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Optimal Length of Moving Average 
to Use When Forecasting Basis 

 
 

Futures prices when combined with a basis forecast provide a reliable way to forecast cash 
prices. The most popular method of forecasting basis is historical moving averages. Given the 
recent failure of longer moving averages proposed by previous studies, this research reassesses 
past recommendations about the best length of moving average to use in forecasting basis. This 
research compares practical preharvest and storage period basis forecasts for hard wheat, soft 
wheat, corn and soybeans to identify the optimal amount of historical information to include in 
moving average forecasts. Only with preharvest hard wheat forecasts are the best moving 
averages longer than 3 years. The differences in forecast accuracy among the different moving 
averages are small and in most cases the differences are not statistically significant. The 
recommendation is to use longer moving averages during time periods (or at locations) when 
there have been no structural changes and use last year’s basis after it appears that a structural 
change has occurred. 
 
Keywords: Basis forecast, grain, Law of One Price, moving averages, structural change 

 

Introduction 

Creating reliable preharvest price expectations and making postharvest storage decisions depend 
heavily on accurate basis forecasts. Without accurate forecasts of basis “it is impossible to make 
fully informed decisions about…whether to accept or reject a given price; (and) whether and 
when to store your crop” (CBT, 1990, p.23). 

The most popular method of forecasting the basis is historical moving averages. The 
attractiveness of these models is their ease of application. Access to local prices is cheap and 
readily available, allowing basis values to be localized for specific markets. Studies have applied 
forecasts of various lengths in order to determine the optimal length of years to include. These 
models generally conclude that longer averages ranging from 3 to 7 years are optimal 
(Dhuyvetter and Kastens, 1998; Sanders and Manfredo, 2006). The idea is that these longer 
moving averages can smooth out temporary deviations in markets. 

In stable market conditions, the longer historical average forecasts proposed by previous 
studies should form the most accurate basis expectations. These methods have failed recently as 
basis values have deviated greatly from previous levels, resulting in poor forecasts based on 
historical basis. Given this recent failure, there is a need to reassess past recommendations about 
the best length of moving average to use in forecasting the basis. This study meets this need by 
determining which length of moving average has been most accurate in forecasting basis in terms 
of mean absolute error. Four commodities are considered: soft wheat, hard wheat, corn, and 
soybeans. 
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Theoretical Model 

One of the primary reasons futures markets were created was to provide market participants the 
opportunity to exchange cash price risk for more manageable basis risk. Basis risk is preferred to 
price risk because price levels are more variable than basis levels. This price variability can be 
shown mathematically as 

ሺ1ሻ                                                                       ߪ௣௥௜௖௘
ଶ ൐ ௕௔௦௜௦ߪ

ଶ , 

where ߪ௣௥௜௖௘
ଶ  is the variance of the cash market price and ߪ௕௔௦௜௦

ଶ  is the variance of the basis. Basis 
forecasting seeks to reduce ߪ௕௔௦௜௦

ଶ  by reducing forecast error (ߝ௧): 
ሺ2ሻ                                                                 ߝ௧ ൌ ௧ݏ݅ݏܽܤ െ  ௧ݏ݅ݏ̂ܽܤ
where  ݏ݅ݏܽܤ௧ is the actual basis at time ݐ, and ݏ݅ݏ̂ܽܤ௧ is basis forecast, and ߝ௧~ܰሺ0, ௕௔௦௜௦ߪ

ଶ  ) 
assuming unbiased forecasts.  

The most popular practical approach to forecasting basis is historical moving averages 
(FarmDoc 2009; Dhuyvetter 2009). Moving average models use the simple average of the 
previous ܰ years:  

ሺ3ሻ                                                          ݏ݅ݏ̂ܽܤ௧ሺܰሻ ൌ  
1
ܰ ෍ ௧ି௜ݏ݅ݏܽܤ 

ே

௜ୀଵ

. 

   By substituting (3) into (2) we can define how the optimal moving average length is 
selected to minimize basis forecast error 

ሺ4ሻ                                              min
ே

ሺ݁̂௧ܧ
ଶሻ  ൌ  min

ே
௧ݏ݅ݏܽܤሺܧ െ   

1
ܰ ෍ ௧ି௜ݏ݅ݏܽܤ 

ே

௜ୀଵ

ሻ . 

. 

Rather than take the partial derivative of (4) with respect to ܰ, this equation must be solved 
through enumeration due to the choice variable ܰ being discrete. Once these individual forecasts 
are aggregated, the optimal forecast minimizes the error for the entire sample,  ܶ by 

ሺ5ሻ                                                    min
ே

෍ሺ
்

௧ୀଵ

௧ݏ݅ݏܽܤ െ  
1
ܰ ෍ ௧ି௜ݏ݅ݏܽܤ 

ே

௜ୀଵ

ሻ 

The variance minimizing moving average length depends on the underlying stochastic 
process. Under normality and homoskedasticity the stochastic process for basis is  

ሺ6ሻ                                                                      ݏ݅ݏܽܤ௧ ~ ܰሺߤ௧,  ଶሻߪ

where ߤ௧ is the time varying mean and ߪଶ is variance. The optimal moving average forecast 
length depends on ߤ௧. 

