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Theory of Storage and Option Pricing: 
Analyzing Determinants of Implied Skewness and Implied Kurtosis 

 
Practitioner’s Abstract: Options on agricultural futures are popular financial instruments used 
for agricultural price risk management and to speculate on future price movements. Poor 
performance of Black’s classical option pricing model has stimulated many researchers to 
introduce pricing models that are more consistent with observed option premiums. However, 
most models are motivated solely from the standpoint of the time series properties of futures 
prices and need for improvements in forecasting and hedging performance. In this paper we 
propose a novel arbitrage pricing model motivated from the economic theory of optimal 
storage. We introduce a pricing model for options on futures based on a Generalized Lambda 
Distribution (GLD) that allows greater flexibility in higher moments of the expected terminal 
distribution of futures price. We show how to use high-frequency data to estimate implied 
skewness and kurtosis parameters. We propose an economic explanation for variations in 
skewness based on the theory of storage. We use times and sales data for corn futures and 
options on futures for the period 1995-2009. After controlling for changes in planned acreage, 
we find a statistically significant negative relationships between ending stocks-to-use and 
implied skewness and kurtosis, as predicted by the theory of storage. 

Keywords: arbitrage pricing model, options on futures, generalized lambda distribution, 
theory of storage, skewness, kurtosis 

1. Introduction 

Options written on commodity futures have been investigated from several aspects in the 
commodity economics literature. For example, Lence (1994), Vercammen (1995), Lien and 
Wong (2002), and Adam-Müller and Panaretou (2009) considered the role of options in 
optimal hedging. Use of options in agricultural policy was examined by Gardner (1977), 
Glauber and Miranda (1989), and Buschena (2008). The effects of news on options prices had 
been investigated by Fortenbery and Sumner (1990), Isengildina-Massa et al. (2008) and 
Thomsen (2009). The informational content of options prices has been looked into by Fackler 
and King (1990), Sherrick, Garcia and Tirupattur (1996), and Egelkraut et al. (2007). Some of 
the most interesting work done in this area considers modifications to the standard Black-
Scholes formula that accounts for non-normality (skewness, leptokurtosis) of price 
innovations, heteroskedasticity, and specifics of commodity spot prices (i.e. mean-reversion). 
Examples include Kang and Brorsen (1995), and Ji and Brorsen (2000).  

In this article we revisit the well-known fact that the classical Black’s (1976) model is 
inconsistent with observed option premiums. Previous studies like Fackler and King (1990) 
and Sherrick, Garcia and Tirupattur (1996) address this puzzle by identifying properties of 
futures prices that deviate from assumptions of the Black’s model, i.e. leptokurtic and skewed 
distributions of the logarithm of terminal futures prices and stochastic volatility. A common 
feature of past studies is the grounding of their arguments in the time-series properties of 
stochastic processes for futures prices and the distributional properties of terminal futures 
prices. In other words, their arguments are primarily statistical. In contrast to previous 
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studies, we offer an economic explanation for the observed statistical characteristics. We focus 
on presenting an alternative pricing model that is not focused on improving the forecasts of 
options premiums compared to Black’s or other models, but linking premium deviations to 
fundamental characteristics associated with the theory of storage.  

The article is organized as follows. In the next section we examine in detail the implications of 
Black’s classical option pricing model and contrast it with predictions from the theory of 
storage as outlined by Williams and Wright (1991). We put forward a testable hypothesis 
grounded in the described economic analysis and propose a novel arbitrage pricing model 
based on the Generalized Lambda Distribution (GLD) that we then use to devise a method for 
testing our hypothesis. The estimation process requires multiple data steps that we describe in 
detail in the third section. The fourth section describes the estimation procedure and presents 
results. A set of conclusions completes the paper.  

2. Theory 

2.1. Foundations of arbitrage pricing theory for options on futures 

Black (1976) was the first to offer an arbitrage pricing model for options on futures contracts. 
Despite numerous extensions and modifications proposed in the literature, and the inability of 
the model to explain observed option premiums, traders still use this model in practice.  This 
is likely due to its simplicity and ability to forecast option premiums after appropriate 
“tweaks” are put in place. Black proposes that futures prices follow a stochastic process as 
described below:  

 dF Fdz  (2.1) 

where F stands for futures price,  for volatility, and dz is an increment of Brownian motion. 

