyon and Clay), and cottonseed crushing 
(Dahlgran, 2005; Rahman, Turner, and Costa).  In this studies, the profit objective is  
 
 π = y py,1-x px,0 + xf (f1 - f0) 
 
where inputs (x) and outputs (y) are connected by product transformation,  
 
 y = κ x. 
 
Hedge ratio estimation for this model involves fitting the regression  
 
(4) py,t - κ px,t-H = α + � =

ε+∆βk

j tjtj f
1

, t = 1, 2, 3,  … T. 

 
The hedge ratio regressions in (2), (3), and (4) can all be represented by the general regression 
model Y = Xββββ + εεεε, with T observations and K ( = k+1) explanatory variables in X.  ββββ is 
estimated with YX'X)(X'� 1−=ˆ .   
 
Ederington defined hedging effectiveness (e) as the proportion of price risk eliminated by 
hedging.  More specifically,  
 
(5) e = [ V(πu) – V(πh) ] / V(πu)  
 

                                                 
1 H refers to the length of the assumed hedging period.  Henceforth,  ∆H will be represented more succinctly with 

∆ where H is assumed. 
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where V is the variance operator, πu the agent's unhedged outcome and πh is the agent's hedged 
outcome.  The regression R2 serves generally as an estimator of the coefficient of determination 
and serves in hedge ratio estimation as an estimator of hedging effectiveness.   
 
The coefficient of determination is defined by Marchand as follows.  Let  
[ Y : X ] = [ Y : X1, X2, …,Xk ] be distributed as a k+1-variate normal with covariance matrix Σ 
and let S be the covariance matrix obtained from a sample of size T where T > k > 1.  Partition Σ 

and S as �
�

�
�
�

�

Σσ
σσ

=Σ
XXXY

YXYY  �
�

�
�
�

�
=

XXXY

YXYY

SS

SS
S  where σYY and SYY are scalars.  The multiple 

correlation coefficient between Y and [ X1, X2,…,Xk ] is defined as 2/111 )( XYXXYXYY σΣσσ=ρ −−  and 
ρ2 is the coefficient of determination.  The analogous sample quantities are 

2/111 )( XYXXYXYY SSSSR −−=  and R2.  Marchand goes on to state (p. 173) "It is well known that, on 
average, R2 overestimates ρ2."  Consequently, R2 is a biased estimator of ρ2, E(R2) > ρ2, and as 
T → ∞, E(R2) = ρ2.  Thus, the in-sample hedging effectiveness estimator overstates the true 
value of hedging effectiveness but this bias diminishes as sample size increases.  Determining 
the magnitude of the bias requires the probability distribution of the effectiveness statistic.   
 
The distribution of R2 can be derived from the distribution of the regression F statistic.  
Specifically, for regressions (2), (3), or (4) 
 

(6) F = �
	



�
�


 −−
−

=
−−

k
kT

R
R

kT
SSE

k
SSR 1

1
1

2

2

  

 
where F is the regression F-statistic, SSR is the regression sum of squares and SSE is the error 
sum of squares.  While the regression F statistic is used to test whether the noncentrality 
parameter of the numerator chi square is zero, [i.e., λ = 2/)( σ��'�XX'�' −  if ββββ = 0 in (2), (3) or 
(4)] this assumption negates the hedging motive.  Consequently, we assume that F in (6) follows 
a noncentral F distribution so   
 
(7a) { } ααλλ =< )( Pr ,, 1

2

1

2

n
n

n
n fF ,  

 
where λ,1

2

n
nF  is the noncentral F random variable with n1 (numerator) and n2 (denominator) 

degrees of freedom, and noncentrality parameter λ= 22 /))( ( σYET−�XX'�' , and f(α) is the 
numerical value for which the probability of a smaller value of the F random variable is α.  The 
corresponding cumulative probability distribution for R2 is   

(7b) α
α

αα λ

λ
λ =

�
�
�

�
�
�

+−−
<=

�
�
�

�
�
�

<�
	



�
�


 −−
− −−

−−
−− )( )1(

)( 
Pr)(

1
1

Pr ,
1

,
12,

12

2

k
kT

k
kTk

kT fkkT
fk

Rf
k
kT

R
R

. 