Without structural change, the mean basis is ߤ௧ ൌ  and the longest moving average ,ߤ
(largest  ܰ ) would result in the minimum variance forecast. Basis forecast error variance in this 
case is 
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ሺ7ሻ                                                                    ߪ௙௢௥௘௖௔௦௧
ଶ ൌ

ଶߪ

ܰ ൅  . ଶߪ
These two sources of error originate in equations (5) and (6), in the variance of the moving 
average forecast, and in the current basis variance. So long as ߤ௧ ൌ ܰ then as ,ߤ ՜ ∞, ܰ/ଶߪ ՜ 0, 
and the primary source of basis forecast error is ߪଶ. Therefore markets that are not prone to 
structural changes would find longer moving average forecasts optimal. 

 Structural changes within grain markets can change the dynamics of price relationships, 
and the resulting basis values. An extreme example of a stochastic process that could explain 
changes in markets is a random walk: 

ሺ8ሻ                                                                        ߤ௧ ൌ  . ௧ିଵݏ݅ݏܽܤ

An example of a random walk process would be a permanent increase in transportation costs, 
which would widen the basis.  With a random walk, as (8) shows, the optimal forecast is with 
N=1.  

A more general stochastic process that includes both the constant mean and random walk 
models as special cases is a variation in a normal jump process. Diffusion-jump processes that 
combine a normal and a Poisson jump process are popular processes for modeling stochastic 
volatility in equity, stock and options markets (Yang and Brorsen 1993; Anderson et al. 2002; 
Chernov et al. 2003; Bates 1996). A discrete-time version such as in Pebe Diaz et al. (2002) is 
more appropriate here rather than the usual continuous-time model. With this model, the mean is 
constant and then occasionally changes as  

ሺ9ሻ                                                              ߤ௧ ൌ ௧ିଵߤ ൅ ௧ܬ ௧ܲ 

where ܬ௧~ܰሺߠ,  ଶሻ and ௧ܲ is the jump process that is often assumed to follow a Poissonߜ
distribution. The difficulty in measuring this process is that the jump parameters and probability 
of the jumps occurring varies over time. Equation (9) could result in a random walk if  ௧ܲ ൌ 1 
and ߜଶ ൌ 0 in (6), and it gives a constant mean if ௧ܲ ൌ 0. Ethanol plants are a major source of 
new demand in corn markets and cause the basis levels near the plant to strengthen. The 
structural change reflected by the jump affects prices initially, making the previous year’s basis 
the optimal predictor for the year following the jump. The size of the shock in basis drastically 
changes the current basis levels so that all data before the change no longer reflect the current 
market. As the supply feeds the plant and markets adjust, bids will gradually decrease and the 
effects from the initial jump will result in a new mean and longer moving averages will then 
become optimal.  

 Mean-reverting models can also be used to model changes from historical basis levels 
(Jiang and Hayenga 1998; Sanders and Manfredo 2006). The basic mean-reverting model is the 
autoregressive moving average, or ARMAሺ݌,   ,ሻݍ

ሺ10ሻ                                     ݏ݅ݏܽܤ௧ ൌ ߙ ൅ ௧ߝ ൅ ෍ ௧ି௜ݏ݅ݏܽܤ௜׎

௣

௜ୀଵ

൅ ෍ ௧ି௜ߝ௜ߠ

௤

௜ୀଵ
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where ߙ is an intercept,  ׎ଵ …  is the number of ݌ ,௣ are the autoregressive parameters׎
autoregressive terms, ݍ is the number of moving average terms, ߠଵ ڮ  ௤ are the moving averageߠ
parameters, and ߝ௧~ܰሺ0, ௜׎ଶሻ. If ሺߪ ൌ 1, ݌ ൌ 1 ሻ and ሺ ݍ ൌ 0ሻ then it is a random walk, and if 
ሺ׎௜ ൌ 1 ⁄݌ ሻ and ( ݍ ൌ 0ሻ then it is a simple moving average.  

If the ARMA model in (10) is stationary, then the basis will converge toward its long-run 
mean of ߙ/ ∑ ߶௜

௣
௜ୀଵ . If the ARMA model is nonstationary (has a unit root) then the long-run 

mean will change over time. While Wang and Tomek (2007) argue that cash prices do not have 
unit roots, it is hard to argue that the mean of the basis is constant over time. 

 If plenty of observations are available, estimating an ARMA model should outperform 
the simple moving average of basis. But time series are often too short or structural changes are 
too frequent to estimate an ARMA model. Even if ARMA models could provide slightly more 
accurate forecasts, ARMA models may still not be preferred because of the difficulty in 
estimating and explaining them to producers.  

ARMA ሺ݌,  ሻ models, and another generalization, a seasonal autoregressive integratedݍ
moving average or SARIMAሺ݌, ݀,  ሻ, have been used to forecast the basis (Sanders andݍ
Manfredo, 2006; Jiang and Hayenga, 1998). These studies found little improvement in forecast 
accuracy when compared to the moving average models. In order to identify the correct level of 
 ௜, the appropriate covariance function of the process must be identified by the partial׎
autocorrelation and autocorrelation plots. This econometric technique is too complicated for 
many producers to understand, and is not modeled in this study for that reason. Instead, this 
research focuses on simple moving average forecasts, which are ARMA ሺ݌, 0ሻ processes where 
௜׎ ൌ 1 ⁄݌  and ߠ௜ ൌ 0.   