The implication is that futures prices are unbiased expectations of terminal futures prices 
(ideally equal to the spot price at expiration), and the stochastic process followed by futures 
prices is geometric a Brownian motion.  

The option premium V is equal to the present value of the expected option payoff under a risk-
neutral distribution for terminal prices. For example, for a call option with strike K , volatility
 , risk-free interest rate r and time left to maturity T :  

      0 00
, , , , ,0 ; , , ,rT

T T TV K F T r e Max F K f F F r T dF 
   (2.2) 

Because delta hedging options on futures does not require a hedger to pay the full value of the 
futures contract due to margin trading, a risk-neutral terminal distribution for futures prices is 
equivalent to a risk-neutral terminal distribution for a stock that pays a dividend yield equal to 
the risk-free interest rate: 

 2 2
0

1
ln ~ ln ,

2TF N F T   
 

 (2.3) 
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Thus, Black’s model postulates that distribution of terminal futures prices, conditional on 
information known at time zero, is lognormal with the first four moments fully determined by 
the current futures price and volatility parameter  . In particular, the first four moments of 
the risk-neutral terminal distribution are equal to: 

   2 22 2 2 22
0

4 32
0

2( 2) 31 1 2t t t t t tF F e SKEW KUe e e eRT e               (2.4) 

For example, if a futures price is $2.50, volatility is 30%, and there are 160 days left to 
maturity, the standard deviation of the terminal distribution would be $0.50, skewness would 
be 0.60 and kurtosis would be 3.64. Therefore, the standard Black’s model implies that the 
expected distribution of terminal prices would be positively skewed, and leptokurtic. When 
complaints are raised that Black’s model imposes normality restrictions, it is the logarithm of 
the terminal price that the critique refers to.  

The standard way to check if Black’s model is an appropriate pricing strategy is to exploit the 
fact that for given futures price, strike price, risk-free interest rate, and time to maturity, the 
model postulates a one-to-one relationship between the volatility coefficient and the option 
premium. Thus, the pricing function can be inverted to infer the volatility coefficient from an 
observed option premium. Such coefficients are referred to as implied volatility and the 
principal testable implication of Black’s model is that implied volatility does not depend on 
how deep in-the-money or out-of-money an option is. If the logarithm of terminal price is not 
normally distributed, then Black’s model is not appropriate, and implied volatility (IV) will 
vary with option moneyness – a flagrant violation of model’s assumptions. Black’s model 
gives us a pricing formula for European options on futures.  Prices of American options on 
futures that are assumed to follow the same stochastic process as in Black’s model must also 
account for the possibility of early exercise. For that reason, their prices cannot be obtained 
through a closed-form formula, but must be estimated through numerical methods such as the 
Cox, Ross and Rubinstein (CRR) (1979) binomial trees. While CRR binomial trees preserve 
the basic restrictions of Black’s model (i.e. terminal distribution of log-prices is normal), 
Rubinstein (1994, 1998) shows how that can be relaxed to allow for non-normal skewness and 
kurtosis. To illustrate the effect of skewness and kurtosis on Black’s implied volatility we used 
Edgeworth binomial trees (Rubinstein, 1998).  This allows for pricing options that exhibit 
skewed and leptokurtic distributions of terminal log-prices. As can be seen in Figure 1, zero 
skewness and no excess kurtosis (S=0, K=3) corresponds to a flat IV curve, i.e. CRR 
implied volatility estimated from options premiums is the same no matter what strike is used to 
infer it. A leptokurtic distribution will cause so called “smiles”, i.e. options with strikes 
further away from the current futures price will produce higher implied volatility coefficients. 
Positive skewness creates an upward sloping curve, and negative skewness a downward 
sloping IV curve. Typically, CRR implied volatility curves for storable agricultural 
commodities (i.e. corn, soybeans, wheat) are upward sloping. As an example consider the 
December 2006 corn contract.  The futures price on June 26, 2006 was $2.49/bu. As seen in 
Figure 2, the implied volatility curve associated with calculating IV using various December 
option strikes is strongly upward sloping, with the implied volatility coefficients for the 
highest strike options close to 15 percentage points higher than the implied volatility for 
options with lower strikes.  
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Three approaches can be used to address this issue: 

1) Start from the end: relax the assumptions concerning risk-neutral terminal distributions 
of underlying futures prices, i.e. allow for non-lognormal skewness and kurtosis. As 
long as delta hedging is possible at all times (i.e. markets are complete), it is still 
possible to calculate option premiums as the present value of expected option payoffs. 
Examples of this approach include Jarrow and Ruud (1982), Sherrick et al. (1996), and 
Rubinstein (1998). While the formulas that derive option premiums as discounted 
expected payoffs assume that options are European, one can still price American 
options using implied binomial trees calibrated to the terminal distribution of choice 
(Rubinstein, 1994).  