 
Chattamvelli clarifies this result.  "If 2

1nχ and 2
2nχ  are independent central chi squared random 

variables with n1 and n2 degrees of freedom, then F = ( 2
1nχ /n1) / ( 2

2nχ /n2) has an F distribution 
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and B=n1 F / (n2 + n1 F) = 2
1nχ  / ( 2

1nχ + 2
2nχ ) has a beta distribution.  When both of the 2χ  are 

noncentral, F has a doubly noncentral F distribution.  When only one of the 2χ  is noncentral, F 
has a (singly) noncentral F distribution.  Analogous definitions hold for the beta case."  

 
As (6) is composed of the requisite independent chi square random variables, the regression R2 
follows a singly noncentral beta distribution with n1= k = K-1 and n2 = T-K = T-k-1 degrees of 
freedom, and λ as defined above.  The numeric values of the beta random variable corresponding 
to probability α are computable from the noncentral f values in the second form of the 
probability statement in (7b). 
 
Pe and Drygas (p. 313) provide an expression for finding the moments of the doubly noncentral 
beta.  They state "if X1 and X2 are independently distributed as noncentral χ2 with ni degrees of 
freedom and noncentrality parameters λi (i = 1, 2), then Z = X1 / (X1+X2) is distributed 
independently from X1+X2 as a doubly noncentral β1 distribution with parameters n1/2, n2/2, and 
λ1, λ2 respectively" then the rth moment about the origin is  

(8a) ��
∞

=

−∞

=

λ+λ−

+
+−

++
��
	



��
�



�
	



�
�



λ
λ�
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=
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2
1
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2

0

1
)(
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2
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(
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2
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2
)(

21

j
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jrj

i

i

r

nn
ij

n

ji
n

j

i

i
eZE , 

where 
)(

)(
)(

θΓ
+θΓ=θ k

k and Γ(θ) = (θ-1) Γ( θ-1) = (θ-1)! for integer θ and Γ(1/2) = π  if θ is 

half integer.  When applied to the statement for R2 in (7b), λ2=0, n1=k, and n2=T-k-1 so (8a) 
reduces to  

(8b) 
( )

r

r

i

i

r

T
i

k

i
k

i
eRE

)
2

1
()

2
(

)
2

(

!
2)(

0
0

22

−+

+
= �

∞

=

−
λ

λ
.   

 
This expression allows us to derive the mean (r = 1) as well as the variance of R2.   
 
The previous discussion applies to the regression R2, and while we next argue that the regression 
R2 is an incomplete estimator of hedging effectiveness, this previous discussion provides a useful 
background.  First, hedging effectiveness is defined more explicitly as 
 

(9) e = 
})]({[

})]ˆ(ˆ{[})]({[
2

22

tt

MttMtttt

pEpE
fpEfpEpEpE

∆−∆
∆−∆−∆−∆−∆−∆ ββ

. 

This definition establishes that the variances apply to differences between actual and expected 
outcomes or more simply, that the variances are for unanticipated outcomes.   
 
If the hedge ratio regression displays systematic behavior such as seasonality or serial 
correlation, then hedging effectiveness must be defined so that these systematic components are 
part of the expected outcome, whether or not hedging occurs.  To represent this, the hedge ratio 
regression in (2), (3), or (4) is expressed as 
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 ��X�XY 2211 ++=  
 
where the K columns of X have been partitioned into k1 deterministic and known components 
contained in X1, and k2 stochastic components contained in X2.  In addition to the column of 
ones for the intercept, X1 might also contain dummy variables or estimated lagged errors which 
account for serial correlation.  X2 contains the futures price changes and other random 
components.  Because the elements of X1 are systematic, they form anticipations so the 
unanticipated outcome is  
 
 ��X�XYy 2211 +=−≡ . 
 