  The optimal length of moving average to forecast the basis is expected to depend on the 
size and frequency of structural changes. When conditions are static, longer moving averages are 
optimal. However, after a structural change occurs, the optimal length of a moving average is 
one.  According to the Law of One Price, the basis is the difference between two prices and so it 
can reflect differences in time, form, and space. Since time differences are held constant, the 
structural change can reflect changes in space or form. 

 

Previous Literature 

Numerous variables have been used in regression models to explain the basis. Most of these 
variables correspond to differences in time, form, and space, but the theoretical basis for some of 
these variables is not as clear. Differences in form are explained through components of the 
futures price not reflected in the cash market price. Cost of storage and transportation measures 
are accepted components of the basis from literature that explain the transformation of prices 
over time and space, but the theoretical support for supply and demand variables used to explain 
the basis over space is not as clear. 

Supply and demand variables at local markets can explain the basis over space. Supply 
variables for markets include crop production levels, a dummy variable for the presence of loan 
deficiency payments (LDP), the ratio of Eastern Canadian corn production to consumption, and 
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Western feed grain availability (Dykema, Klein, and Taylor, 2002; Martin, Groenewegen, and 
Pigeon, 1980; Jiang and Hayenga, 1997). Soybean crushing levels, animal units consuming grain 
(corn), corn usage estimates, and export volumes were all used as demand variables to identify 
the differences in markets (Jiang and Hayenga, 1997, Dykema, Klein, and Taylor, 2002). Models 
of livestock basis have also considered a wide variety of explanatory variables (Naik and 
Leuthold 1991; Liu et al. 1994). These supply and demand variables represent proxy variables 
used to identify the factors that constitute the basis at a particular location. A wide variety of 
variables are used to explain the basis. These variables should correspond to aspects of the Law 
of One Price, and explaining the basis through time, form, and space. A major drawback of the 
explanatory models is that usually use data that would not be available at the time forecasts need 
to be made. 

Several studies have applied moving averages of various lengths to identify the most 
accurate method of forming basis expectations. Hauser et al. (1990) compared several naïve 
models in forming their soybean basis expectations for ten Illinois elevators. Dhuyvetter and 
Kastens (1998) forecast nearby basis for wheat, corn, soybeans and grain sorghum for multiple 
Kansas locations using historical moving averages and current market information. Sanders and 
Manfredo (2006) tested a 5-year moving average, the previous year’s basis, and the expected 
nearby basis is the ending basis models are compared against more advanced times series 
methods. Taylor, Dhuyvetter, and Kastens (2004) revisited Dhuyvetter and Kastens (1998), and 
included models to determine the optimal amount (weight) of current market information, the 
current basis deviation from the moving average, needed to improve forecast accuracy.  

Table 1 lists the results from these forecasting studies. These results do not provide a 
clear pattern in what forecast performs the best. From the table we can see that practical forecasts 
perform comparably to more complex forecasts. The optimal amount of historical data included 
in the forecasts does not follow any rule of thumb. And the inclusion of current information is 
shown to increase forecast accuracy over short horizons, but its effectiveness diminishes greatly 
with time. No clear patterns in the amount nor kind of current information to consistently 
improve basis forecasts exists. These inconsistent findings suggest the need for further research.  

Data 

The commodities considered are corn, soybeans, soft wheat, and hard wheat. To create the basis 
data, futures prices are subtracted from their corresponding cash price.  

Two basis values are used for each year. One is selected to represent the basis for a 
preharvest hedge and the other for a storage hedge. For corn, the December contract in October 
represents the harvest basis, while the May contract in April represents storage hedges. For 
soybeans, the November contract in October represents the harvest basis, while the May contract 
in April represents storage hedges. The basis values used for soft and hard wheat are the July 
contract in June and the December contract in November. 
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Table 1. Results from Previous Basis Forecasting Studies  
Study Optimal Forecasts Conclusions 

“Forecasting Crop Basis: Practical 
Alternatives” -Dhuyvetter and Kastens (1997) 

• 4-year moving average for wheat. 
• 7-year moving average for corn. 
• 7-year moving average for soybeans. 
• 5-year moving average for milo. 

Futures price spreads and current nearby basis 
increased accuracy, but futures price spreads 
were best. The benefit from incorporating 
current market information diminished beyond 
4-12 weeks.  

“Incorporating Current Information into 
Historical-Average-Based Forecasts to 
Improve Crop Price Basis Forecasts” – Taylor, 
Dhuyvetter, and Kastens (2004) 

• 3-year moving average for wheat. 
• 2-year moving average for corn. 
• 3-year moving average for soybeans. 
• 2-year moving average for milo. 

Futures price spreads and current basis 
deviations from historical levels helpful in 
post-harvest and harvest (only 4 weeks prior to 
harvest). As the post harvest horizon 
approached, the optimal amount of current 
market information increased. 

“An Analysis of Anticipatory Short Hedging 
Using Predicted Harvest Basis” - Kenyon and 
Kingsley (1980) 

• Regression equation using initial local 
cash and Chicago futures market 
prices, the Chicago cash price at 
planting, and the residual of open 
interest.  

The regression estimates predicted 73-81% of 
the change in corn basis, and 95%-97% of the 
change in soybean basis as harvest approached 
using initial basis and the difference between 
actual and predicted open interest. 

“Basis Expectations and Soybean Hedging 
Effective” – Hauser, Garcia, and Tumblin 
(1990) 

• 1 or 3-year historical basis during 
preharvest. 