2) Start from the beginning: start by asking what kind of stochastic process is consistent 
with a non-normal terminal distribution? By introducing appropriate stochastic 
volatility and/or jumps, one might be able to fit the data just as well as by the approach 
above. Examples of this approach are Kang and Brorsen (1995), and Ji and Brorsen 
(2009). 

3) “Tweak it so it works good enough” approach: if one is willing to sacrifice 
mathematical elegance, the coherence of second approach, and insights that might 
emerge from the first approach, and if the only objective is the ability to forecast day-
ahead option premiums one can simply tweak Black’s model. An example of such 
approach would be to model volatility coefficient as a quadratic function of the strike. 
Even though it makes no theoretical sense (this is like saying that options with different 
strikes live in different universes), this approach will work good enough for many 
traders. A seminal article that evaluates the hedging effectiveness of such approach is 
Dumas, Fleming and Whaley (1996).  

In this article we take the first approach, and modify the Black’s model by modifying the 
terminal distribution of futures price. Instead of a lognormal, we propose a generalized 
lambda distribution (GLD) developed by Ramberg and Schmeiser (1974) and introduced to 
options pricing by Corrado (2002). An alternative would be to use Edgeworth binomial trees, 
but preliminary analysis showed that such an approach may not be adequate for situations 
where skewness and kurtosis are rather high. In addition, Edgeworth trees work with the 
skewness of terminal log-prices, while we prefer to have implied parameters for the skewness 
of terminal futures prices directly, not their logarithms. In addition, the GLD pricing model 
allows for a higher degree of flexibility in terms of skewness and kurtosis, i.e., its’ parameters 
are easy to imply from observed options prices and it is straightforward to develop a closed-
form solution for pricing options. While these are all favorable characteristics, it is in fact the 
ability to gain additional economic insight that truly justifies yet another option pricing model. 
GLD allows us to get an explicit estimate of skewness and kurtosis of the terminal 
distributions, and we can use that to test predictions of the theory of storage that have thus far 
remained conjectures.   
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2.2. Theory of storage and time-series properties of commodity spot and futures prices 

Deaton and Laroque (1992) used a rational expectations competitive storage model to explain 
nonlinearities in the time series of commodity prices: i.e. skewness, rare but dramatic 
substantial increases in prices, and a high degree of autocorrelation in prices from one harvest 
season to the next. The basic conclusion of their work is that inability to carry negative 
inventories introduces a non-linearity in prices that manifests itself in the above 
characteristics.  

This is an example of theory being employed in an attempt to replicate patterns of observed 
price data. In a similar fashion, but subtly different, Williams and Wright (1991) postulate that 
the features of expected price distributions at harvest time are conditional on information 
concerning the current (pre-harvest) price and available stocks. According to them, when 
observed at annual or quarterly frequency, spot prices exhibit positive autocorrelation, and an 
autoregressive structure emerges because storage allows unusually high or low excess demand 
to be spread out over several years. Furthermore, the variance of price changes depends on 
the level of inventory. When stocks are high, and spot price is low, the abundance of stored 
stocks serves as a buffer to price changes, and variance is low. When stocks are low, and thus 
spot price is high, stockpiles are near empty and unable to buffer price changes. Finally, the 
third moment of the price change distribution also varies with inventories. Since storage can 
always reduce the downward price pressure of a windfall harvest, but cannot do as much for a 
really bad harvest, large price increases are more common than large decreases. The 
magnitude of this cushioning effect of storage depends on the size of the stocks. In conclusion, 
one should expect commodity prices to be mean-stationary, heteroskedastic and with 
conditional skewness, where both the second and third moments depend on the size of the 
inventories.  

