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Have Commodity Index Funds Increased
Price Linkages between Commodities?

To shed more light on the ongoing debate on the role of commodity index funds on
recent commodity price spikes, we investigate the linkages between commodity futures
prices surrounding the time period of increased index fund activity. We take a Bayesian
approach to test stationarity and cointegration of commodity pairs and trios. We find
that simple correlation coefficients between futures prices and the probability of non-
stationarity of the series have increased over time as the size of index fund trading
became larger. However, our cointegration test results show no evidence for an in-
crease in cointegration.

Key words:cointegration, commodity futures, index funds

Introduction

Commodity index funds have been blamed by some for recent price spikes in many
agricultural commodities (Gilbert 2010), for causing commodity price bubbles asso-
ciated with those same price spikes (De Schutter 2010), and generally distorting the
price discovery function of commodity futures markets. Various recent research papers
have advanced conclusions in support of (Baffes and Haniotis 2010) and against (Stoll
and Whaley 2010, Sanders and Irwin 2010, Wright 2011) these claims. What has not
been investigated is whether the surge in the size of the commodity index funds has
translated into an increase in the linkages among commodity prices.

Prices of some commodities are linked for biological reasons (e.g., corn gets fed to
cattle) while other prices are linked due to substitutability in production (farmers
can switch easily between growing two or more crops) or consumption (people will
switch from wheat to corn for subsistence calories if it is cheaper). Other commodities
have no particular reason for any price linkage between them and we would therefore
expect to find their prices relatively uncorrelated. However, if commodity index funds
do impact either the spot or futures prices of commodities (an open question), then
the large increase in the size of commodity index funds over the past decade may have
introduced stronger linkages across commodities and led previously unconnected prices
to be correlated (or in the case of non-stationary series, possibly cointegrated).

The case for a large impact by commodity index funds on commodity prices and futures
markets is based on the idea that a new class of investors has entered commodity fu-
tures markets (Gilbert 2010). These new investors, commodity index funds, generally
take long only positions and also generally invest in a relatively fixed basket of com-
modity assets. The first of these two characteristics could push up commodity prices if
the demand for long futures positions actually changes the equilibrium of supply and
demand in commodity futures markets and spot prices remain linked to the futures.
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The second could introduce a new reason for seemingly unrelated commodity prices
to behave as if linked by some fundamental relationship since these new buyers take
positions in some fixed proportions. More formally, we investigate the possibility that
the growth of commodity index funds has led previously uncointegrated commodity
futures markets to become cointegrated.

It is worth noting that the actions by these commodity index funds might not cause an
increase in cointegration among commodity markets for several reasons. First, fixed
proportion demand in a set of commodity markets does not necessarily lead to coin-
tegration among those markets. If this new demand represents a small share of total
volume in these markets and does not dominate other trends, cycles, and shifts in
these markets then one should not expect cointegration to result. Second, while un-
derstanding cointegration as a shared trend is a useful construct, one should remember
that cointegration implies an equilibrium relationship between the variables involved
as best viewed through the error-correction represention of a time series model of a set
of cointegrated series. Commodity index funds that simply take new funds and buy
a basket of commodity futures contracts according to some pre-determined portfolio
model would not represent actions based on an equilibrium ratio in futures prices nor
would they drive deviations from such an equilibrium back into equilibrium. However,
if commodity index funds had freedom to time purchases of individual commodities
within their baskets so that they tended to buy the “cheaper” commodities in higher
proportions, balancing their actions out over quarters or years, then such actions would
represent a new force pushing possibily unrelated commodity prices into an equilibrium
relationship. Under this scenario, the increase in volume from commodity index funds
in commodity markets over the last decade could indeed result in an observed increase
in cointegration among various commodity futures markets.