By Marchand's definition the unknown hedging effectiveness parameter is  
 
 yXXXyXyy 2222

11 σΣσση −−= ,  
 
and the in-sample hedging effectiveness estimator is   
 

(10) 
)�X(Y)'�X(Y

)�X�X(Y)'�X�X(Y)�X(Y)'�X(Y

1111

221122111111

ˆˆ

ˆˆˆˆˆˆ
e1 −−

−−−−−−−
=  

 
]Y'X)X'(XX[IY'

]Y'X)X'(XXX'X)[X(X'Y'

1
1

111

1
1

111
1

−

−−

−
−

=  

 
This expression demonstrates that the regression R2 and e1 are the same only when X1 consists 
solely of a column of ones.  Otherwise, e1 has the characteristics of the regression R2 in that it is 
bounded by zero and one but the regression R2 overstates hedging effectiveness by assigning too 
many degrees of freedom to the numerator (i.e., K-1 instead of K-k1), thereby overstating the 
numerator sum of squares, and assigning too few degrees of freedom to the denominator (i.e., T-
1 instead of T-k1), thereby understating the denominator sum of squares.  So in addition to R2 
being an upwardly biased estimator for ρ2 it also overstates hedging effectiveness. 
 
The statistical properties of the hedging effectiveness estimator follow from analysis of variance 
definitions.  Let SST = Y'Y, SSR( ββββ1, ββββ2) = �XX''�Y'Y ˆˆˆˆ = , and SSE is the sum of squared 
errors (i.e., SSE = ]YX'X)X(X'[IY'�'� 1−−=ˆˆ ) so SST = SSR( ββββ1, ββββ2) + SSE.  Searle (p. 247) 
shows (a) that SSR( ββββ1, ββββ2) = SSR( ββββ2 | ββββ1) + SSR(ββββ1), where SSR(ββββ1) = Y'X1(X1'X1)-1X1 Y, (b) 
that SSR( ββββ2 | ββββ1) = Y'[X(X'X)-1-X1(X1'X1)-1X1']Y, and (c) that SSR( ββββ2 | ββββ1) / σ2 has a 
noncentral χ2 distribution and is independent of both SSR(ββββ1) and SSE. 
 
Applying these definitions establishes that   
 

(11a) 
)/(

)/(
)/(

/)ˆˆ( 12

KT
kK

KTSSE
kSSR

F
−−

−−=
−

= −

−−

]YX'X)X(X'[IY'
]Y'X)X'(XXX'X)[X(X'Y'�|�

1
1

1
111

1
12  
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is distributed as a noncentral F random variable with k2 numerator and T-K denominator degrees 
of freedom, and λ = [ββββ'X' X ββββ    - E(Y'X1) E(X1'X1)-1 E(X1'Y)]  / / / / σ2, and  
 

(11b) 
)(

)|(
)|(

)|(
e1

1

12

12

12

�

��

��

��

SSRSST
SSR

SSRSSE
SSR

−
=

+
=  

 
is distributed as a singly noncentral beta random variable with degrees of freedom and λ 
corresponding to (11a).     
 
The cumulative probability distribution of e1 is derived from the noncentral F random variable in 
(11a).  First, dividing both the numerator and denominator of (11a) by  
Y' [I-X1(X1'X1)-1X1] Y expresses (11a) in terms of e1 as 
 

(12a) ��
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�


 −
��
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−
=

21

1

e1
e

k
KT

F  

 
so that the probability statement  
 

(12b) α
α

αα λ
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defines the cumulative probability distribution for the in-sample hedging effectiveness estimator. 
 