Testing the theory proceeds with this argument: if we can replicate the price pattern using a 
particular set of rationality assumptions, then we cannot refute the claim that people indeed 
behave in such manner. That is the road taken by Deaton and Laroque (1992) and Miranda 
and Rui (1995). However, since in the spot price series we only see realizations of prices, not 
the conditional expectations of them, we cannot use spot price data to directly test what the 
market expected to happen. To the best of our knowledge, predictions from storage theory 
focused on the scale and shape of expected distributions of new harvest spot prices has 
remained untested. In this paper we use options data to infer the conditional expectations of 
terminal futures prices, and therefore test the following predictions of theory of storage:  

 The lower inventories are, the higher will be the kurtosis of the conditional harvest 
futures price distribution 

 The lower inventories are, the more positive will be the skewness of the conditional 
harvest futures price distribution 

We use an options pricing formula based on the generalized lambda distribution to estimate 
skewness and kurtosis of expected (conditional) harvest futures price distributions. Implied 
parameters from the model are then used to test the hypotheses above.  
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2.3. Option pricing formula using generalized lambda distribution 

The generalized lambda distribution (GLD) was invented by Ramberg and Schmeiser (1974), 
Ramberg et al. (1979) described further its’ properties, and it was introduced to options pricing 
by Corrado (2002). Corrado derived a formula for pricing options on non-dividend paying 
stocks. Here we review the properties of GLD and adopt his formula to options on futures. 

GLD is most easily described by a percentile function 1  (i.e. inverse cumulative density 
function): 

     43

1
2

1p p
F p






 
   (2.5) 

For example, to say that for  0.90, 4.5p F p   means that the market expects with a 90% 

probability that the terminal futures price will be lower than or equal to $4.50/bu.  

GLD has four parameters: 1 controls location, 2 determines variance, and 3 and 4 jointly 
determine skewness and kurtosis. In particular the mean and variance are calculated as follows: 

  
1 2

2 2 2
2

/

/

A

B A

  

 

 

 
 (2.6) 

with
3 4

1 1

1 1
A

 
 

 
and  3 4

3 4

1 1
2 1 ,1 2

1 2 1 2
B   

 
    

 
,where  

 
stands for 

complete beta function. We see that the 3 and 4 parameters influence both location and 

variance, however 1 influences only the first moment, and 2 influences only the first two 

moments, i.e. skewness and kurtosis do not depend on 1 and 2 . 

The skewness and kurtosis formulas are: 

 

3
3

3 3 2 3
2

2 4
4

4 4 4
2

3 2

4 6 3

C AB A

D AC A B A


  


 

 
 

  
 

 (2.7) 

with    3 4 3 4
3 3

1 1
3 1 2 ,1 3 1 ,1 2

1 3 1 3
C      

 
       

 
 

and      3 4 3 4 3 4
3 3

1 1
4 1 3 ,1 4 1 ,1 3 6 1 2 ,1 2

1 4 1 4
D         

 
          

 
 

                                                            
1 F here stands for futures price, not for cumulative density function. 
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Standardized GLD has a zero mean and unit variance, and has a percentile function of the 
form: 

       43

2 3 4 4 3

1 1 1
1

, 1 1
F p p p



    
 

       
 (2.8) 

Where     2
2 3 4 3, sign B A       

From here, we can move more easily to an options pricing setting. We wish to make GLD an 
approximate generalization of the log-normal distribution so we keep the mean and the 
variance the same as in (2.4), while allowing skewness and kurtosis to be separately determined 
by the 3 and 4 parameters. Therefore, the percentile function relevant for option pricing will 
be  

      
2

43
0

2 3 4 4 3

1 1 1
1 1

, 1 1

te
F p F p p




    

             
 (2.9) 

Note that this is equivalent to (2.5) with 
 

2

1 0
2 3 4 4 3

1 1 1

, 1 1

te
F




    

 
     

 

and 
 

2

2 3 4
2

,

1te

  
 


. This will guarantee that the first two moments of the terminal distribution 

will be  22 2
0 0 1tF F e     , just like in Black’s model. 

