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Uncovering Dominant-Satellite Relationships in the U.S. Soybean Basis: 

A Spatio-Temporal Analysis 

  
 

Practitioner’s Abstract 
 
Time series analysis shows that local soybean basis levels have some tendency to follow or be 
determined by the basis levels at export locations (Toledo and U.S. Gulf).  Processing centers 
tend to show the most independence in basis discovery.   Spatial modeling shows that each local 
basis produces a "spillover" and impacts neighboring basis levels.  The spatial linkages are 
greatest during the spring and tend to be the lowest during fall.   The results suggest that 
soybean basis discovery may be concentrated at export locations within the U.S. marketing 
system.  Moreover, these dominant-satellite relationships are strongest during the spring season.  
Market practitioners may utilize this information when forming expectations for basis levels 
during the marketing year. 

 

Key Words: Soybeans, Basis, Causality, Spatial Relationships   

 

Introduction 

Basis values, the difference between cash and futures price, play an important role in guiding 
commodities through the supply chain (Tiley and Campbell, 1988; Tomek and Robinson, 1990).  
It has long been believed that the basis is determined, to a large extent, by local factors, such as 
storage capacity, quality differentials, and transportation costs.  However, a number of recent 
studies indicate that the prices offered at one location may also reflect basis values at other 
locations.  That is, the basis may not be entirely local as some locations provide a source of 
market information used to determine the basis at other locations.  This is often referred to as a 
dominant-satellite relationship.  Previous studies have identified dominant-satellite relationships 
for basis values in corn (Manfredo and Sanders, 2006) and soybeans (McKenzie, 2005).  
 
This study examines soybean basis relationships between market locations across both time and 
space.  A time series analysis examines to what degree certain markets provide information to 
other locations.  Following previous work by Manfredo and Sanders (2006) and McKenzie 
(2005), we test for causal relationships through time for a number of market definitions, 
including export terminals, interior river locations, processing centers, and interior markets.  The 
analysis provides relevant information on market leaders or price discovery points. 
 
We also address the degree to which markets simultaneously share pricing information across 
space in a spatial econometric framework.  The analysis indicates the degree to which the 
covariation of basis levels between observations at different locations is subject to spatial 
ordering.  The spatial analysis therefore demonstrates to what degree changes in basis levels at 
one location induce spillover effects, impacting neighboring locations. 
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Methods 
 
Time Series Analysis 
Granger Causality provides one approach to identify whether markets share information.  In a 
Granger Causality framework, market X is said to Granger cause market Y if market X provides 
valuable information when forecasting market Y.  The method has been used to test corn basis 
relationships among major export markets and interior locations (Manfredo and Sanders, 2006), 
as well as the relationship between spot and futures prices for live cattle (Koontz and Hudson, 
1990; Oellerman and Farris, 1985).  The causality test is based on the equation: 
 

ሺ1ሻ                                                       ݕ௧ ൌ ߙ    ௧ିݕߣ



ୀଵ

  ௧ିݔߠ  ߱


ୀଵ

            

 
where yt is the basis value at time t in market Y, and m and n are the optimal lag lengths for yt and 
xt, respectively.  The null hypothesis that X does not Granger cause Y is examined by a Wald test 
on the restriction ߠ ൌ  When the null hypothesis is rejected, the test  .(Hamilton, 1994) ݆  0
suggests that market X plays a role in the determination of the basis at market Y. 
 
Spatial Analysis 
The contemporaneous spatial spillover for each period is estimated through spatial regression 
analysis.  The spatial lag model accounts for observed spatial dependence in the dependent 
variable by including spatially weighted values of the dependent variable on the right hand side 
of the equation (Anselin, 1988).  The model takes the form: 
 
 
ݕ                                                         (2) ൌ ߙ  ݕܹߩ   ߝ

,ሺ0ܰ~ߝ        ሻܫଶߪ
 
where y is an N x 1 vector of basis values at each location n=1,...,N.  The neighbor relationships 
are defined by the exogenous N x N matrix W.  The spatial weights matrix defines a relevant 
neighborhood for each observation with zeroes on the diagonal and non-zero off-diagonal 
elements wij which indicate that observations i and j share a spatial relationship.  The weights 
matrix is a row-normalized five nearest neighbors specification.  The spatial lag term Wy is 
therefore the average basis level at the five nearest neighbors, with each neighbor receiving an 
equal weight.  Following standard regression procedures, the disturbance term ε  is expected to 
follow a mean zero, constant variance i.i.d. process. 
 
