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The Long Run and Short Run Impact of Captive Supplies on the Spot Market 
Price: An Agent-Based Artificial Market 
 
This paper seeks to reduce the gap between theoretical research that shows a potentially 
large price-depressing effect of captive supplies and empirical work that finds any price-
depressing effect of captive supplies is small. An agent-based model is developed that 
matches the results of Xia and Sexton (2004) as well as our generalization of their model. 
We relax Xia and Sexton’s (2004) assumption of no supply response by captive feeders, 
which reduces the price depressing effect of captive supplies. Finally, the agent-based 
model is used to simulate packers choosing both captive supply quantities and spot 
market quantities. Packers in the relaxed agent-based model choose no captive supplies 
and thus reach the Cournot solution. The research narrows the gap between theoretical 
models and the empirical work on captive supplies that shows little effect on prices, but a 
gap remains. 
 
 
Key words: Agent-based market, captive supplies, cattle, industrial organization, particle 
swarm optimization 
 
Introduction 
 
In the beef packing industry, vertical integration through captive supplies between 
packers and feeders has been a divisive issue for more than 20 years (Ward 2009). 
Captive supplies include marketing agreements, packer owned cattle, and forward 
contracts. Most packers procure cattle both through exclusive captive supply contracts 
and from the spot market. According to a recent GIPSA Livestock and Meat Marketing 
Study (Muth et al. 2007; Muth et al. 2008), 38.3% of cattle were purchased with captive 
supplies, from which marketing agreements take the largest share of 28.8%, with 4.5% 
forward contracted, and the rest packer owned. Ward (2009) reports that 46.3% of fed 
cattle were captive supplies in 2008. The price of captive supply cattle is typically linked 
to the subsequent spot market price. In addition to increased vertical integration, the U.S. 
beef processing industry also experienced horizontal integration with the four-firm 
concentration ratio reaching 80% in 2002 (Ward 2002).  

The increased use of captive supplies by oligopsony packing firms has led to 
concern about negative impacts of captive supplies on cattle prices (e.g. Azzam 1998; 
Connor et al. 2002). Xia and Sexton (2004) construct a theoretical duopsony market 
where packers purchase cattle both with exclusive captive contracts and in the spot 
market, and the price of captive supplies is linked to the spot market price. They show 
that packers can use captive supplies to reduce competition and depress price to the 
monopsony level if 50% of the cattle are contracted. In contrast to the large price 
depression predicted by Xia and Sexton’s theoretical model, previous empirical studies 
have found that captive supplies have only a small negative or insignificant effect. Ward, 
Koontz and Schroeder (1998) find small negative relationships between price and the 
percentage of cattle delivered with forward contracts and marketing agreements. Parcell, 
Schroeder, and Dhuyvetter (1997) find that captive supply shipments have no 
economically or statistically significant effect on live cattle basis. Muth et al. (2007) 
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gives similar results as the previous empirical studies and shows that a 10% increase in 
capacity utilization through captive supplies is associated with a small price decrease of 
$0.04 per pound of carcass weight.  

One possible explanation of the difference between Xia and Sexton’s static model 
and the previous empirical results is that price depression from captive supplies is a short 
run effect. In the long run, if packers reduce the price they pay for cattle, contracted 
feeders1 will reduce the number of cattle they produce.  

We use agent-based computational economics (ACE) to study the fed cattle 
market by conducting experiments with simulated agents. Agent-based computational 
economics (ACE) simulates games between interactive agents (Tesfatsion 2001, 2006) 
and adopts concepts and methods from game theory, cognitive science and computer 
science. An agent-based model is a computer simulation model of autonomous entities 
called agents. These artificial agents follow relatively simple rules. The rules have 
parameters and the agents learn by choosing parameters that worked well in past 
iterations of the simulation. 

ACE has been used to study the behavior of agents in the cobweb model, the 
exchange rate problem, prisoner’s dilemma, etc. (Arifovic 1996; Axelrod 1987; 
Riechmann 2001; Vriend 2000). Recent work with Cournot oligopoly models, finds that 
agents in agent-based models can find the Cournot oligopoly solution, but results depend 
on the learning rule used (Waltman and Kaymak 2008; Kimbrough and Murphy 2009; 
Qiao and Rozenblit 2009; Anderson and Cau 2009). Within agricultural economics, the 
use of agent-based models has been largely limited to land-use planning (Balmann 1997; 
Berger 2001; Matthews 2007). ACE can be used to study problems with behavioral 
assumptions that are too difficult to analyze with mathematical methods. ACE is more 
economical and time efficient compared to experiments with human subjects (eg. Ward et 
al. 1999) and it is more controllable.  

This research uses a particle swarm optimization (PSO) algorithm to model the 
learning behavior of packers in the artificial fed cattle market. PSO is a stochastic 
optimization technique developed by Eberhart and Kennedy (1995). The idea of PSO 
came from observing how flocks of birds, fish, or other animals adapt to avoid predators 
or to find food by sharing information. In our game, packers do not cooperate with each 
other and only learn from their own experience. Thus, we adjust PSO by constructing 
multiple parallel markets and letting each packer have its own packing plant in every 
market. Packers trade in every market simultaneously and independently, but they learn 
only from their own experience. This means each packer has a separate “flock of birds” 
that does not share information with the flocks of the other packers.  