Methods 
 
Simulation analysis is used to explore (a) the relationship between the regression R2 and e1, (b) 
the impact of sample size on the precision of e1, and (c) bias and efficiency tradeoffs between in-
sample and out-of-sample effectiveness estimates.  In this analysis, 10,000 samples of size T will 
be drawn for the model  
 
(13) ∆pt = α + δ Dt + β ∆ft + γ (∆pt-1 - α - δ Dt-1 - β ∆ft-1) + εt,  
 
where, in addition to the terms defined in (2), Dt represents a generic dummy variable (Dt = 1 if t 
even, 0 otherwise), εt ~ NID(0, σε

2), and (∆pt-1 - α - δ Dt-1 - β ∆ft-1) represents first order 
autoregressive effects when γ ≠ 0.  This model encompasses features common to hedge ratio 
regressions such as (a) an intercept to account for a long-term spot price trend, (b) seasonal spot 
price variation that is accounted for by the dummy variable, and (c) serial correlation due to non-
instantaneous spot price equilibration.  Estimation of the parameters in (13) requires the 
inversion of a 3x3 matrix X'X which, as opposed to more comprehensive models, is not 
computationally prohibitive.  This consideration is especially important in light of the number of 
samples drawn and the potential correction for autocorrelation.   
 
Simulated data are generated subject to assumptions regarding (a) the structural parameters α, β, 
δ, and γ, (b) the variables ∆ft and εt where ∆ft ~ N( 0, σ∆f

2), εt ~ N( 0, σε
2),  



8 

(c) φ, the correlation between ∆ft and εt, and (d) T, the size of each sample.  While arbitrary 
values are selected for the parameters, the results are illustrative. 
 
Once parameter values for α, δ, β, γ, σ∆f

2, σε
2, and φ are selected, a sample of size T is generated 

by (13) and the parameters and hedging effectiveness (e1) are estimated.  Then another sample of 
size T is drawn and the estimated parameters are applied to these data and the out-of-sample 
hedging effectiveness (e2) is computed from the variances of the unhedged and hedged outcomes 

(i.e., e2 = 1-
)(ˆ
)(ˆ

u

h

V

V

π
π

).  This process is repeated 10,000 times for each sample size.  The estimates 

from each sample are used to form the empirical cumulative distribution functions (CDFs) for 
the regression R2, the in-sample hedging effectiveness estimates (e1), and out-of-sample hedging 
effectiveness estimates (e2).  The empirical CDFs are compared to the theoretical CDFs specified 
by (7b) and (12b).  Also, because the population parameters are known, R2 can be compared to 
ρ2, and in-sample and out-of-sample effectiveness estimates (e1 and e2) can be compared to η.  
The sampling distributions for R2, e1, and e2 are reported via cumulative probability plots.   
 
Parameter values of α = 0, δ = -2, β = 1 and σεε = 1 are assumed throughout.  α = 0 implies no 
trend in the spot price.  β = 1 represents a direct hedging application.  δ = -2 gives sufficient 
magnitude to the dummy variable to illustrate the distinction between R2 and hedging 
effectiveness.  σεε = 1 makes εt a unit normal random variable.  Initially, we assume that γ = 0 to 
eliminate serial correlation.   
 
Beyond this, four alternative sets of assumptions are considered.  Case 1 adopts the assumptions 
of the standard regression model as ∆ft is assumed fixed in repeated samples.  Under this 
condition the distributions of the resulting statistics are known and serve as a benchmark for the 
empirical distributions of the other simulations.  In case 2, we assume futures price changes are 
generated by the stochastic process ∆ft ~ N(0, σxx) where σxx = 1.  In case 3 assume serial 
correlation (γ � 0).  This condition frequently occurs in empirical work when the time differences 
are short (1 to 2 weeks).  When γ = 0, case 3 is identical to case 2.  To maintain comparability 
across cases and values of γ, η remains set at ½.  As α, δ, β σεε are also set to predetermined 
values, σxx must adjust.   
 