The sign of the estimated spatial parameter indicates the nature of the spatial process. For 
example, when ρ > 0, the model suggests that the basis is, on average, positively impacted by 
neighboring values. Unlike temporal lags in time series analysis, the spatial lag characterizes 
simultaneous feedback in space such that a home is impacted by the value of its neighbor while it 
simultaneously impacts the value of its neighbors.  Because of this, the spatial lag term Wy is 
correlated with the disturbance term introducing biased estimates of regression parameters using 
ordinary least squares.  We therefore estimate the spatial lag coefficient via maximum likelihood 
(Anselin, 1988). 
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A distinct feature of the spatial lag model is that it captures "global spillovers" attributed to what 
Anselin (2003) calls the spatial multiplier. The spatial multiplier refers to the fact that all 
locations are related through higher-order neighbors.  Thus, a change in the basis level at one 
location directly impacts its neighbors, as well as its neighbor's neighbors, and so on. The 
relationship can be seen when the spatial lag model is expressed in the reduced form: 
 
(3)                                                             ሺܫ െ ݕሻܹߩ ൌ ߙ        ߝ
ݕ                                                        ൌ ሺܫ െ ߙሻିଵܹߩ  ሺܫ െ  ߝሻିଵܹߩ
 
When the assumptions of disturbance term hold, the spatial spillover process reduces to ሺܫ െ
ܫwhere ሺ ,ߙሻିଵܹߩ െ  ሻିଵ is the spatial multiplier.  Kim et al. (2003) show that when theܹߩ
weights matrix is row-normalized, as we have done, the expected value reduces to:  
 

ሺ4ሻ                                                              ܧሾݕሿ ൌ  
1

ሺ1 െ ሻߩ  ߙ

 
In sum, the spatial regression analysis provides an estimate of the impact of a change in the basis 
level in one location on the basis at all other locations.  The impacts are most pronounced for 
immediate neighbors, yet the effects "spillover" to all locations through higher-order neighbor 
relationships. 
 

Data 
 

To keep the Granger Causality analysis tractable, the data is selected for thirteen markets shown 
in Figure 1.  The sample locations include the major export terminals of Louisiana Gulf and 
Toledo, OH (Lucas County), interior river locations of St. Louis, MO (St. Louis County) and 
Peoria, IL (Peoria County), a major soybean processing facility in Bellevue, OH, and several 
interior locations including Omaha, NE, Raleigh, NC, Central Illinois (Champaign County), 
Northwestern Iowa (Buena Vista County), Central Iowa (Hamilton County), Eastern Iowa (Black 
Hawk County), Central Kansas (Pawnee County), and Southeastern Indiana (Decatur County).  
The data is comprised of weekly (Wednesday) nearby basis values obtained from 
cashgrainbids.com.1  For the Louisiana Gulf, Omaha, and Raleigh locations, the basis data 
provided by cashgrainbids.com is USDA-AMS data.  For all other locations except for Bellevue, 
OH, the nearby basis used is an average of the basis reported at individual elevators within the 
county noted, with anywhere from two to eight elevators from each county composing the 
average2.  Each time series spans January 2003 – November 2009, providing 357 weekly 
observations of the basis for each location.  
 
The data needs for the spatial analysis are slightly different than those for the Granger Causality 
tests.   For each of the thirteen markets defined above, the sample size is expanded to ensure a 
sufficient number of observations and degree of spatial variability. In particular, the spatial 
analysis draws individual elevator-level point observations of the basis from the previously 

                                                            
1 In the event of missing observations for Wednesday, we selected from nearby data with the given priority: 
Tuesday, Thursday, Monday, or Friday. 
2 For St. Louis, MO, the basis data are drawn from an individual elevator in St. Louis, County.  
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defined markets on a daily basis, as well as daily nearby basis observations from individual 
elevators in adjacent counties (see Figure 2).  For each individual elevator, these data are then 
aggregated to mean values for four periods in the crop year over the years 2006 to 2009.  The 
four periods are defined as spring (April – June), summer (July – August), fall (September – 
November), and winter (November – March).   

 

Results 
Time Series Analysis 
Augmented Dickey-Fuller test statistics show that each basis series is stationary in levels.  
Following the procedure of Beveridge and Oickle (1974) the optimal lag length for the Granger 
Causality test is found by estimating equation (1) for all lag combinations i=1,…,12 and 
j=1,….,12 and using the lag structure that minimizes Akaike Information Criterion (Akaike, 
1974).  In addition, we test for heteroskedasticity using White's test and apply White's consistent 
covariance estimator where necessary. 
 