We first expand Xia and Sexton’s (2004) analytical model from the duopsonay 
case to the more general oligopsony case. Next, we extend Xia and Sexton (2004) to the 
long run where there is a supply response by feeders. Adding a supply response reduces 

                                                 
1 In actual cattle markets, the drop in price will be passed on to cow-calf producers who will decrease 
production. Our model does not separate the cow-calf and feedlot sectors. 
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the price depressing effect of captive supplies, but does not remove it. We then develop 
an artificial fed cattle market using an agent-based model and use it to determine the 
impacts of captive supplies under different short run and long run contract assumptions. 
The agent-based model is verified since it gets the same solution as the short-run model 
of Xia and Sexton (2004) as well as matches our extension to the long run. We then use 
the agent-based model to study a problem that has so far proven too complex to solve 
analytically where packers choose both the quantity of captive supplies and the quantity 
to purchase in the open market.  

The Oligopsony Market with Captive Supplies 

Consider a homogeneous product market with M packers and N  feeders. The number of 
packers is much less than the number of feeders ( NM  ). Packers procure from 
feeders and sell processed goods to the retail market. To focus our research on the game 
between packers and feeders in this market, we assume that the final processed boxed 
beef price, the processing rate, and the marginal cost are constant, so the fed cattle value 
to packers is also constant. This result means the marginal revenue for each animal is 
constant, and we define the marginal revenue as R . The assumption of a perfectly elastic 
output market is necessary so that packers have only oligopsony power and no oligopoly 
power. 

 Packers contract with feeders and then compete for the remaining cattle in the 
spot market. We follow Xia and Sexton’s (2004) assumption that packers choose quantity 
rather than price. The market prices are determined by packers’ total demand in the spot 
market and the aggregate supply from noncontracted feeders. We construct three 
scenarios by first fixing both the number of contracts and the quantity per contract. Next, 
we allow supply response by the contracted feeders. Finally, we allow supply response 
and let packers choose the number of captive supply contracts.  

Fixed Number of Contracts and Fixed Quantity per Contract 

Xia and Sexton (2004) only consider the duopsony case, but we generalize their results to 
the oligopsony case of M packers. Assume M processing packers and N feeders in the fed 
cattle market. Packers purchase cattle from feeders both with exclusive contracts and in 
the spot market. The price of contracted cattle is linked to the spot market price. Packers 
choose quantities rather than price and so this is a Cournot game. 

Assume packers make exclusive contracts with c
in chosen feeders, and the 

quantity of each contract c
iq is fixed, where c indicates contract market. In each period, 

the contracted feeders deliver cattle to packers and packers compete with each other for 
cattle from the non-contracted feeders. The spot price is determined by the market 
clearing price from the spot market aggregate demand and supply, and the contracted 
cattle are also valued with this price. Feeders always accept the contracts. We use S to 

indicate the total number of feeders with contracts, 


M

i

c
inS

1
and NS  .  
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At the beginning of each processing period, packers select their procurement 
strategies and then purchase cattle in the spot market. The choice variable of the 
procurement strategy is the procurement ratio:  

 (1) )/(,, NRqx d
ti

d
ti  , 

where d
tix ,  is the procurement ratio, N is the total number of feeders, and the superscript d 

indicates packer’s demand in the spot market. Packer i ’s processing quantity d
iq is also the 

amount of its procurement. R is the marginal revenue of one packer and also the supply 
level of feeders under the perfect competition price level. For example, if under perfect 
competition, feeders provide 10,000 cattle and the processing quantity of packer i is 
3,000, its procurement ratio ix equals 0.3.  

The total demand in the spot market can be written as 


M

i

d
ti

d
t qQ

1 , . We assume 

all feeders are homogeneous and have a linear supply function t
s

tj pq , , so the total 

supply in the spot market is t
s
t pSNQ )(  , since the S contracted feeders have no 

supply response. The market clearing condition is where the spot market aggregate 
demand equals supply, which is d

t
s
t QQ  . Thus, we obtain the equilibrium spot market 

price: 

 (2) )( SNQp d
tt  . 

 Packer i ’s total profit, which is determined by the quantity it purchases both with 
captive contracts and in the spot market, is ))(( ,,

c
i

d
titti qnqpR  , Mi ,...,1 . 

Because the quantity per contract is fixed, the contract quantity c
iqn is constant for each 

processing period. Thus in every period, packers only need to decide how many cattle to 
buy through the spot market to maximize their profit. In addition, since packers’ 
procurement decisions also affect the spot market price, we substitute equation (2) into 
the packers’ profit function and solve its first order conditions with respect to d

tiq , , 

holding c
iqn fixed to get the following packers’ reaction functions: 

 (3) 2/2/2/)(
'

,',
cc

i
ii

d
ti

d
ti qnqSNRq  



, for all Mi ,...,1 . 

Simultaneously solving these reaction functions of M packers, we obtain the spot demand 
quantities for each packer: 

 (4) )1/()1/()()1/()(,  MMqnMqnSMSNRq cc
i

cc
i

d
ti , for Mi ,...,1 . 

Add the above individual spot demands together and substitute the aggregate spot market 

demand 


M

i

d
ti

d
t qQ

1 , into equation (2), and the spot market clearing price is 
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 (5) )])(1/[()1/( SNMSqMMRp c
t  . 

From this result, we can see that without captive supplies, which means S = 0, the 
equilibrium price is the Cournot oligopsony level. With captive supplies, the price is 
lower than without them.  