The pricing formula for European calls is 

      0 3 4 0
, , , , , , ,0rT

TV K F T r e Max F K dp F  
   (2.10) 

As shown by Corrado (2002), we can simplify this problem through a change-of-variable 
approach where   TF p F : 

           
 

1

0
,0T TK p K

Max F K dp F F K dp F F p K dp
 

        (2.11) 

Here  p K stands for the cumulative density function, evaluated at K. While there is no closed 

form formula for the function, values can be easily found with numerical approaches by using 
the percentile function.  

Integrating  F p we get  
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 
   

 

 

   
        

2 4

3

2 43

1
1

1 1
1 0

2 3 4 3 4 4 3

11

0
2 3 4 3 4

11 1 1 1

, 1 1 1 1

1 11
1

, 1 1

t

p K

p K

t

pe
G F p dp F p p p p

p K p Kp K p Ke
F p K






      

    






         
       

         
   

  


 

with the final European call pricing formula as:  

  0 3 4 0 1 2, , , , , , rt rtV K F T r F e G e KG       (2.12) 

where 1G is defined above and  2 1G p K   

In a similar way it can be shown that the price for a put is  

      0 3 4 2 0 1, , , , , , 1 1rt rt
PV K F T r e K G F e G         (2.13) 

3. Data 
Commodity futures for corn, soybeans and wheat as well as options on futures are traded on 
the Chicago Mercantile Exchange (formerly the Chicago Board of Trade). A dataset 
comprising of all recorded transactions, i.e. times and sales data for both futures and options 
on futures, for the period 1995 through 2009, was obtained. It includes data for both the 
regular and electronic trading sessions. The total number of transactions exceeds 90 million. 
Options data were matched with the last preceding futures transaction. LIBOR interest rates 
were obtained from British Bankers’ Association, and represent the risk-free rate of return. 
Overnight, 1 and 2 weeks, and 1 through 12 months of maturity LIBOR rates for period the 
1995 through 2009 were used to obtain the arbitrage-free option pricing formulas. In 
particular, each options transaction was assigned the weighted average of interest rates with 
maturities closest to the contract traded. To avoid serial correlation in residuals from 
estimating implied coefficients in subsequent steps, the data frequency was reduced to not less 
than 15 minutes between transactions for the same options contract. This resulted in 11,139 
data files, each containing between 200 and 500 recorded transactions for a particular trading 
day for a given commodity. For each data point we separately estimated implied volatility 
using CRR binomial trees with 500 steps. We then, for each data point, calculated the price of 
a European option using Black’s formula and assuming the same parameters (futures price, 
interest rate, time to maturity) as that recorded for the American option, while setting volatility 
equal to the one implied for American options. These ‘artificial’ European options are then 
used in calibration and econometric analysis.  

U.S. corn, soybean, and wheat market balance sheets were produced by the RENK 
Agribusiness Institute at UW-Madison.  Balance sheet data for stocks-to-use are used as a 
measure of the adequacy of ending stocks to serve as a buffer against a poor crop harvest.  
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In this paper we present results using only corn data. Research on the other two commodities is 
ongoing. Before estimating the parameters of the GLD pricing model, we can use the 
observations from Figure 1 to get some ideas concerning the evolution of the conditional 
terminal distribution of futures prices. Figure 3 shows the implied volatility curves for options 
on the December 2004 and December 2006 corn futures contracts. Note that about 400 days to 
maturity the IV curves are nearly flat. The slopes gradually increase up to July of the contract 
year, and then become flatter again. As we enter the harvest season, smiles start to dominate 
the picture. This is a typical pattern that emerges for nearly all years in our sample, with the 
noted exception of 2009 where symmetric smiles dominate the figure throughout. The 
evolution of IV curves can be best understood by examining an individual growing season for 
corn and the timing of market-sensitive USDA reports. At the end of March, USDA publishes 
the Prospective Plantings report that indicates the acreage farmers intend to plant to each of the 
major crops. In addition, reports on remaining stock levels are published at the end of each 
quarter. Finally, an acreage report is published at the end of June. This report estimates the 
number of acres actually planted for each crop. Note that reductions in implied volatility for at-
the-money options as well as the slopes of the IV curves regularly follows the publications of 
stocks and acreage reports. Therefore, to test predictions of storage theory, it is appropriate to 
focus on information contained in options premiums for the June trading period when 
considerable information is available concerning crop progress and intended acreage, but a lot 
of uncertainty is still unresolved relative to actual production levels.  