Table 1 shows how ρ2 and η depend on our parameters. 
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Table 1.  Parametric values of ρ2 and η.a 
    
 
Case ρ2 η Other 
    
 

1.  X fixed 
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24
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a
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2.  X random 
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+
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2
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2
2

4
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εεσσβ

σβ
+xx
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3.  Serial correlation γ � 0 
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2

2
2
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4
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+
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+

xx

xx

 

2
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2

1 γ
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σβ
εε

+
+xx

xx  ��
	



��
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=

η
η

γβ
σσ εε

1)1( 22xx  

    
a/ )()]()[( '

1
1

1
'
11

'112 YXEXXEXYETxyxxyx
−−− −= ΣΣΣρ where X1= (1-γ) 1, while )()]()[( '

1
1

1
'
11

'11 YXEXXEXYETxyxxyx
−−− −= ΣΣΣη  

where X1= [(1-γ) 1, D-γ ∆∆∆∆DL ] 
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Figure 1.  Theoretical and empirical cumulative distribution functions for fixed X. 
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Results 
 
Case 1 - Fixed regressors:  This simulation establishes a benchmark against which the 
mathematical results presented above can be compared.  The standard linear regression model 
assumes non-stochastic explanatory variables (i.e., fixed in repeated samples) and the 
distributional results that underpin hypothesis testing and inference follow from the fixed-
regressor assumption.  For this case, the elements of Xt = [ 1 : Dt ; ∆ft ] are assigned as Dt = 1 if t 
even, 0 otherwise, and ∆ft is evenly spaced with Σ ∆ft = 0 and T-1 Σ ∆ft

2 = 1.2  Samples of size 
(T) 40, 100, and 250 were selected to represent small medium and large samples in the context of 
sample sizes used in hedging studies. 
 

By Marchand's definition 
]')'('[)'(

]')'('')'('[

1
1

111

1
1

111
1

112

YXXXXYEYYE
YXXXXYYXXXXYE

xyxxyxyy −

−−
−−

−
−

== ΣΣΣσρ .  If 

X1 = 1, then we get 
2/4/

2/4/
22

22
2

a
a
δββδσ

δββδρ
εε −++

−+= , whereas if X1 = [ 1, D ], then we get 

4/)4(
4/)4(

22

22

a
a
−+

−=
βσ

βη
εε

 where )1/(12 2 −= Ta .  Because of a both ρ2 and η to depend on the 

sample size (T).  Under our parametric assumptions, ρ2 converges to � while η converges to ½.  
Thus, ρ2 ≠ η.    
 
The cumulative distribution functions (CDFs) of R2 and hedging effectiveness are shown in the 
left-hand panels of figure 1 for samples of size 40 (top), 100 (middle) and 250 (lower) 
observations, respectively.  Each panel shows the empirical CDF for the regression R2, in-sample 
effectiveness, and out-of-sample effectiveness.  Each panel also shows the theoretical CDFs for 
R2 and in-sample effectiveness as defined by (7b) and (12b), respectively.  The simulated and 
theoretical CDFs match for R2 and in-sample effectiveness but not for out-of-sample 
effectiveness.  We also see that the theoretical and simulated CDFs for R2 lies to the right of the 
CDFs for in-sample effectiveness.  This corresponds to the result above that ρ2 converges to � 
while η converges to ½.  Both of these sets of CDFs lie to the right of the out-of-sample 
effectiveness distribution.  As we move down the graphs in figure 1 the sample size increases 
and the out-of-sample effectiveness CDF converges to the in-sample effectiveness CDF.   
 
Figure 1 also reveals that while in-sample effectiveness is always between zero and one, it is 
possible that application of the estimated hedge ratios out-of-sample might result in greater price 
risk.  This occurs approximately ten percent of the time when hedge ratios are estimated from a 
sample of size 10 and occurred occasionally (though rarely) with samples of size 50.  This 
illustrates that hedging can increase price risk if the parameter estimates differ substantially from  

                                                 
2    For case 1, ∆ft is represented by an arithmetic sequence.  Let i = 1,2, 3, … N.  Then 

2
)1(

1

+=� =

NN
i

N

i
and 

6
)12)(1(2

1

++=� =

NNN
i

N

i
.  The sum is centered with 0)(

1
=−� =

ci
N

i
 so c = (N+1)/2 and standardized 

as Ncia
N

i
=−� =

2
1

)]([  so a = [12/(N2-1)]1/2 



12 

 
Figure 2. Theoretical and empirical cumulative distribution functions for serially correlated 

errors. 
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the true parameter values.  When these unusual estimates were applied out-of-sample, the 
variance of hedged outcomes exceeds the variance of unhedged outcomes.  As a result hedging 
effectiveness is negative indicating that hedging has increased price risk.  The unit upper bound 
on out-of-sample effectiveness remains as the removal of all price variation through hedging is 
the best that can be achieved.   
 