 Now we assume the contracted feeder does not have a supply response and 
quantity cq is fixed. We assume that the fixed quantity per contract will be based on the 

long run equilibrium price. Thus, packers and contracted feeders fix the quantity of a 
captive contract to Ep . Substitute Epqc  to equation (5), which gives: 

 (6) ])1/[()( MSNMRSNMEp  . 

If the oligopsony model is restricted to be a duopsony model by setting M = 2, 
this spot market price becomes )23/()(2 SNRSNEp  , which is the same as 
equation (5’) in Xia and Sexton (2004). In addition, when MNM /)1(  feeders sign 
captive contracts and agree to produce at the market price level, the spot market price 
reaches the monopsony level R/2. For example, when there are M = 4 packers in the 
market, they need to make exclusive contracts with 3N/4 feeders to depress the spot 
market to the monopsony level. In Xia and Sexton’s duopsony model, packers only need 
to contract with S = N/2 feeders to depress the spot market price to the monopsony level. 
These results illustrate that the larger the number of packers, the larger number of 
aggregate exclusive contracts are needed to depress the spot market price the same 
amount. From the above results, we can see that the spot market price could be depressed 
to the monopsony level, when both the number of contracts and the quantity per contract 
are fixed. 

Fixed Number of Contracts and Flexible Quantity per Contract 

Now relax the previous model by allowing a supply response from contracted feeders. 
Other assumptions are the same as with the previous model. M packers and N feeders are 
in the market, and the total contracted feeder number remains S. The spot market price is 
the same as equation (2). 

We assume that the contracts are made one period ahead and that contracted 
feeders will produce the quantity based on the expected spot market price of the delivery 
period. Thus, the supply equation of the contracted feeder is adjusted as t

s
tj Epq , . 

Substitute this contract quantity into packers’ total profit function, so
))(( ,,

c
ti

d
titti qnqpR   ))(( , ti

d
tit EpnqpR  , Mi ,...,1 . When the market reaches 

equilibrium, the spot market prices from different time periods will be the same, which 
means tt pEp  . Substitute this condition and equation (2) into the profit function, and 

take the first order condition with respect to the packers’ procurement quantity d
tiq , , and 

the result is the packers’ reaction functions: 
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 (7) )](2[)2(2/)(
'

,',
c
i

ii

d
ti

c
i

d
ti nSNqnSNRSNq  



, for all Mi ,...,1 . 

Simultaneously solving these reaction functions of M packers for the aggregate demand 

 d
ti

d qQ ,  in the spot market and then substituting the result in the market clearing 

equation (2), we get the spot market clearing price in equilibrium as 

 (8) ]2))(1/[(])[( SSNMSMSNREp  . 

From this result, we can see that without captive supplies, which means S = 0, the 
equilibrium price is still the Cournot level. If we restrict the oligopsony model to be a 
duopsony model by setting the number of packers M = 2, this spot market price becomes

)3/()2( SNSNREp  , which is higher than that in the previous model. For example, 
when S = N/2, the spot market price is 3R/5, which is higher than the monopsony level 
R/2 but lower than the Cournot duopsony level 2R/3.  

 From the results above, we can see that with a fixed number of contracts and with 
supply response, the spot market price level is higher than without supply response. But, 
captive supplies still reduce market prices.  

 

Flexible Contracts and Flexible Quantity per Contract 

Now assume that in the long run, feeders who sign captive supply contracts have 
a supply response and packers can adjust their captive supply contract numbers and the 
procurement quantity in the spot market. First, packers choose their number of contracts. 
The contract ratio cx is packer’s captive supply choice variable:  

 (9) Nnx c
ti

c
ti /,,  , 

where c
tix ,  is the contract ratio of packer i , which indicates the percent of feeders out of 

the total number of feeders with whom packer i contracts in time t. Then feeders decide 
how many cattle they will produce based on their expectation of the market price. We can 
reasonably assume that feeders expect the spot market price of the next period will be the 
same as the current one. Thus, with a linear supply function that has an intercept of zero 
and a slope of one, feeders will deliver 1 t

c
t pq  to their contracted packers. Packers then 

decide how many cattle to procure in the spot market. Thus, packers’ profit function 
changes to: 

 (10) ))(( ,,,
c
t

c
ti

d
titti qnqpR  ))(( 1,,  t

c
ti

d
tit pnqpR , for all Mi ,...,1 . 

The maximization of the above functions involves variables in multiple time 
periods and the current period contains two choice variables for each packer. Finding an 
analytical solution to such a dynamic game would be difficult. We use an agent-based 
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model to simulate this market, but there may be other numerical methods that could also 
be used. In the following section, we introduce the market design of the agent-based 
model for an artificial oligopsony market with captive contracts. 

Agent Based Artificial Fed Cattle Market with PSO Algorithm 

Our main motivation in using the agent-based model is that it allows solving a problem 
that would otherwise be intractable. But, the relatively simple rules considered in the 
agent-based model may also be closer to the way actual feeders and packers make 
decisions than the full rationality assumed in most analytical models. The agents here 
have either one or two choice variables. The choice variables are how many cattle to 
purchase in the spot market and how many cattle to purchase via contract. Agents pick 
the value of their choice variables this time period as a random function of what rules 
were most profitable last time period.  Such agents are boundedly rational (Simon 1957) 
since they are using heuristic rules rather than an optimization. This “trial and error” 
method can lead to the market equilibrium and often has the same solutions as analytical 
models, but is not assured to do so (Young 2009).  