4. Research Methods and Results 
Our main hypothesis is that higher moments of the conditional distribution of terminal futures 
prices reflect market sentiment relative to the adequacy of current inventories to mitigate any 
production problems in the forthcoming harvest.  

For each contract, for each trading day, we separately estimate the parameters 3 4, ,   in the 
GLD option pricing formula. In particular, we minimize the squared difference in option 
premiums calculated with the GLD formula, and prices of European options as implied by 
Black’s model. 

We first need a starting value for the implied volatility of an option with a strike price closest 
to the underlying futures price. The starting values for the 3 and 4 parameters were chosen to 
correspond to the skewness and kurtosis of the terminal stock price with the restriction that the 
logarithm of the terminal price is normally distributed with variance equal to 2t , where 2 is 
the square of the starting value for the implied sigma parameter. We use Excel Solver to run 
the minimization problem, utilizing a FORTRAN compiled library (.dll file) created by 
Corrado (2002) that estimates GLD European Call prices. A formula for the GLD European 
put option was then programmed in Visual Basic for Applications.  

We use estimated lambda parameters to calculate implied skewness and kurtosis. While we are 
working on extensions, this paper is focused on an analysis of December corn futures (this is 
often referred to as the harvest contract). In particular, for the purposes here, we used only 
implied higher moments for trading days occurring between the 10th and 20th of June each year 
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in the sample period. For trading days used in following analysis, GLD option prices seem to 
work rather well, with an average absolute pricing error about 3/8 of a cent per bushel, and a 
maximum pricing error usually reaching not more than 2 cents (this occurs for the least liquid 
and most away from the money options). While there may be issues regarding the robustness 
of implied parameters with respect to starting values, the implied parameters seem to be rather 
stable from one day to the next. For example, for Dec ’05 corn, the skewness estimated 
between June 10 and June 20, 2005 varies between 1.09 and 1.22, with kurtosis ranging 
between 3.96 and 4.82. For that year, the average absolute pricing error was 5/8 of a cent per 
bushel, with a maximum pricing error of 2.4 cents.  

For all years in the sample, the implied skewness is 1.2 to 3 times higher than it would be if 
the logarithm of the terminal futures price was really expected to be normal. Implied kurtosis 
is 1.2 to 1.6 times higher than that predicted by Black’s model. We thus see that deviations 
from Black’s model are particularly pronounced in implied skewness.  

Relationship between implied skewness and kurtosis, ending stocks-to-use and planned changes 
in acreage is illustrated in Figure 4. We estimate simple linear regressions for the period 1995-
2009 using implied skewness and kurtosis as dependent variables with a constant, ending 
stocks-to-use and planned change in planted acreage as reported in Prospective Plantings report 
as explanatory variables. Regression statistics are reported in Table 1.  

A reduction in stocks-to-use by 1 percentage point increases skewness by 0.015, and kurtosis 
by 0.091, and these estimated coefficients are statistically significant at the 95% confidence 
level. Both results support the central hypothesis of the paper – deviations from Black’s model 
arise because conditional implied higher moments of the terminal distribution are higher than 
implied by the lognormality restriction. Controlling for planned change in acreage planted, 
moments vary systematically with the adequacy of stocks to buffer a poor harvest.  

5. Conclusions and further research 
An options pricing model based on a generalized lambda distribution provides a useful 
heuristic in thinking about determinants of the shape of terminal futures price conditional 
distributions. Results indicate that crop inventories play a significant role in determining the 
expected asymmetry and density in the tails of the distribution. In particular, results reveal that 
implied skewness is much more persistent than implied by Black’s model, and in years with 
low implied volatility implied skewness remains much higher than would be the case under the 
lognormality restriction. Further research will focus on extending this analysis to other storable 
crops. Of particular interest will be a comparison of soybeans and corn. Based on Brazil’s role 
in international soybean markets, there are effectively two harvests per year. Implications for 
the level, persistence, and evolution of implied skewness and kurtosis needs to be examined in 
this larger context.  

Thus far, the literature has focused on evaluating the impact of government reports on implied 
volatility coefficients. Our model allows us to extend this to higher moments and examine how 
reports (i.e., information) influence the entire distribution of prices, not just the second 
moment.  
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In absence of high frequency data, many researchers use end of day reported prices for futures 
and options to evaluate implied higher moments. By re-estimating this model using only end of 
day data we will be able to examine the amount of noise and possible direction of bias such an 
approach brings to estimates of implied higher moments.  