Case 2 - Stochastic regressors:  The near exact match between the theoretical and empirical 
CDFs under the fixed-regressor assumption of the previous case validates our computational 
methods.  When we replace the fixed-regressor assumption with the assumption that ∆ft ~ N( 0, 
1), we observe that the non-centrality parameter λ takes random values depending on ∆∆∆∆f.  To 
illustrate the theoretical CDFs shown in the right-hand panels of figure 1, we have used the 
expected value of λ instead of its random value for each sample.  Thus, the theoretical CDFs in 
the left and right panels of figure1 are identical.  We observe in the right-hand panels of figure 1 
that the empirical CDFs do not match the theoretical CDFs when the regressors are stochastic.  
The difference is less pronounced for larger sample sizes but even with 250 observations, the 
difference is apparent.  While the out-of-sample effectiveness is inadequately represented by a 
beta distribution, the difference diminishes as the sample size increases.  From these results we 
see that attempts to draw inferences about the true value of hedging effectiveness will require 
appeal to large sample properties of our estimator.   
 
Case 3 – Serial correlation:  Figure 2 expands on our consideration of stochastic regressors and 
adds the assumption of serial correlation.  R2, η, and λ depend on σxx and σεε (table 1) and σεε 
has already been assumed to be one.  To continue with comparisons of the CDFs across cases 

and values of γ, we maintain η = ½.  With η fixed and ��
	



��
�




−+
=

η
η

γβ
σσ εε

1)1( 22xx  we see that as γ 

increases in absolute value, σxx must decrease.  This causes the R2 to decline as γ increases 
(figure2).   
 
We also know that as T increases, the precision of our η and ρ2 estimators also increase, so 
figure 2 is used to illustrate the effect of serial correlation.  Figure 2 shows simulation results for 
γ = 0.5, 0, and -0.5 when T = 40.  We observe the following.  First the ordering of the CDFs is 
the same as in the previous two cases with the CDF for R2 lying to the right of the CDF for e1 
which lies to the right of the CDF for e2.  Second, we observe that as γ increases, the theoretical 
and empirical CDFs for R2 shift to the left.  
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Figure 3.  Variances of in-sample and out-of-sample hedging effectiveness by sample size. 

 
We next focus on the relationship between effectiveness (η) and its in-sample estimator (e1) and 
its out-of-sample estimator (e2).  Figure 3 shows the relationship between sample size and the 
dispersion of e1 and e2 under the assumptions of case 2.  This figure demonstrates the following:  
First, the expected values of e1 and e2 bracket the true value of η (½).  The upward bias of the in-
sample effectiveness estimator [E(e1) – ½ ] is apparent only for small samples and quickly 
disappears.  Contrary to this, the downward bias of the out-of-sample estimator is larger and 
persists over larger sample sizes.  Overall we see that the expected value of both estimators 
depend on the sample size and for both the bias approaches zero as the sample size increases.   
 
The 5% and 95% probability bands indicate the precision of the two estimators.  Here we see that 
as N increases the variances of both e1 and e2 decrease.  Together with the disappearing biases 
we conclude that e1 and e2 are both consistent estimators for η.  Finally, figure 2 plots the 
relative efficiency of e1 versus e2 [i.e., Var(e1) / Var(e2)].  This ratio is less than 1 and approaches 
one from below (figure3).  Hence we conclude that if equal observations are allocated to the 
estimation of e1 and e2, e1 will have the smaller variance and bias.   
 