The agent-based model contains multiple programmed agents. Here, the 
programmed intelligent agents act as N feeders and M packers in a simulated fed cattle 
market. Feeders are price takers, and packers compete for cattle both with captive supply 
contracts and in the spot market. The transactions between packers and feeders occur in a 
captive contract market and in a spot market. We set up three simulation procedures: a) 
fixed number of contracts and fixed quantity per contract; b) fixed number of contracts 
and flexible quantity per contract, and c) flexible number of contracts and flexible 
quantity per contract. Figure 1 illustrates how packers and feeders dynamically make 
their transactions under these market designs.  

In the simulation, we assume that packers choose quantities and that market 
participants discover the interception point of the current aggregate demand and supply 
curve and use it as the market clearing price (this is imposed by solving for the market 
clearing price using equation (2)). If no captive supply is present, the simulation results 
should be exactly what the Cournot theory predicts. Since packers cannot form 
enforceable agreements with each other, if any market power is exercised which makes 
the spot market price lower than the Cournot result, it must be done through captive 
supply.  

Figures 1(a) and (b) show the time lines with short run and long run periods. In 
the short run, we assume that both the captive contract and the quantity per contract are 
fixed. Under this assumption, we simulate the behavior of packers to show how they 
adjust their spot market procurement quantity. This process means that during the short 
run simulation, packers only have one choice variable, the procurement ratio in the spot 
market. Different from the short run model, figure 1(b) shows that in the long run, 
packers can select the number of contracts as well as the procurement ratio in the spot 
market. The process of choosing parameters is called learning. The learning of packers is 
modeled with a particle swarm optimization algorithm. By playing the game repeatedly, 
packers can learn from their own experiences and adopt the best strategy for themselves.  
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Particle Swarm Optimization Algorithm 

We use a particle swarm optimization algorithm to model the learning behavior of 
agents. Past research using agent-based models have used either genetic algorithms (e.g. 
Vriend 2000) or reinforcement learning (e.g. Waltman and Kayak 2008). Particle swarm 
optimization more closely matches the way decisions are made in cattle markets and it is 
potentially quicker at finding equilibrium, but it is expected to reach a similar answer to 
other learning methods (Zhang and Brorsen 2009). With particle swarm, agents have their 
own parallel clones and each agent’s clones share information only with each other. This 
kind of marketing strategy can be observed in many real markets. In the fed cattle market, 
packing firms have multiple packing plants and each plant has their own buyers. Each 
plant may have different goals about how many cattle it wants to purchase, but each plant 
will share information within the company at the end of each period and adjust their 
strategies to increase profit. This sharing of information does not typically occur with 
genetic algortihms, and this may explain why PSO leads to faster convergence.  

Past agent-based models have studied oligopoly rather than oligopsony so new 
market equilibrium rules are required. Each plant picks the desired quantity slaughtered. 
Feeders produce a quantity based on last period’s price. If feeders produce extra cattle, 
they can be held over to the next period at no cost2. If there are not enough cattle to meet 
the packer’s desired quantity, the available cattle are split between the packers 
proportional to their desired quantity. The price of feeder cattle is determined as in 
equation (2) and all packers pay the same price. The downstream demand is assumed 
perfectly elastic and such that the packer will break even by paying $100 for the cattle. 
This perfectly elastic downstream demand is necessary so that the packers have no 
oligopoly power, which is necessary to study oligopsony only and match our theory. 

In the markets simulated here, each plant faces a changing economic environment 
since the plants of the other packers continuously update their strategies. We set up K 
separate parallel markets, and each packer has a plant in every market. For example, with 
20 parallel markets, packers each have 20 plants as the population with which they share 
information. Although having the same behavioral rules, the K plants of one packer may 
take a different strategy in each market since the initialized random values are different. 
In the simulation, plants dynamically change their marketing strategies with the PSO 
algorithm but feeders are price takers and simply sell their products at the market price.  

Suppose the thk plant of packer i  chooses 
kix , as one of its two strategy parameters,

]1,0[, 
kix , and each strategy parameter is initialized at the beginning of the simulation 

with a random draw from a uniform distribution, here  indicates the strategy variable 
(quantity purchased in the open market or purchased through captive supplies). Each 
plant has a velocity, ]1,0[, 

kiv , which determines the change of the strategy value. The 

changes of choice variables are influenced by the value of the best solutions achieved by 

                                                 
2 We alternatively ran the model by letting the price adjust and not letting any cattle being held over. The 
conclusions are not fragile with respect to this change in assumptions. 
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the thk plant itself, ]1,0[,
, l
kip , and by the best solution among all of packer i’s plants,

]1,0[, Up g
i  . The superscripts l and g indicate local and global, the subscripts k and i

indicate thk  parallel market and thi packer respectively. Profit function )( ,kik x  is used to 

evaluate the performance of each decision set ]',[ ,,,
c

ki
q

kiki xxx . 

In every simulation step, each strategy of the thk plant of packer i is selected as  

 (11) 
  tkitkitki vxx ,,,,1,,  and 

 (12) )()( ,,
,
,,22,,

,
,,11,,1,,


  tki

g
tkitki

l
tkitkitki xpucxpucvwv , 

where 
tkix ,,  indicates the strategy, 

tkiv ,, is the velocity vector, ]1,0[~ Uu , 2,1  are 

uniformly distributed random numbers, 1c and 2c are learning parameters and are called 
the self confidence factor and the swarm confidence factor, w is an inertia weight factor, 

l
kip ,

,
 is the current local best parameter for plant k of packer i, g

ip ,  is packer i’s global 

best strategy parameter, and the value of is d or c to indicate strategy parameter x as 
procurement ratio or contract ratio. The calculated value of 

1,, tkix or 
1,, tkiv  is truncated to 

be one or zero when it overflows the range.  