• Futures price spreads after the harvest. 

Forecasts that include the implied return to 
storage outperform historical averages in 2 of 
the 3 contract periods. Historical average 
models perform comparably to models 
incorporating current market information. 

“Corn and Soybean Basis Behavior and 
Forecasting: Fundamental and Alternative 
Approaches” - Jiang and Hayenga (1998) 

• 3-year moving average plus current 
market information best for corn. 

• Seasonal ARIMA best for soybeans.  

Although the 3-year moving average performs 
relatively well, it is out performed by models 
that include current market information and 
seasonal ARIMA models. 

“Forecasting Basis Levels in the Soybean 
Complex: A Comparison of Time Series 
Methods” - Sanders and Manfredo (2006) 

• ARMA model best for soybeans. 
• VAR model best for soybean meal. 
• Previous year’s basis best for soybean 

oil. 

Over time, the accuracy of the 1 and 5-year 
moving averages do not diminish.  Even within 
closely related markets there is no rule-of-
thumb for producing the most accurate 
forecasts. 
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 Cash and futures prices consist of second Wednesday or Thursday prices for corn, 
soybeans and wheat, and when unavailable, monthly-average prices are used. Daily #2 corn and 
#1 soybean cash prices are from the Illinois Agricultural Marketing Service, and reflect the 
midrange of elevator bids for each region on the second Thursday of each month from 1975-
2008 (FarmDoc, 2009). When the second Thursday fell on a holiday, the third Thursday was 
used. Second Wednesday daily Oklahoma reported prices paid to producers for #2 hard red 
winter wheat were taken from the Oklahoma Department of Agriculture, Food and Forestry’s 
weekly “Oklahoma Market Report” from 1974 through 2008. This report also provides the 
Galveston Gulf Port prices. When a holiday prevented the release of the report, the third 
Wednesday was used. Second Wednesday prices from an additional Oklahoma location, the Port 
of Catoosa, are for 1988-2008 (Peavey Grain, 1988-2008). Second Wednesday Kansas cash 
prices cover 1982-2007 (Dhuyvetter, 1982-2007). Simple average monthly wheat prices were 
taken from the USDA AMS “Grain and Feed Market News” for #2 soft red winter wheat at 
Chicago, IL, Toledo, OH,  and St. Louis, MO, along with  #1 hard red winter wheat at Kansas 
City, MO over 1970-2008. Figure 1 shows the Kansas and Oklahoma hard red winter wheat 
locations studied.
 

 

Figure 1. Kansas and Oklahoma Hard red winter wheat locations studied 
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Futures prices reflect daily closing prices at the CBT and KCBT for each commodity    
(R & C Data), and match the same days as the cash prices. When only monthly cash prices were 
available, average monthly futures prices were used. Corn, soybeans, and soft wheat futures 
prices are reflected by CBT contracts, while KCBT wheat contracts reflect hard wheat. These 
futures prices, along with their corresponding cash prices, provide the nearby basis values used. 

 The data series were checked to ensure that none of the days studied happened to fall on 
days when the futures price hit the daily limit. The earliest reported historical daily price limits 
for the CBT were found to be 30 cents per bushel for soybeans, 10 cents per bushel for corn, and 
20 cents per bushel for both soft and hard wheat as of 1982 (CBT, 1982). The earliest change to 
KCBT daily price limits occurred when the limit increased from 10 cents per bushel in 1973, and 
it is assumed that these levels rose to the CBT limit of 20 cents per bushel. These values were 
assumed to have remained constant in the preceding years.  Price limits remained stable until 
March 12, 1992 when CBT corn price limits increased from 10 to 12 cents per bushel, while 
soybean and wheat limits remained at 30 and 20 cents per bushel, respectively (Park, 2000). On 
August 14, 2000 daily price limits increased at the CBT from 12 to 20 cents per bushel for corn, 
from 30 to 50 cents per bushel for soybeans, and from 20 to 30 cents per bushel for wheat 
(CFTC).  The KCBT limit changed when the wheat price limit was raised from 25 to 30 cents on 
October 9, 2000 (Summers). On March 28, 2008 the KCBT and CBT both doubled the 30 cent 
price limit for wheat futures to 60 cents, while the CBT also expanded trading limits from 50 to 
70 cents for soybeans and 20 to 30 cents for corn (CMEGroup). None of the limit days occurred 
on one of the days of interest to this study. 

 Note that one concern is that this study’s findings that favor shorter moving averages 
could be due to the recent structural changes. Hatchett (2009) investigates this possibility and 
concludes that the findings are not fragile with respect to deleting the 2007-2008 data. 

Procedures 

Basis values were created by taking the cash market price less the futures market price. Basis 
forecasts were created using equation (3), where N=1,…,5.  The resulting forecast errors from 
each model were then evaluated.  

As in Dhuyvetter and Kastens (1998), we  compare forecast accuracy with mean absolute 
error: 

ሺ11ሻ                                                           ܧܣܯ ൌ
1
ܶ ෍|ݏ݅ݏܽܤ௧ െ |௧ݏ݅ݏ̂ܽܤ

்

௧ୀଵ

 

where the absolute value of each forecast error is averaged over the forecast period. This 
measure of forecast accuracy will be used in this study to identify the optimal historical period to 
include in basis forecasts. The root mean squared error was also considered, but results did not 
differ substantially (Hatchett 2009) and so they are not included here. 