Figure 3 also reveals a more subtle but important relationship.  With a fixed number of 
observations, using more for estimating the hedge ratio and computing e1 means fewer are 
available for computing e2.  So while the bias and variance of e1 are driven down as more 
observations are used for hedge ratio estimation, the bias and variance of e2 are driven in the 
opposite direction as fewer observations are left over.  We might also imagine that because e1 is 
biased upward and e2 is biased downward, an average of e1 and e2 might outperform either.   
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Our last simulation explores these issues.  It proceeds as follows.  Suppose you have T 
observations.  Let the proportion of the observations allocated to the estimation of the hedge ratio 
and e1 be p so that (1-p) T observation are left for the estimation of e2.  Through repeated 
sampling, we can compute the mean square error [MSE(η̂ ) = Var(η̂ )+Bias(η̂ )2] for each 
estimator [e1, e2, and 2/)ee(e 21 += ] and pick the estimator with the smallest MSE.   
 

 
Figure 4.  MSE of e1, e2 and e  by allocation of sample to hedge ratio estimation, T=40. 

 
Figure 4 presents the findings of this analysis assuming 40 observations.  We see that the mean 
square error of e1 declines continuously as more observations are used in the estimation of the 
hedge ratio and the computation of in-sample effectiveness.  It is minimized (0.01286) when all 
40 observations are allocated to its estimation.  Figure 4 also indicates that the MSE of e2 reaches 
a minimum (0.04630) when 40% of the observations are used to estimate the model parameters 
which are then applied out of sample to compute e2.  Finally, because E(e1) and E(e2) bracket the 
true value of η, the mean square error of e is also plotted in figure 4.  The MSE of this estimator 
reaches a minimum (0.01884) when 52.5% of the sample is used for model estimation and the 
computation of e1 and the remaining 47.5% of the sample is used for the computation of e2.  By 
comparing the minimized MSEs we conclude that the minimum MSE estimator is e1 with the 
entire sample allocated to its computation.   
 
The imprecision of the graphical analysis of figure 4 and the myriad of sample sizes to be 
examined require that the graphical approach of figure 4 be abandoned but the results depicted 
are summarized in table 2.  These results indicate that for all sample sizes the minimum MSE for 
e1 occurs when all available observations are used in its computation.  The e  estimator is 
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minimized when roughly half of the observations are used to compute e1 and the other half used 
to compute e2.  This conclusion also holds for all sample sizes considered.  Finally, table 3 
indicates that the e2 estimator achieves a minimum MSE when less than half of the observations 
are used in the computation of the hedge ratio.  The optimal split of the observations between 
those used for the computation of the hedge ratio and those used for the computation of e2 is such 
that the larger the sample, the smaller the proportion used for hedge ratio estimation.  The most 
noteworthy feature of table 2 is that the minimum MSE estimator is e1 when all observations are 
allocated to its computation regardless of the sample size.  Thus, the practice of holding back 
observations for the estimation of out-of-sample effectiveness increases the MSE of e1, and the 
computed e2 has a higher MSE than the e1 estimator that e2 is being compared to.   
 
Table 2. Allocation of observations in estimating effectiveness in-sample effectiveness, out-of-

sample, average of in-sample and out-of-sample effectiveness.a  
          
 
Estimatora  e1   e2   e   
          
Number of Minimized Sample Minimized Sample Minimized Sample 
Obs MSE(×10-2) Allocationb MSE(×10-2) Allocationb MSE(×10-2) Allocationb 
 
40 1.286 100% 4.630 40% 1.884 52% 
100 0.511 100% 1.111 36% 0.581 49% 
250 0.201 100% 0.340 28% 0.212 48% 
500 0.100 100% 0.150 20% 0.103 49% 
          
 
a/ e1 is computed from the same observations as used to estimate the model parameters.  e2 uses 

the estimated model parameters to estimate effectiveness out-of-sample.  e  is the sample 
average of e1 and e2.  

b/ Percentage of the sample observations used to estimate model parameters and compute e1.  
100 minus this percentage is used to compute e2. 