The Granger Causality results are reported in Table 1.  Table 1 shows the information flow from 
the row to the column and vice-versa.  For example, considering Toledo (row) and Omaha 
(column), the → symbol signifies that Toledo (x) leads Omaha (y), with the rejection of the null 
hypothesis that  ߠ ൌ  at the 1% level of confidence (equation 1).  However, when the ݆  0
relationship is reversed, Omaha (x) does not lead Toledo (y) since there is a failure to reject the 
null hypothesis of ߠ ൌ  at the 1% level.  Therefore, it can be said that the direction of ݆  0
causality is from Toledo to Omaha. Considering Omaha (row) and C IL (column), the ← symbol 
signifies that Omaha (x) does not lead C IL (a failure to reject the null hypothesis at the 1% 
level), but C IL (x) does lead Omaha (y) since the null hypothesis of  ߠ ൌ  is rejected at the ݆  0
1% level.  Hence the direction of causality is from C IL to Omaha.  The ↔ symbol signifies two-
way or simultaneous causality significant at the 1% level.  For example, in the case of Peoria 
(row) and Raleigh (column), the null hypothesis that Peoria (x) does not cause Raleigh (y) is 
rejected at the 1% level.  When the relationship is reversed the null hypothesis that Raleigh (x) 
does not cause Peoria (y) is also rejected, thus suggesting two-way or simultaneous causality.  A 
zero (0) in any of the row/column combinations suggests that there is a failure to reject the null 
hypothesis in both directions, hence neither market leads the other.   

Table 2 summarizes the Granger Causality results that are presented in Table 1 and provides an 
indication of the connectivity of the individual markets.  St. Louis, Toledo, and the Gulf have the 
greatest amount of leading information (6, 5, and 4 respectively), while the Omaha market (6) 
exhibits the largest degree of lagging information.  In addition, Raleigh and Eastern Iowa (E IA) 
demonstrate the greatest number of two-way information flows (↔) with 9 each.  The Bellevue 
market (site of a major soybean processing facility), Northwest Iowa (NW IA), Central Illinois 
(C IL), and Central Kansas (C KS) appear to show the least amount of connectivity as indicated 
by the largest number of "0's” at 3 each.  

Indeed, one can also observe market dynamics across the four market categories (major export 
terminal, interior river, processing facility, and interior locations) by examining relationships 
based on these average linkages.  The export markets appear to have the greatest amount of 
influence on average.  That is, the export markets (Gulf and Toledo) have the greatest amount of 
forward linkages considering both leading and simultaneous relationships.  Further, Omaha 
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exhibits a lagging relationship, as demonstrated by the greatest number of lagging relationships, 
as well as independent relationships.  Finally, the interior river and interior markets exhibit the 
greatest amount of combined forward and backward price transmissions.  In sum, the results 
suggest that export markets tend to display dominate relationships with other markets displaying 
satellite behavior.   

Spatial Analysis 
Spatial dependence is the result of a systematic pattern in observed basis values or price bids 
over space.  Spatial dependence may be the result of shared information among neighbors as well 
as similar geographic properties at each location, such as access to transportation or natural 
geographic features (McNew, 1996).  The classic measure of spatial dependence is Moran's I 
(Moran, 1950).  Moran's I measures the degree of spatially weighted deviations from the global 
mean.  Moran's I is expressed: 
 

ሺ5ሻ                                                 ܫ ൌ  
ܰ

∑ ∑ ݓ

∑ ∑ ሺݓ ܺ െ തܺሻሺ ܺ െ തܺሻ

∑ ሺ ܺ െ തܺ ሻଶ  

 
where N is the number of observations, wij is a neighbor definition which is strictly positive 
when observations i and j share a meaningful relationship in space, and തܺ is global mean value of 
the random variable X.  Moran's I is weakly bounded by – 1 and + 1, where – 1 indicates perfect 
negative spatial dependence and + 1 indicates perfect positive spatial dependence.  The measure 
takes the value of 0 for spatially independent variables.  Hypothesis testing is conducted using a 
bootstrap procedure based on random draws with replacement.  We define the spatial weights as 
equally weighted values at the five nearest neighbors. 
 
The Moran's I test results are reported in Table 3.  The results demonstrate that the basis levels 
are positively spatially autocorrelated at a statistically significant level.  The Moran's I follows a 
seasonal pattern with peak levels during the spring months (April – June) and minimum values 
during the fall months (September – November) with the exception of 2007.  The nearby basis 
during the spring months are for either the May or July futures contract which reflects the old 
crop. Thus these results indicate that the degree of spatial association is positively related to 
uncertainty throughout the drawdown period of the old crop that is stored.  As well, this is a time 
that new crop is being planted, thus a considerable amount of uncertainty exists in the market. 
Indeed, the results indicate that the degree of spatial association is positively related to 
uncertainty throughout the growing season.    
 
The spatial multiplier estimates are presented in Table 4 and in Figure 3.  The vertical axis shows 
the estimated spatial multiplier in each period, and the figure includes a two-period rolling 
average and a linear trend.  The estimated spatial spillover in each year is the highest during the 
spring months.  This would suggest that price changes at each location carry the greatest global 
effect during the periods of the greatest uncertainty.  However, the period with the minimum 
spillover is not consistent across years.  In addition, the two-period moving average does not 
contain a discernable trend.  In sum, the results suggest a strong degree of simultaneous 
information sharing over space. 
 