 The complex nature of the variance-covariance matrix of the error term when modeling 
time-series cross sectional data makes misspecification a concern when modeling basis forecast 
errors. Econometric problems prevalent with this type of data include spatial autocorrelation, 
cross correlations, and heteroskedasticity. Failing to correct for these correlations and unequal 
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error variance can lead to biased and inconsistent standard errors and hypothesis tests. 
Dhuyvetter and Kastens (1998) tested for heteroskedasticity, and identified groupwise 
heteroskedasticity amongst forecast methods and time horizon variables for corn, soybeans, and 
wheat forecasting models. To correct for this heteroskedasticity, interaction terms of methods 
and forecast time horizon squared were included in each of their separate models. Although the 
dependence of the errors amongst competing forecast models could not be corrected, Dhuyvetter 
and Kastens (1998) conclude that a 4-year moving average was more accurate than the 3-year 
benchmark at 0.01 significance. When independence across observations is incorrectly assumed, 
the standard errors and their ensuing t-tests lead to overstated significance (Irwin, Good, and 
Martines-Filho, 2006).  

A variation of the Dhuyvetter and Kastens (1998) approach to correct for 
heteroskedasticity was attempted with both the aggregate dataset and the individual commodities 
in this study. The pooled data set contains 15,180 observations. To correct for unequal variance 
using random effects, combinations of variables such as period*location and location*year, 
where period represented the preharvest or storage contract, location identified the market, and 
year identified the year of the forecast, were considered. However, these interaction terms 
resulted in too many parameters, which prevented the model from converging. As an alternative, 
we follow Irwin, Good, and Martines-Filho (2006) and pool the data, leaving the forecast length 
N as the only independent variable, and with time included as a random effect . This model was 
also run for the individual commodities by period to identify any patterns that would be lost in 
the pooled model. The final mixed model is: 

ሺ12ሻ                                                         ܧܣ௜௧ ൌ ଴ߚ ൅ ෍ ௜௝ܦ௝ߚ ൅ ௧ݒ ൅ ௜௧ߝ

ସ

௝ୀଵ

 

where ܧܣ௜௧ is the absolute error of the ݄݅ݐ forecast, at time ߚ ,ݐ଴ is an intercept term created for 
the 5-year moving average to serve as a benchmark for model comparison, and ߚ௝ , ݆ ൌ 1, … ,4, 
are the coefficients for moving averages of j length, where ܦ௜௝=1 when ݅ ൌ -௧ is the randomݒ  ,݆
effects vector for years at time t  and ߝ௜௧ is the stochastic error term for the observation ݅ at time 
 The random-effects vector and stochastic error term are uncorrelated, and are distributed  .ݐ
,௧~ܰሺ0ݒ ௩ߪ

ଶሻ and ߝ௜௧~ܰሺ0, ఌߪ
ଶሻ.  

 

Pooled Model Results 

Table 1 shows the optimal forecast length by year for the pooled data. From this table we can see 
that the previous year’s basis provides the optimal forecast for 37.51% (1144/3,050) of the 
values. The 5-year moving average produces the second most optimal forecasts at 25.77%, while 
the 2, 3, and 4-year moving averages account for 14.59, 11.64, and 10.49% of the sample, 
respectively.  
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Table 1. Number of Locations with a Given Length of Moving Average Having the Lowest 
Root Mean Squared Forecast Error, 1975-2008 
Commodity Period N=1 N=2 N=3 N=4 N=5 
Hard wheat Preharvest 25 2 5 7 6 
 Storage 34 2 4 1 4 
Soft wheat Preharvest 3 0 0 0 0 
 Storage 0 2 0 0 1 
Corn Preharvest 0 0 0 0 7 
 Storage 7 0 0 0 0 
Soybeans Preharvest 2 5 0 0 0 
 Storage 7 0 0 0 0 
 

Figure 2 graphs the number of optimal forecasts produced by the previous year’s basis 
and 5-year moving average for the pooled data. The one-period forecast is usually close to the 5-
year forecast, but following periods of structural change like the early 1980’s (inflation, collapse 
of land prices, oil price shocks, etc.), 1988 (US-Canada free trade) and 2006 (lack of 
convergence at contract expiration) there are many more optimal forecasts using the one-period 
forecast. This preference for shorter moving averages shows the inferiority of basing 
expectations on longer moving averages after times of structural change.  

 

Figure 2. Number of minimum MAE forecasts produced by the previous year’s basis vs. 
the 5-year moving average, 1979-2008 
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Table 2 shows the results from the pooled model of absolute forecast errors for the entire 
study. The F-value of 0.92 fails to reject any difference amongst the competing forecast methods. 
The intercept gives the absolute error of the 5-year moving average, and is 12.89 cents/bu. 
Forecast accuracy increases as the amount of historical information used decreases, with the 
previous year’s basis providing the lowest pooled MAE at 12.34 cents/bu. These results are 
generally within the range of the MAE’s found by previous studies. Dhuyvetter and Kastens 
(1998) find the pooled MAE’s of moving average forecasts to be between 10-13 cents/bu. for 
wheat, corn, and soybeans. The individual t-tests show that the one year forecast has a 
significantly lower absolute error than the 5-year moving average, but none of the other 
differences are statistically significant.  