 
 
 
Conclusions 
 
This paper reports on a continuing investigation into forecasting how a hedging strategy will 
perform.  Nonetheless, we have established some definitive conclusions.  First, we have 
established that the R2 for the hedge ratio regression is an incomplete measure of hedging 
effectiveness and is appropriate only when the spot price displays neither systematic effects nor 
serial correlation.  When spot prices are characterized by seasonality, serial correlation, day of 
the week effects, or relationships with other conditioning variables such as inventory levels or 
planted acreage, these systematic effects should be modeled as part of the hedge regression and 
hedging effectiveness should not include these variables' effect on the spot price.   
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Second, we have established that even after accounting for these systematic effects, the expected 
value of in-sample hedging effectiveness exceeds expected value of out-of-sample effectiveness.  
This occurs because of upward bias in measured hedging effectiveness due to the selection of 
parameter estimates that maximize R2 and its subcomponent e1.  This maximization does not 
apply when the estimated hedge ratios are applied out of sample, so the expected in-sample 
effectiveness will exceed the expected out-of-sample effectiveness.  In addition, because e2 is 

computed as 1 - 
)(ˆ
)(ˆ

u

h

V

V

π
π

, e2 is skewed to the left.  In cases where there is little variation in πu the 

e2 statistic can take large negative values.  This is contrary to e1 which is never negative.   
 
We have also established that the expected difference between the in-sample effectiveness 
estimator and out-of-sample effectiveness estimator diminishes with larger sample sizes.  In light 
of this finding, we expect that the standard practice of fitting a hedging strategy to out-of-sample 
data will result in a lower out-of-sample effectiveness than measured in-sample.  This result 
should not be interpreted as a lack of robustness of the hedging strategy or that structural change 
has occurred but instead that the in-sample effectiveness estimator naturally overstates what will 
be experienced out of sample.  We have seen that the lower out-of-sample effectiveness estimate 
is a biased estimate of true hedging effectiveness.   
 
Related to issues of robustness of our estimated hedging strategy and/or structural change, we 
have argued that a comparison of in-sample and out-of-sample hedging effectiveness is not the 
best way to test for these conditions.  A procedure that is better grounded in statistics and 
probability is to test for parameter equality across the sample period and the out-of-sample 
period.  A rejection of the hypothesis of parameter equality means that the hedging strategy 
estimated in the in-sample period is not appropriate for the out-of-sample period. 
 
We also have shown that for a common sample size, the out-of-sample estimator is more variable 
than the in-sample estimator and that the variance of both estimators fall as the number of 
observations increase.  When a given sample must be allocated to either the in-sample estimate 
or the out-of-sample estimate the minimum MSE estimator is e1 with all available data used for 
its estimation.   
 
This study leaves many issues unaddressed giving rise to further questions.  For example, many 
model specifications have not been examined in enough detail.  In particular,  
 
a. Suppose the hedge ratio regression displays serial correlation.  Does this affect our 

conclusion that the minimum MSE estimator is e1 using all available data?   
 
b. We considered only three estimators, e1, e2, and e  (the simple average of e1 and e2 regardless 

of the sample allocation).  Does there exist another estimator, e~ , that is a weighted average 
of e1 and e2 , where the weights are not ½ and ½ that has a lower MSE than e1?   

 
c. Can the estimated parameters be used to estimate λ, and λ̂  used in conjunction with the 

known numerator and denominator degrees of freedom to specify a beta distribution.  Given 
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the estimated beta distribution, can we form an interval that correctly predicts the frequency 
of future hedging effectiveness?    

 
d. And finally, only one specification with η = ½ was studied.  This level of risk reduction 

would be considered low under many direct hedging applications while in cross hedging 
applications it might be something that managers could only hope for.  Are our conclusions 
affected by alternative values of λ? 

 
These topics will be studied as the scope of this paper is increased.   
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