We test a wide array of commodity futures prices for a trend in linkages over time. In
particular, we estimate the correlations between commodities and test for cointegration
(given that non-stationarity is found in the individual commodity prices) for data
beginning in 1990 and ending in 2003, 2008, and 2011. These three dates will represent
the before, during, and after points in the increased size of the commodity index funds.
Since farming, processing, and consumption practices have not experienced any major
shifts over that particular, quite short, time period, it seems reasonable to ascribe
any changes found in commodity market linkages over this time frame to the growing
influence of commodity index funds. Commodities included are corn, soybeans, live
cattle, feeder cattle, lean hogs, cotton, cocoa, and crude oil. Some of these should
be related and some should not; we hope this broad set of commodities will help to
find any increase in cointegration over time. We use a Bayesian procedure to test for
unit roots and cointegration (Dorfman 1995). The Bayesian cointegration test applied
here allows for pairwise tests as well as tests of larger groups of price series that are
particularly well-suited to the situation investigated in this paper.
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Testing for Linkages between Commodity Prices

To examine whether linkages have increased among commodity prices due to the in-
crease in activity in these markets by commodity index funds, we take a two-pronged
approach. First, we examine the futures prices of a set of diverse commodities by
investigating changes in simple correlations over different sample periods. Second, we
examine the time series properties of the same set of futures prices to see if the proba-
bilities of both unit roots and cointegration have changed over the same set of sample
periods.

Correlations

The “state of the art” method for testing for changes in market linkages is to test
for cointegration between the pair (or set) of prices being examined. If prices are
cointegrated, they are linked by some long-run equilibrium relationship that is causing
them to move together in the sense that over time the prices cannot diverge too far
from their long-run equilibrium ratio. However, if the futures prices to be examined are
not non-stationary (that is, do not have unit roots), then they cannot be cointegrated
and a cointegration test cannot determine if the markets have become more “linked
over time.”

Because futures prices may or may not be non-stationary in the difference-stationary
sense, we also compute simple correlation coefficients between various pairs of futures
price series for the periods of 1990-2003, 1990-2008, 1990-2011, and 2004-2011. If
commodities that have no apparent reason to be linked exhibit a rising correlation
as the importance of commodity index funds increase, we will take that as evidence
that commodity index funds are having a significant effect in these commodity futures
markets. Test of statistical significance can be performed on the correlation coefficients
because asymptotically correlation coefficients have a variance equal to 1/T where T
is the sample size.

A Bayesian Test for Non-Stationarity and Cointegration

To test the futures price series for non-stationarity and cointegration, we utilize a
Bayesian procedure developed by Dorfman (1995). This approach is based on an
autoregressive time series model of each futures price and utilizes both univariate and
multivariate models. To begin, let the standard multivariate model under consideration
be given by

yt = µ+ Φ1yt−1 + Φ2yt−2 + · · ·+ Φpyt−p + ϵt, (1)

where yt is the set of m futures price series to be tested, µ is a vector of constants
to be estimated that represent either the mean of the series if they are stationary or
the trend if they are non-stationary, Φi is a set of autoregressive parameters to be
estimated, and ϵ is assumed to be a zero-meaned Gaussian process with a constant
covariance matrix Σ. The subscripts on the yt denote time periods which are assumed
to go from t = 1, · · · , T and the maximum lag included in the autoregressive process
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is p.

The long-run dynamic properties of such a time series can be analyzed easily through
the matrix

A =


Φ1 I 0 · · · 0
Φ2 0 I 0 · · · 0
Φ3 0 0 I 0 · · · 0
...

. . . 0 I
Φp · · · · · · 0 0

 , (2)

where A is the transition matrix from the state space representation of the model in
(1). The presence of non-stationary roots in the process in (1) translates to the matrix
A having eigenvalues with magnitudes that are greater than one; unit roots would be
eigenvalues with magnitude exactly equal to one; and stationary roots correspond to
eigenvalues with magnitudes less than one. This suggests tests for non-stationarity
can be centered on the eigenvalues of estimates of A while cointegration tests can be
conducted by comparing the number of non-stationary roots in (1) to the number of
non-stationary roots in the corresponding set of univariate autoregressive models for
the set of variables in the vector yt.