Our conjecture is that positive skewness emerges due to the storability of commodities. It 
would be interesting to use the GLD option pricing model to examine the evolution and 
determinants of higher moments of non-storable commodities. Further research is needed to 
examine the impact of durability of production factors for commodities that are themselves not 
storable.  

Finally, impacts of market liquidity and trader composition on levels and stability of implied 
higher moments is a new promising area for research. With careful design of the analysis, we 
may be able to find a way to separate the part of the option price that is due to implied terminal 
price distributions from additional premium influences incurred due to hedging pressure or lack 
of market liquidity.  
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Figure 1. Effects of Excess Kurtosis and Positive Skewness on Implied Volatility 

 

Notes: S stands for skewness, K for kurtosis of terminal futures log-prices. Option premiums are calculated via 
Rubinstein’s Edgeworth binomial trees that allow for non-normal skewness and kurtosis, and implied volatility is 
inferred using Cox, Ross and Rubinstein’s binomial tree which assumes normality in terminal futures prices. 
Black line in the above diagram with S=0 and K=3 corresponds to assumptions of Black’s model, and in such 
scenario implied volatility curve is flat across all strikes. Excess kurtosis (K>3) creates convex and nearly 
symmetric “smiles”, and positive skewness produces upward sloping implied volatility curve. 
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Figure 2. Typical pattern for Implied Volatility coefficients for options on agricultural futures  

 

 

Notes: Implied volatility coefficients are estimated for options on Corn December 2006 futures contract, on 
6/26/2006 using Cox, Ross and Rubinstein’s binomial tree with 500 steps. Underlying futures price was 2.49$/bu. 
Dots represent implied volatility coefficients for each strike, and smooth line is fitted quadratic trend.  
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Figure 4. Relationship between implied skewness and kurtosis, stocks-to-use and planned 
change in planted acreage 

 

 

Note: Years with increase in intended cultivated acreage of 5 or more percent are drawn using green rhombs. 
Years with decrease in intended cultivated acreage of 5 or more percent are drawn using red triangles. 

 

1995
1996

1997 1998

1999

2000

2001
2002

2003

2004

2005

2006

2007

2008

2009
1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Im
pl

ie
d 

Sk
ew

ne
ss

Ending Stocks-to-Use (%)

1995
1996

1997 1998

1999
2000

20012002

2003

2004

2005

2006

2007

2008

2009

4

4.5

5

5.5

6

6.5

4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00

Im
pl

ie
d 

K
ur

to
si

s

Ending Stocks-To-Use (%)



19 
 

Table 1. Determinants of implied skewness and kurtosis: descriptive statistics and regression 
results 

Descriptive Statistics 

Variable Mean Standard 
Deviation

Min Max

Implied Skewness 1.26 0.11 1.07 1.43
Implied Kurtosis 4.89 0.55 4.36 6.57

Ending Stocks-to-Use 
(Percentage) 

14.4 4.33 5 19.83

Intended Acreage Planted – 
Percentage Change 

0.73 6.08 -8 15

 

Note: Implied skewness and kurtosis were calculated for December corn contracts as average for implied 
parameters on trading days in period 6/10-6/20 of each year. On average, 100-150 data points were used in 
estimating implied parameters for each trading day in the stated periods, and 9 trading days per year were used in 
obtaining average implied skewness and kurtosis. 

Regression Results 

Explanatory variables Dependent Variable: GLD 
Implied Skewness 

Dependent Variable: GLD 
Implied Kurtosis 

Constant 1.49065
(0.1067) 

6.2572 
(0.4529) 

Ending Stocks-to-Use ratio -0.01539
(0.0071) 

-0.0915 
(0.0299) 

Intended Acreage Planted – 
Percentage change  

-0.0113
(0.0050) 

-0.0653 
(0.0214) 

Degrees of Freedom 12 12 
Mean Root Square Error 0.089 0.374 

2R  0.35 0.50 
 

Note: Critical t-statistic for 12 d.f. for 95% is 2.17881. All coefficients are statistically significant at 95% 
confidence level. 