The following equations indicate how to choose l
kip ,

,
  and g

ip , among all 

parameters of plant i . Under a dynamic environment where plants’ best response strategy 
depends on how others respond, the fitness value of the previous local best may not be 
the same when it is used in the current economic environment. The best locals of the 
previous L iterations are retested under the current market environment. The current best 
local is chosen from the past best performance parameters l

tkip ,
',,

  and the current strategy: 

 (13)  





  tkiitkik
l

Ltkik
l

tkik
l
tkip ,,',,,,1,,

,
,, )(),(,),(maxarg xxpp   , 

where Kk ,...,2,1 and 'i  indicates packer i ’s rivals. The best global parameter is 
selected from the best local parameters: 

 (14)  )(,),(maxarg ,
,,

,
t1,,1

,
,

l
tKiK

l
i

g
tip   pp   , 

where K is the total number of parallel markets. 

Equilibrium Criterion 

The parameters used in the three scenarios are shown in table 1. The market parameters 
and PSO parameters are the same for all scenarios and the packer number M is 2 in the 
duopsony market and 4 in the oligopsony market. There are 400 feeders in each market. 
A simulation run contains multiple iterations so that agents repeatedly play the game until 
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the market reaches equilibrium. We use 100 runs for each of the 12 experimental settings 
with different random starting values and report the average equilibrium of the 100 runs. 
This approach is similar to the method of random restarts that is commonly used with 
stochastic global optimization methods (Hamm, Brorsen, and Hagan 2007). Within each 
simulation run, we let agents trade until equilibrium is reached as determined by the 
convergence criterion or a maximum of 500 iterations is reached. The limit of 500 
iterations was sometimes reached in the four-packer case and these observations are 
included in the averages that we compute. 

Typically, zero diversity in the population's strategies among all markets signals 
the stopping point for a PSO. Zero diversity means that no packer has an incentive to 
change strategies given the strategies of other packers. As the population evolves, 
diversity diminishes and each agent uses the same strategy in each parallel market. Our 
convergence criteria is that the variance of each agent’s strategies in the population must 
be less than 0.01% and the variance of the mean value of the strategies for 10 generations 
must be less than 0.01%.  

 The inertia weight w in (12) is critical in affecting the speed of convergence 
(Chatterjee and Siarry 2006). A large inertia weight provides a larger exploration but slow 
convergence, while a smaller inertia weight is needed to fine-tune the current search area. 
It is worth making a compromise, such as starting with a higher value at the beginning 
and then decreasing w with iterations:  

 (15)   maxmax10 / tttw ww
t   , 

where maxt is the maximum number of iterations and t is the current iteration. Self 

confidence and global confidence factors 1c  and 2c  in equation (12) can be set as 
constant and are usually between 0.5 and 2.5. Here we choose 1 for both of them.  

 

Summary of Simulation Procedure with PSO 

 

There are M packers and N feeders. Each packer and feeder has one packing plant in each 
of the K parallel markets. Each plant of a packer may have a different trading strategy in 
each parallel market. The steps in the simulation are: 

(i) In each market, randomly initialize 
tkix ,, and 

tkiv ,, for all i . We choose the 

quantity ratio ]1,0[~,, Ux tki
 and 0,, 

tkiv for all Mi ,...,1 , Kk ,...,1 , and 

Lt ,...,1 . 

(ii) Select the best locals for each plant with equation (13). 

(iii) Select best global for each packer with equation (14). 
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(iv) While the market is not converged, each packer continuously uses functions 
(11) and (12) to select new strategies.  

 

Pseudocode describing the agent-based model is available in a supplementary appendix 
online and the executablel Java code is available at http://www.openabm.org under the 
title Particle Swarm Optimization Algorithm [pso_captivesupplyeffect].  

 

In each of the three scenarios, we determine the market equilibrium of a duopsony 
market and an oligopsony market containing 4 packers. Thus, we have 6 simulation 
settings. 

In the short run simulation, the captive contracts are fixed, and packers interact in 
the market to find the optimal procurement strategies. We simulate the market by letting 
packers contract with 50% of feeders in the duopsony market and 75% of feeders in the 
four-packer market. Since packers are homogeneous, we can reasonably assume that 
packers will split the contracts equally, and each of them will contract with 25% of the 
total feeders in the duopsony market and 18.75% in the four-packer market.  

With the number of contracts fixed and with contract supply response, we set the 
quantity per contract as 50. According to our theoretical derivation, if packers contract 
with (M-1)N/M feeders and the contract quantities are fixed at the monopsony level R/2, 
packers can depress the spot market price to the monopsony level. So we use this setting 
to test if packers in the artificial market can learn to find the optimal procurement 
strategies to benefit from the monopsony price in the spot market. Thus, for the first two 
scenarios, packers have one choice variable - the procurement ratio; but in the long run, 
they have two choice variables - the contract ratio and the procurement ratio. 