To implement such tests, we take a Bayesian approach. Given that in most applica-
tions we have little prior knowledge about likely autoregressive coefficients and that an
informative prior is necessary in this model to ensure a well-behaved posterior distri-
bution, we place an informative prior over the number of non-stationary roots in the
process {yt}. Denote the number of non-stationary roots in the process by λ and the
discrete prior probabilities by

p(λM = k) = ωk, k = 1, 2, · · · ,mp. (3)

Priors in the above form can be placed on the multivariate series being tested and
on each individual series of the set. If the number of non-stationary roots in each
individual series is denoted by λU

j and the number of non-stationary roots in the full
set of univariate models is λU , then the implied prior on the number of non-stationary
roots in the set of m univariate models is given by

p(λU = k) = ωU
k =

∑
{kj}∈Kk

(
m∏
j=1

ωj
kj

)
, k = 1, 2, · · · ,mp, (4)

where Kk is a set which contains all the sets of m integers that sum to k so that (4)
essentially finds all the combinations of the prior probabilities from the m univariate
series that yield a total number of k non-stationary roots across the set of series.

Given these definitions, if we write the model in (1) in fairly standard matrix notation
as Y = XΓ+ ϵ and employ a standard Jeffreys prior on the error covariance matrix Σ,
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then the posterior distribution for the model is

p(Γ,Σ|Y,X) ∝ p(λ(Γ))|Σ|−(T−p+m+1)/2 exp{−0.5tr[S + (Γ− Γ̂)′X ′X(Γ− Γ̂)]}, (5)

where S is the sum of squared errors and Γ̂ is the usual OLS (or maximum likelihood)
estimator.

The posterior distribution in (5) is not analytically tractable because of the discrete
mass prior on the number of non-stationary roots which translates into a discontinuous
step-function prior in the parameter space of the autoregressive coefficients in Γ (for
details, see Dorfman 1995). Further, we are not interested in the posterior distribution
of the structural parameters of (1), but rather in the posterior probabilities of various
numbers of non-stationary roots. On both counts, numerical methods are the best
approach to analyze this posterior distribution. Once a set of draws have been gen-
erated (details to be given shortly) from the posterior distribution in (5), the number
of non-stationary roots for each draw can be easily computed through an eigenvalue
decomposition of the A matrix given in (2). This allows for the straightforward con-
struction of a numerical approximation to the posterior distribution of the number of
non-stationary roots in {yt}.

A test for non-stationarity is simply based on the posterior probability of λ > 0 and
the test for cointegration centers on

Ψ = p(λM < λU) =

mp−1∑
c=0

p(λM = c)p(λU > c), (6)

where Ψ is the posterior probability of cointegration and the formula above is imple-
mented using the posterior probabilities computed from the numerical approximation
to the posterior distribution of the number of non-stationary roots.

Data

We analyze eight different futures markets that can be categorized into four groups:
grain (corn, soybeans), livestock (live cattle, feeder cattle, lean hogs), soft (cotton,
cocoa), and energy (crude oil). Grain futures contracts are traded at the Chicago Board
of Trade (CBOT), livestock futures at the Chicago Mercantile Exchange (CME), soft
futures at the International Commodity Exchange (ICE), and energy futures at the
New York Mercantile Exchange (NYMEX). Table 1 summarizes contract specifications
for these selected futures markets.

For each commodity, we construct time series of end-of-month settlement prices from
January 1990 through September 2011 by rolling over nearby contracts. As table 1
shows, contract expiration dates vary across commodities. To avoid delivery period
problems, we roll over the first nearby contracts for all commodities but crude oil at
the end of the month prior to contract expiration. For instance, for corn, in Decem-
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ber, January, and February, March corn contract is used while in March and April,
May corn, in May and June, July corn, in July and August, September corn, and in
September through November, December corn contract is used. On the other hand,
crude oil futures contracts expire on the third business day prior to the twenty-fifth
calendar day of the month preceding the delivery month, which is the month prior to
contract month. Accordingly, we roll over the crude oil nearby contract at the end
of the month which is two months prior to contract month. Thus, in January we use
March crude oil contract, in February we use April crude oil, in March we use May
crude oil contract, etc.

In order to analyze the impact of index funds on commodity price linkages, we split our
sample period into four sub-samples: 1990-2003, 1990-2008, 1990-2011, and 2004-2011.
The number of observations for each sub-sample are 168, 228, 261, and 93. Table 2
presents summary statistics of futures prices for the entire sample period of 1990-2011.