 



 7

 
Summary and Conclusions 

 
Our analysis demonstrates the degree to which soybean markets share information in 
determining basis levels over both time and space.  We define four market categories: major 
export terminals, interior river locations, soybean processing facilities, and interior locations.  
The evaluation is conducted through time series analysis and spatial econometrics.  The time 
series analysis consists of Granger causality tests of weekly basis values in each market over the 
period January 2003 – November 2009.  The results suggest that export markets lead the price 
discovery at the other locations 

The spatial econometric analysis, on the other hand, examines the degree of simultaneous spatial 
spillovers in observed basis over the period January 2006 – December 2009.  The spatial lag 
specification addressed four periods in the soybean crop year: planting, summer, harvest, and 
winter.  The model specification directly ties each location to its neighbors (via the spatial 
weights matrix), yet all observations are linked through higher order neighbor relationships (i.e., 
neighbors of neighbors and so on).  The spatial multiplier therefore models the expected change 
in the basis at all locations given a change in the basis at a single location.  The maximum value 
was observed during the spring months, most associated with old crop inventory drawdown as 
well as planting of new crop bean.  Thus, price changes at each location carry the greatest global 
effect during the periods of the greatest uncertainty.   
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Table 1. Granger Causality Resultsa,b  

 

 
a. Results are interpreted from row to column.  For example, for Peoria (row) and Raleigh (column), there is a simultaneous causality relationship 
in that there is a rejection of the null hypothesis that Peoria does not lead Raleigh, and a rejection of the null that Raleigh does not lead Peoria, 
both at the 1% level (↔).  Similarly, for Peoria (row) and Omaha (column), Peoria leads Omaha (→) as there is a rejection of the null that Peoria 
does not lead Omaha, but a failure to reject the null that Omaha does not lead Peoria.  For Omaha (row) and C IA (column), C IA is found to lead 
Omaha (←) at the 1% level (rejection of the null at the 1% level), but Omaha does not lead C IA (failure to reject null).  A zero (0) suggests that 
there is a failure to reject the null in each direction (no causality).   

b. C IL is Central Illinois, NW IA is Northwest Iowa, C IA is Central Iowa, E IA is Eastern Iowa, C KS is Central Kansas, and SE IN is Southeast 
Indiana.  

  

Gulf Toledo St. Louis Peoria Bellevue Omaha Raleigh C IL NW IA C IA E IA C KS SE IN

Gulf ↔ 0 ↔ → → → ↔ ↔ ↔ ↔ ↔ →

Toledo ↔ ↔ → → ↔ → → ↔ ↔ ← →

St. Louis 0 ↔ ↔ → → ↔ → → → →

Peoria ↔ → ↔ → ↔ ↔ ↔ ↔ ↔

Bellevue ← ↔ 0 0 ↔ ↔ 0 ←

Omaha ↔ ← 0 ← ← → ↔

Raleigh ↔ ↔ ↔ ↔ ← ↔

C IL 0 → ↔ 0 ↔

NW IA ↔ ↔ → ↔

C IA ↔ ← →

E IA ↔ →

C KS 0

SE IN
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Table 2. Summary of Granger Causality 
Resultsa  

  
Simultaneous 

Causality  Lead Lag  
No 

Causality 
Gulf 7 4 0 1 
Toledo 6 5 1 0 
St. Louis 4 6 0 2 
Peoria 8 2 0 1 
Bellevue 5 0 4 3 
Omaha 4 2 6 1 
Raleigh 9 0 3 0 
C IL 4 2 3 3 
NW IA 7 1 1 3 
C IA 7 2 3 0 
E IA 9 2 1 0 
C KS 3 3 3 3 
SE IN 5 1 5 1 

a.C IL is Central Illinois, NW IA is Northwest Iowa, C IA is Central Iowa, E IA is Eastern Iowa,  
C KS is Central Kansas, and SE IN is Southeast Indiana.   
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Table 3. Spatial Dependence Test Results a 

2006 2007 2008 2009 
Winter 0.726 0.674 0.719 0.807 
Spring 0.739 0.784 0.847 0.846 

Summer 0.739 0.690 0.841 0.841 
Fall 0.653 0.744 0.629 0.722 

 

a All results are statistically significant at α ≤ 0.01. 
 
 

 
 
 
Table 4. Spatial Multiplier Estimates 

 2006 2007 2008 2009 
Winter 6.671 5.915 6.301 7.856 
Spring 7.321 7.536 9.065 9.718 

Summer  7.321 5.656 8.952 5.823 
Fall 6.701 6.063 4.505 5.823 
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Figure 1: Market Definitions and Locations 
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Figure 2: Elevator Locations and Market Definitions 
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Figure 3 Spatial Multiplier Results 
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