Simulation Results 

The mean and standard deviation of the market price and packers’ strategies at 
equilibrium from 100 runs are in table 2. The standard deviations in table 2 are small, 
which shows that local optimums are not a problem since solutions are close to the same 
regardless of the random starting values selected. The simulation results in table 2 closely 
match the predictions of the theoretical models. In the short run with no supply response, 
packers can depress the spot market price to the monopsony level of $50 for both the 
duopsony market and the oligopsony market, which matches Xia and Sexton (2004). 
When a supply response is added, the expected solution from equation (8) is $60 for 
duopsony and $63.6 for the four-firm case. The agent-based model results match closely 
for the duopsony case, but with the four-firm case, the computerized packers miss a little 
of the potential market power from captive supplies and end up with prices slightly above 
the theoretical prediction (this could mean that the agent-based model is not always 
completely converged in the four-firm case).  
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In the long run when packers choose both spot market and contract quantity, 
packers compete to obtain the Cournot results, and the spot market price is $66.7 in the 
duopsony market and around $80 in the four-packer market. In addition, when packers 
choose both the number of captive supply contracts and the procurement quantity in the 
spot market, packers mostly use the spot market to purchase cattle. This result means that 
in the long run, packers cannot use captive contracts to depress the spot market price, and 
packers behave like they do not need captive supplies as an alternative procurement 
method. Intuitively, it should not be a surprise that the captive supplies do not provide 
long-run market power and that the long-run solution is the Cournot solution. The market 
equilibrium condition in equation (2) causes the level of captive supplies to eventually be 
driven to zero so that the Cournot solution can be reached. 

Besides the statistical analysis of the market equilibrium, figures 2 and 3 show the 
dynamics of the spot market price and the packers’ strategies in an individual run under 
example experimental settings. These figures illustrate how the particle swarm algorithm 
proceeds toward equilibrium. Note that each figure represents a single set of initial 
starting values while the means in table 2 are averages over 100 runs. Figure 2 shows the 
market prices for the duopsony and 4-packer models under the long run assumption and 
the short-run assumption with a fixed contract without contract supply response. From 
figure 2, we can see that if packers make long term contracts with feeders and the 
quantity of contracts are fixed to a carefully chosen value, they can depress the spot 
market price to the monopsony level of $50 even without collusion. However, without 
long term contracts where packers adjust strategies on both captive supply and spot 
market procurement, the spot market price goes to the Cournot solution.  

Figure 3(a) shows the simulation results of the duopsony market under fixed 
contracts without contract supply response. The figure shows that at equilibrium, each 
packer uses a procurement ratio of 12.5% as its optimal strategy, which yields a spot 
market procurement quantity of 5,000 according to equation (1) since R and N equal $100 
and 400. Thus, the total demand in the spot market is 10,000. Substituting this quantity 
and the number of uncontracted feeders of 200 into equation (2), we see that the market 
price is $50. This result is consistent with our simulation results in figure 2 and the 
theoretical results in equation (5’) of Xia and Sexton (2004).  

 Following the method above, we simulate the four-packer market by letting 
packers contract with 75% of the total feeders. The contract quantity is also fixed at 50. 
The simulation results in Figure 3(b) show that the market reaches equilibrium when each 
packer uses a spot procurement ratio around 3.125% as its strategy. Substitute these 
values into equation (5), and we get a market price of $50. These results are consistent 
with our simulated results in figure 2. The results confirm that when the market contains 
more packers, the packers need to contract with more feeders than the duopsony market 
to depress the spot price to the monopsony price level.  

 The results leave open the question of what changes in assumptions would lead to 
results that match empirical observations about cattle markets. The agent-based model 
was designed more to match the theory than to match actual cattle markets. Note that the 
simulation with human subjects by Ward et al. (1999) more closely matched both the 
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process of actual cattle markets and the empirical findings that the market power created 
by captive supplies is small. The Cournot assumption of packers choosing quantity still 
leads to market power that is considerably greater than most empirical estimates of 
market power. In addition, since packers use captive supplies, the model still shows that 
the use of captive supplies would lead to market power. Further, the model leaves open 
the question of why packers use captive supplies. A theoretical model that matched 
empirical observations about the cattle market may need to be very different and would 
likely need to drop the Cournot assumption and provide an alternative motivation for 
packer use of captive supplies. For example, packers may use captive supplies to assure a 
supply of cattle of a desired quality or they may use them to reduce the risk of having less 
than their desired quantity. 

Conclusions  

An agent-based model is used to study the impact of captive supplies under fixed or 
flexible contracts. With a fixed number of contracts with or without supply response, 
analytical solutions are available. For the long-run scenario with flexible contracts and 
flexible quantity per contract, the solution could not be found with mathematical analysis 
and an agent-based simulation method is used. The agent-based model has been used in 
economics but is relatively new to agricultural economics other than in land-use 
modeling. The agent-based model provides a way to study complex problems that are 
difficult to solve with mathematical analysis and is less costly than experiments with 
human subjects.  

We first generalize the Xia and Sexton (2004) model to the oligopoly case. As the 
number of packers increase, more of the available supplies must be contracted in order to 
get the same price depressing effect. When the Xia and Sexton (2004) model is extended 
to the long-run case where supply from contract feeders is no longer perfectly inelastic, 
the price depressing effect of captive supplies is further reduced. The agent-based model 
gives nearly the same results as the analytical models. The one exception is that the four-
packer case with supply response shows slightly less price depressing effect than 
predicted by the analytical model. When the packers can adjust the number of contracts 
and feeders have a supply response for contract quantity, the price depression phenomena 
of captive supplies disappears since packers do not contract any cattle. This result leaves 
open the question of why packers use captive supplies, but it suggests that it is for 
reasons other than increasing market power. The results also predict more market power 
than is estimated empirically. While the research has reduced the gap between theoretical 
and empirical research there is still a remaining gap that future research may want to 
address. 