Table 2. Absolute Error (cents/bu.) of Basis Forecasts as a Function of Number of Years in 
the Moving Average, Pooled Data, 1975-2008 

Effect Estimate t-value p-value 
Intercept 12.34 12.06 0.000 

N=1 -0.57 -2.06 0.040 
N=2 -0.22 -0.79 0.427 
N=3 -0.16 -0.58 0.562 
N=4 -0.05 -0.18 0.858 
N=5 - - - 

F-statistica 1.31 -  0.263 

 a The null hypothesis is that all values of N have the same forecast accuracy. 

 
#2 Hard Wheat Model Results 

Preharvest and storage hard wheat basis forecasting model results are in Table 3. For the 
preharvest forecasts, the 2-year moving average has significantly higher forecast error than the 5-
year benchmark. The only preharvest model to produce a lower MAE than the benchmark is the 
4-year moving average, which improves by only 0.04 cents/bu. These results indicate that, over 
the sample, any of the 5 preharvest models considered would result in a forecast error of 
approximately 13 cents/bu so the differences between methods are small. 

The storage model results for hard wheat reject the joint test of no differences in forecast 
accuracy with an F-statistic of 10.85. Individual t-tests of no difference from the 5-year 
benchmark are rejected for all but the 4-year moving average. The previous year’s basis lowers 
the benchmark MAE from 13.03 cents/bu. to 11.09 cents/bu. The improvement in accuracy as 
the historical period shortens supports using shorter moving averages to forecast the hard wheat 
storage basis. 
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Table 3. Absolute Error (cents/bu.) of Hard Wheat Basis Forecasts as a Function of 
Number of Years in the Moving Average, 1978-2008 

Period Effect Estimate t-value p-value 
Preharvest Intercept 12.77 8.71 0.000 

 N=1 0.35 1.06 0.291 
 N=2 0.68 2.06 0.040 
 N=3 0.41 1.24 0.216 
 N=4 -0.06 -0.19 0.853 
 N=5 - - - 
 F-statistica 1.73 - 0.141 

Storage Intercept 13.03 9.06 0.000 
 N=1 -1.94 -5.90 0.000 
 N=2 -1.09 -3.32 0.001 
 N=3 -0.77 -2.33 0.020 
 N=4 -0.23 -0.70 0.481 
 N=5 - - - 
 F-statistica 10.85 - 0.000 

 a The null hypothesis is that all values of N have the same forecast accuracy 
 Table 3 shows a pattern consistent throughout the forecast results. By studying the 
preharvest and storage basis separately, we can see that MAEs are greater for preharvest than 
storage models. One possible explanation of this difference comes from Dhuyvetter and Kastens 
(1998), who found that forecast errors peak during critical production periods. Local conditions 
are much more variable around harvest, and spatial differences between cash and futures markets 
may not reflect the same supply and demand.  

Hard Wheat Changes over Time 

Figure 2 is a map of the 1975-1980 average hard-wheat harvest basis values for Oklahoma. Basis 
values tend to be weakest in the northern part of the state, and grow stronger when moving south.  

Figure 3 shows the 2008 harvest basis values. The trend from the first map is now 
reversed, with basis strengthening from the southern to the northern part of the state. A major 
shift in the primary market for Oklahoma wheat occurred over the period studied. Oklahoma 
wheat was shipped via rail to the Gulf Port at Houston, but now a portion of it near Catoosa, 
travels by barge to New Orleans. This change in the transportation of Oklahoma wheat over the 
time period studied may partially explain why Oklahoma wheat basis changed over the 30 plus 
years studied.  
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Figure 2. 1975-1980 average Oklahoma wheat harvest basis 

 

 

Figure 3. 2008 Oklahoma wheat harvest basis  
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Figure 4 shows the 5-year average basis for Kansas locations over 1982-1986. The trend in this 
map is that the basis weakens when moving south and west away from Kansas City.  

 

Figure 4. 1982-1986 Average Kansas wheat harvest basis 
 

 
 

The 2007 Kansas harvest basis is shown in Figure 5. Similar to the relationships in Figure 3, the 
harvest basis tends to weaken moving away from Kansas City to the southwest. O’Brien (2009) discusses 
the importance of rail transportation to Kansas wheat producers, and rail rates can explain this weakness 
when moving away from Kansas City. 

Figure 5. 2007 Kansas wheat harvest basis  
 

 
The greatest difference between the two time periods is that most locations seem to be 

more closely aligned with the markets surrounding them. In Figure 4 there were isolated markets 
that experienced much stronger basis than their closest neighbors. These locations typically 
represent mills, which may have had greater discounts or premiums in the earlier period. Figure 
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5 shows that in 2007, nearly all of the locations are within a few cents of their surrounding 
locations. O’Brien (2009) proposes that the consolidation of coops throughout Kansas may 
explain the increased alignment of basis.      

#1 Hard Wheat Model Results 

The Kansas City price data allows this study to compare the differences in forecasting 
both the regular protein #1 hard red wheat, and 13% protein #1 hard red wheat. Table 4 shows 
the model results for the Kansas City ordinary protein #1 hard wheat basis models.  