  



 14

References 

Anderson, E.J., and T.D.H. Cau. 2009. “Modeling Implicit Collusion Using 
Coevolution.” Operations Research 57:439-455. 

Arifovic, J. 1994. “Genetic Algorithm Learning and the Cobweb-Model.” Journal of 
Economic Dynamics and Control 18:3-28. 

Arifovic, J. 1996. “The Behavior of the Exchange Rate in the Genetic Algorithm and 
Experimental Economies.” Journal of Political Economy 104:510-41. 

Axelrod, R. 1987. “The Evolution of Strategies in the Iterated Prisoner’s Dilemma.” In 
Genetic Algorithms and Simulated Annealing. pp. 32-41, London: Pitman. 

Azzam, A. 1998. “Captive Supplies, Market Conduct, and the Open-Market Price.” 
American Journal of Agricultural Economics 80:76-83. 

Balmann, A. 1997. “Farm-Based Modeling of Regional Structural Change: A Cellular 
Automata Approach.” European Review of Agricultural Economics 24:85-108. 

Berger, T. 2001. “Agent-Based Spatial Models Applied to Agriculture: A Simulation 
Tool for Technology Diffusion, Resource Use Changes and Policy Analysis.” 
Agricultural Economics 25:245-260. 

Chatterjee, A. and P. Siarry. 2006. “Nonlinear Inertia Weight Variation for Dynamic 
Adaptation in Particle Swarm Optimization.” Computers & Operations Research 33: 
859-87. 

Connor, J., P.C. Carstensen, R.A. McEowen, N.E. Harl. 2002. “The Ban on Packer 
Ownership and Feeding of Livestock: Legal and Economic Implications.” Research 
paper, Department of Economics, Iowa State University. 

Eberhart, R.C., and J. Kennedy. 1995. “A New Optimizer Using Particle Swarm Theory.” 
Proceedings of the Sixth International Symposium on Micromachine and Human 
Science, Nagoya, Japan. pp. 39-43. 

Hamm, L., B.W. Brorsen, and M.T. Hagan. 2007. “Comparison of Stochastic Global 
Optimization Methods to Estimate Neural Network Weights.” Neural Processing 
Letters 26:145-158. 

Kimbrough, S.O., and F.H. Murphy. 2009. “Learning to Collude Tacitly on Production 
Levels by Oligopolistic Agents.” Computational Economics 33:47-78. 

Matthews, R., N. Gilbert, A. Roach, G. Polhill, and N. Gotts. 2007. “Agent-Based Land-
Use Models: A Review of Applications.” Landscape Ecology 22: 1447-1459.  

 



 15

Muth, M.K., J. Del Roccili, M. Asher, J. Atwood, G. Brester, S.C. Cates, M.C. Coglaiti, 
S.A. Karns, S. Koontz, J. Lawrence, Y. Liu, J. Marsh, B. Martin, J. Schroeder, J.L. 
Taylor, and C.L. Viator. GIPSA Livestock and Meat Marketing Study, Volume 3: 
Fed Cattle and Beef Industries. Report prepared by RTI International, Research 
Triangle Park, NC, for USDA/Grain Inspection, Packers and Stockyards 
Administration, Washington, DC, January 2007. 

Muth, M.K., Y. Liu, S.R. Koontz, and J.D. Lawrence. 2008. “Differences in Prices and 
Price Risk across Alternative Marketing Arrangements Used in the Fed Cattle 
Industry.” Journal of Agricultural and Resource Economics 33:118-135. 

Qiao, H., and J. Rozenblit. 2009. “Agent-Based Simulation in Market and Production 
Systems.” International Journal of Internet and Enterprise Management 6:31-40. 

Parcell, J.L., T.C. Schroeder, and K.C. Dhuyvetter. 2000. “Factors Affecting Live Cattle 
Basis.” Journal of Agricultural and Applied Economics 32:531-541. 

Riechmann, T. 2001. “Genetic Algorithm Learning and Evolutionary Games.” Journal of 
Economic Dynamics & Control 25: 1019-1037. 

Simon, H.A. 1957. Rational Choice and the Structure of the Environment. Cambridge, 
MA: MIT Press. 

Tesfatsion, L. 2006. “Agent-Based Computational Economics: A Constructive Approach 
to Economic Theory.” In L. Tesfatsion and K.L. Judd, eds. Handbook of 
Computational Economics Volume 2: Agent-Based Computational Economics. 
Amsterdam: Elsevier, pp. 831-880. 

Tesfatsion, L. 2001. “Introduction to the Special Issue on Agent-Based Computational 
Economics.” Journal of Economic Dynamics and Control 25:281-293.  

Vriend, J.N. 2000. “An Illustration of the Essential Difference between Individual and 
Social Learning, and Its Consequences for Computational Analyses.” Journal of 
Economic Dynamics & Control 24:1-19. 

Ward, C.E. 2002. “A Review of Causes for and Consequences of Economic 
Concentration in the U.S. Meatpacking Industry.” Current Agriculture, Food & 
Resource Issues 3:1-28. 

Ward, C.E. 2009. “Extent of Alternative Marketing Arrangements for Fed Cattle and 
Hogs.” OSU Extension Fact Sheet AGEC-615, Stillwater, OK, February. 

Ward, C.E., S.R. Koontz, T.L. Dowty, J.N. Trapp, and D.S. Peel. 1999. “Marketing 
Agreement Impacts in an Experimental Market for Fed Cattle.” American Journal of 
Agricultural Economics 81:347-358. 



 16

Ward, C.E., S.R. Koontz, and T.C. Schroeder. 1998. “Impacts from Captive Supplies on 
Fed Cattle Transaction Prices.” Journal of Agricultural and Resource Economics 
23:494-514.  

Waltman, L., and U. Kaymak. 2008. “Q-Learning Agents in a Cournot Oligopoly 
Model.” Journal of Economic Dynamics & Control 32:3275-3293. 

Xia, T., and R.J. Sexton. 2004. “The Competitive Implications of Top-of-The-Market and 
Related Contract-Pricing Clauses.” American Journal of Agricultural Economics 
86:124-138.  

Young, H.P. 2009. “Learning by Trial and Error.” Games and Economic Behavior 
65:626-643. 

Zhang, T., and B.W. Brorsen. 2009. "A Particle Swarm Optimization Algorithm for 
Agent-Based Artificial Markets." Computational Economics 34:399-417. 



 17

 

(a). Fixed number of contracts and with or without captive supply response 

 

(b). Long run model with flexible number of contracts and captive supply response 

Figure 1. The timeline of the model 
  

In the spot market, 
packers purchase 
cattle based on their 
procurement 
strategies. 

 

Packers contract 
with feeders using 
their contract 
strategies. 

Contracted feeders 
produce cattle and 
deliver to packers. 

Cattle delivered 
with captive 
contracts are 
priced with the 
spot market price. 
 

In the spot market, 
packers purchase cattle 
based on their 
procurement strategies.  
 

Each of the contracted 
feeders delivers cattle 
to packers. 

Cattle delivered with 
captive contracts are 
priced with the spot 
market price. 

Packer i contracts with 
c
in  chosen feeders for all Mi ,...,1 . 
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Figure 2. Spot prices of duopsony and four-packer markets 
 
Note: For the two short run settings, both the number of contracts and quantity per 
contract are fixed. 
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(a). Duopsony Market 

 

(b). Four-Packer Market 

Figure 3. Packers’ short run procurement ratio in the spot market without contract 
supply response 
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Table 1. Parameter Setting in Artificial Market Simulation Design 
  

Parameter            Symbol Value 
 

Market Parameters 
Number of Packers M 2 for duopsony market;

4 for four-packer market
Number of Feeders N 400
Cattle Value Before Processing R $100
  
Particle Swarm Optimization (PSO) Algorithm Parameters 

Intercept of inertia weight in equation (15) w
0  1.5

Slope of inertia weight in equation (15)  w
1  0.5

Self and global confidence factors of PSO 21 cc  1 

Number of parallel markets K 20

Maximum iteration of one simulation run maxt  500

  

Parameters for Model with Fixed Contracts 
Number of contracted feeders for each packer cn  N/4 for duopsony market;

3N/16 for four-packer market

Quantity per captive supply contract cq  50
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Table 2. Short Run and Long Run Simulation Results of Market Prices and Packers’ Strategies under Duospsony Market and 
Four-Packer Oligopsony Market Settings 
 

Market 
Structure 

Packer Statistic 
Short Run 

Long Run 
Without Contract Supply Response With Contract Supply Response 

  
 

Market 
Price 

Procurement 
Ratio 

Profit 
Market 
Price 

Procurement 
Ratio 

Profit 
Market  
Price 

Contract 
Ratio 

Procurement 
Ratio 

Profit 

Duopsony   Mean 50.00   60.00   66.76    
 SD   0.00   0.00     0.54    

Packer 1 Mean  12.50% 500,000  15.00% 480,000  1.55% 32.45% 444,000 

 SD    0.00% 0    0.00% 0  1.52%   0.90% 7,539 

Packer 2 Mean  12.50% 500,000  15.00% 480,000  1.89% 32.14% 443,000 

 SD    0.00% 0    0.00% 0  1.15%   0.76% 4,702 
Four-Packer   Mean 50.00   66.41   80.20    

 SD   0.01   1.20     0.41    
Packer 1 Mean  3.13% 250,000  4.12% 218,000  0.83% 19.48% 159,500 

 SD   0.00% 0  0.34% 9,515  0.79%   0.42% 2,236 

Packer 2 Mean  3.13% 250,000  4.15% 219,000  1.22% 19.07% 158,500 

 SD  0.00% 0  0.36% 7,182  0.93%   0.83% 4,894 
Packer 3 Mean  3.13% 250,000  4.20% 220,500  1.16% 19.32% 160,000 

 SD  0.00% 0  0.25% 8,256  0.97%   0.58% 3,244 

Packer 4 Mean  3.13% 250,000  4.14% 219,500  1.16% 19.16% 159,000 

 SD  0.00% 0  0.25% 8,870  1.05%   0.99% 3,078 

Note: 
1. In the short run duopsony market, each packer uses a fixed captive contract ratio of 25% , which means it contracts with 100 

feeders in every iteration period;  
2. In the short run four-packer market, each packer uses a fixed captive contract ratio of 18.75% , which means it contracts with 75 

feeders in every iteration period; 
3. Contract quantities are fixed at 50 for short run markets without contract supply response. 



 

 