Table 4. Absolute Error (cents/bu.) of Kansas City Ordinary Protein, #1 Hard Wheat Basis 
Forecasts as a Function of Number of Years in the Moving Average, 1976-2008 

Period Effect Estimate t-value p-value 
Preharvest Intercept 15.72 8.33 0.000 

 N=1 0.47 0.29 0.770 
 N=2 0.21 0.13 0.897 
 N=3 -0.12 -0.07 0.942 
 N=4 -0.96 -0.60 0.552 
 N=5 - - - 
 F-statistica 0.23 - 0.923 

Storage Intercept 12.99 5.24 0.000 
 N=1 2.17 1.35 0.180 
 N=2 1.89 1.17 0.244 
 N=3 1.83 1.14 0.259 
 N=4 0.76 0.47 0.638 
 N=5 - - - 
 F-statistica 0.65 - 0.629 

 a The null hypothesis is that all values of N have the same forecast accuracy. 
 
 Table 5 reports the results of the model for the 13 percent #1 hard wheat. This data allows 
space to be held constant, and shows the difference in forecast accuracy between two types of a 
commodity delivered on the same futures contract. The benchmark intercept for the 13 percent 
protein model is 3.22 cents/bu. higher than the ordinary protein forecast model. This best 
preharvest forecast is still 1.22 cents/bu. more than the worst ordinary protein forecast model.  

Comparing the forecast results of ordinary and 13% protein #1 hard wheat shows the 
effect of differences in grain form on forecast accuracy. Forecast errors are lower in both periods 
for ordinary protein. Higher forecast errors for 13% protein are likely the result of changes in the 
variable premiums for protein content at KCBT. Rather than using a fixed premium similar to 
what exists between #1 and #2 grade wheat, the market posts a protein premium scale that allows 
for market adjustments to premiums (KCBT). Differences in supply and demand for ordinary 
and 13% protein wheat qualities explain the difference in form of these hard wheat markets.   
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Table 5. Absolute Error (cents/bu.) of Kansas City 13% Protein, #1 Hard Wheat Basis 
Forecasts as a Function of Number of Years in the Moving Average, 1976-2008 

Period Effect Estimate t-value p-value 
Preharvest Intercept 18.94 4.11 0.000 

 N=1 0.26 0.18 0.856 
 N=2 -1.37 -0.95 0.344 
 N=3 -1.53 -1.07 0.289 
 N=4 -0.32 -0.22 0.824 
 N=5 - - - 
 F-statistica 0.64 - 0.636 

Storage Intercept 19.34 3.75 0.001 
 N=1 5.52 1.88 0.064 
 N=2 3.55 1.20 0.231 
 N=3 1.06 0.36 0.721 
 N=4 0.77 0.26 0.793 
 N=5 - - - 
 F-statistica 1.21 - 0.310 

  a The null hypothesis is that all values of N have the same forecast accuracy. 
Soft Wheat Model Results  

Table 6 displays the results for the soft wheat basis forecasting models. Using the 
previous year’s basis to predict soft wheat preharvest basis would lead to an average forecast 
error of 25.95 cents/bu., while the most accurate method, the 2-year moving average, only lowers 
the MAE to 23.42. Only the 2-year moving average proves to be a better forecast of the storage 
basis than the 5-year benchmark for soft wheat.  Although it decreases the MAE to nearly 13 
cents/bu., the 2-year moving average is not significantly different from the benchmark. The 
storage basis is forecasted considerably more accurately than the preharvest basis.   

 
Corn Model Results 

Table 7 shows the results for the corn models across all regions of Illinois. Results from 
the preharvest model indicate that using the previous year’s basis outperforms the 5-year 
benchmark over all Illinois locations. The F-statistic and individual t-tests both fail to indicate 
any significant differences in forecast choice. The F-statistic of 4.10 for the storage models 
rejects the null hypothesis, and concludes that model forecast accuracy does differ over the 
sample for corn storage basis. Significant differences from the 5-year benchmark exist in every 
model except the 4-year moving average at a 0.05 level. This result indicates that shorter moving 
averages can outperform the 5-year moving average at forecasting the corn storage basis. The 
best model, using the previous year’s basis, lowers the MAE from the 5-year moving average of 
7.49 cents/bu. to 6.32 cents/bu.  
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Table 6. Absolute Error (cents/bu.) of Soft Wheat Basis Forecasts as a Function of Number 
of Years in the Moving Average, 1975-2008 

Period Effect Estimate t-value p-value 
Preharvest Intercept 23.45 4.64 0.000 

 N=1 2.50 0.78 0.434 
 N=2 -0.03 -0.01 0.991 
 N=3 0.20 0.06 0.951 
 N=4 0.48 0.15 0.882 
 N=5 - - - 
 F-statistica 0.22 - 0.926 

Storage Intercept 13.91 8.52 0.000 
 N=1 0.59 0.45 0.654 
 N=2 -0.93 -0.71 0.479 
 N=3 0.16 0.13 0.900 
 N=4 0.51 0.39 0.696 
 N=5 - - - 
 F-statistica 0.43 - 0.788 

 a The null hypothesis is that all values of N have the same forecast accuracy. 
 
 
Table 7. Absolute Error (cents/bu.) of Corn Basis Forecasts as a Function of Number of 
Years in the Moving Average, 1980-2008 

Period Effect Estimate t-value p-value 
Preharvest Intercept 11.74 9.60 0.000 

 N=1 -0.12 -0.21 0.836 
 N=2 0.63 1.07 0.286 
 N=3 0.55 0.94 0.349 
 N=4 0.52 0.87 0.385 
 N=5 - - - 
 F-statistica 0.70 - 0.594 

Storage Intercept 7.49 7.59 0.000 
 N=1 -1.17 -3.63 0.000 
 N=2 -0.68 -2.12 0.034 
 N=3 -0.66 -2.05 0.041 
 N=4 -0.18 -0.56 0.574 
 N=5 - - - 
 F-statistica 4.10 - 0.003 

NOTE: Storage model forecasts begin in 1981 due to the time series available.   

a The null hypothesis is that all values of N have the same forecast accuracy. 
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Soybean Model Results 

Table 8 shows the absolute error of the basis forecasting models for Illinois soybean 
basis. The preharvest 5-year benchmark MAE is 11.23 cents/bu., and can be improved by all of 
the shorter moving-average models. The most improvement comes from the 2-year moving 
average, which lowers the MAE to 10.62 cents/bu. Although the benchmark can be improved 
upon, the improvement is not enough to be statistically significant based on the t-test. The 
narrow range (< 0.61 cents/bu.) of MAEs shows that little difference exists across preharvest 
basis models over the period studied. 

The choice of forecasting model affects the accuracy of the Illinois soybean storage basis 
forecasts. The F-statistic of 8.58 indicates that the choice of models can result in different 
forecasting accuracies. While all of the shorter moving average models outperform the 
benchmark, both the previous year’s basis and the 2-year moving average result in 1.98 and 1.16 
cents/bu. lower forecasts, respectively. Compared to the soybean preharvest model, the storage 
basis forecasts result in decreased MAEs of over 1.6 cents/bu.  

 
Table 8. Absolute Error (cents/bu.) of Soybean Basis Forecasts as a Function of Number of 
Years in the Moving Average, 1980-2008 

Period Effect Estimate t-value p-value 
Preharvest Intercept 11.23 8.58 0.000 

 N=1 -0.47 -0.78 0.438 
 N=2 -0.61 -1.00 0.318 
 N=3 -0.50 -0.82 0.410 
 N=4 -0.20 -0.32 0.748 
 N=5 - - - 
 F-statistica 0.43 - 0.852 

Storage Intercept 9.61 8.25 0.000 
 N=1 -1.98 -4.99 0.000 
 N=2 -1.16 -2.92 0.004 
 N=3 -0.66 -1.66 0.100 
 N=4 -0.08 -0.19 0.846 
 N=5 - - - 
 F-statistica 8.58 - 0.000 

 Note: Storage model forecasts begin in 1981, due to the time-series available. 
 a The null hypothesis is that all values of N have the same forecast accuracy. 
 
Conclusions 

The most popular method of forecasting the basis is historical moving averages. Given the recent 
failure of longer moving averages proposed by previous studies, this research reassesses past 
recommendations about the best length of moving average to use in forecasting basis. Our study 
uses a longer time series with more locations and crops than these previous studies to determine 
the optimal length of historical data to forecast basis. The hypothesis testing procedure using the 
pooled data is valid in the presence of cross correlations. 
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 Basis values for hard wheat, soft wheat, corn and soybeans were used to create basis 
forecasts. The methods considered included the previous year’s basis and moving averages of the 
previous 2-5 years. Mean absolute error was modeled for the pooled data following Irwin, Good, 
and Martines-Filho (2006). The mean absolute error was the dependent variable, the forecast 
length was the independent variable, and time was the random effect. 

 This research found the size of most MAEs to be consistent with previous studies 
(Dhuyvetter and Kastens, 1998; Taylor, Dhuyvetter and Kastens, 2002). These values were 
generally between 10 and 17 cents/bu. 

The optimal forecast length found for each commodity is generally shorter than previous 
recommendations. Using a 4-year moving average produced the minimum MAE preharvest 
wheat forecast, consistent with Dhuyvetter and Kastens (1998), but the optimal storage forecast 
model has lower forecast error using shorter historical information. This study finds that the 
optimal amount of historical data included in corn and soybean forecasts have shortened to one 
or two years for both preharvest and storage periods. Most differences in forecast accuracy 
among the different models are not statistically significant and most of the significant differences 
are with the storage basis forecasts..    

Structural changes over the time period studied have led to recommending shorter 
historical moving averages to forecast the basis. Markets within this study undergo varying 
amounts of structural change for different reasons. Kansas wheat markets, for example, 
maintained consistent basis relationships over space, which may be due to their proximity to the 
KCBT hard wheat market delivery points. Toledo, OH and St. Louis, MO experienced more 
structural change when they became futures contract delivery points. The structural changes 
apparent in the basis data in this study cause the shorter moving averages to produce the most 
accurate basis forecasts in terms of mean absolute error. 

Note that for preharvest hedging an alternative to last year’s basis is the forward basis. 
Forward basis has been shown to contain a risk premium (Townsend and Brorsen 2000; Brorsen, 
Coombs, and Anderson 1995; Shi et al. 2004). This risk premium may be higher in times of 
structural change so forward basis has its own disadvantages. 

The differences between the forecast accuracy of various moving average lengths was 
rarely statistically significant. Many studies use moving averages to obtain basis expectations 
(e.g. Kim, Brorsen, and Anderson 2007). The conclusion here is that it should not matter whether 
such studies use a five year or a three year moving average. 

Although our individual models produced varied results, the general rule of thumb 
supported by this research is: When a location or time period does not undergo structural change 
longer moving averages produce optimal forecasts, but when it appears that a structural change 
has occurred, the previous year’s basis should be used.  
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