In trying to construct sets of prices that had different probabilities of being tightly
linked before commodity index funds and after, we settled on the following sets of
pairs and trios: corn and cotton; corn and soybeans; corn and lean hogs; corn and
live cattle; corn and crude oil; cocoa and crude oil; soybeans and lean hogs; live cattle
and feeder cattle; corn, soybeans, and lean hogs; corn, live cattle, and feeder cattle;
and corn, cocoa, and cotton. Some of these would be expected to be correlated or
cointegrated, others seem to us completely unrelated by any market forces.

Econometric Results and Policy Implications

Numerical Methods for Bayesian Stationarity and Cointegration Tests

The advance of Bayesian statistical methods over the last twenty-five years has been
built on the development of numerical methods for approximating posterior distribu-
tions that are not tractable analytically. The application in this paper falls into that
category as the prior on the number of non-stationary roots leads to a posterior distri-
bution that is not of a standard form. In addition to the prior distributions as specified
above, we also add an additional truncation to the prior so that it has positive support
only for the parameter space where all autoregressive parameters are less than 2 in
absolute magnitude. This is to add assurance to the prior being informative enough
to yield a proper posterior distribution. The prior on the number of non-stationary
roots in each multivariate model is taken to be a Poisson with parameter equal to 0.9m
where m is the number of commodities being modeled. The prior for each univariate
series in a pair or trio is specified separately as a Poisson with parameter equal to 0.9
(since m = 1).

The generation of draws from our posterior distribution is accomplished using Gibbs
sampling with a Metropolis-Hastings step. Gibbs sampling is an approach where ran-
dom draws are generated for subsets of the full set of parameters to be estimated from
the conditional distribution of each parameter subset (Casella and George 1992). The
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subsets are chosen in a manner designed to provide conditional distributions that are
easy to generate random draws from. By sequentially drawing from these conditional
distributions holding constant the other parameters at their most recently drawn ran-
dom values, one can generate an empirical distribution of parameter sets that converges
to the true, joint posterior distribution. A Metropolis-Hastings step is one in which
draws are generated from a distribution different from the conditional posterior and
then accepted with a random probability that is computed in such a manner as to
adjust the frequency of the draws so as to match those that would have been generated
from the actual conditional posterior distribution.

Our Gibbs sampler is simple. The covariance matrix Σ has a conditional posterior
distribution that is an inverted-Wishart from which it is easy to generate draws. The
conditional posterior of the autoregressive parameters is a truncated normal multiplied
by the prior on the number of non-stationary roots. Because we cannot generate
draws from this conditional distribution, we use an independence chain Metropolis-
Hastings step here (Koop 2003). We generate draws from a scaled normal kernel of
this conditional posterior as candidate draws (the scaling is to increase the covariance
matrix of the multivariate normal in order to ensure sufficient draws from the tails of
the true posterior). Because our candidate density only differs from the conditional
posterior distribution by the prior distribution (which is what causes the problem in
generating draws), the acceptance probability formula simplifies in this case to the ratio
of the prior distribution value at the candidate draw to the prior distribution value at
the previous accepted draw. That is, whenever a random variable generated from a
uniform distribution on the interval [0,1] is less than the ratio of the prior at the new
draw to the prior at the old draw, we accept the new draw and continue through the
Gibbs sampler by generating a new covariance matrix. When the new, candidate draw
is rejected, the previous draw for the autoregressive parameters is reused. We begin
with the maximum likelihood estimator of the model, run the Gibbs sampler for 11,000
draws, discard the first 1,000 draws to remove dependence on the initial conditions, and
approximate the posterior distribution with the remaining 10,000 draws. Convergence
is confirmed by comparison of the means for the first and second half of the draws.

Stationarity Tests

To find cointegration we must have non-stationarity in the set of individual prices
involved as a necessary condition. However, because we are interested in whether
commodity futures prices are linked, all our analysis is in terms of pairs, or occasionally
trios of series. Thus, when we test for stationarity, the results are presented for a set
of commodities. Stationarity test results are given in table 3. Numbers shown are
the posterior probability of no unit roots in that set of future price series for each
sub-sample. That is, the table shows the probability that all prices in that set are
stationary.

The results of the stationarity tests are very clear. In the earliest sub-sample, be-
fore commodity index funds are a factor, all our sets of future prices have quite high

7



probabilities of stationarity in the range of 75 to 87 percent. As we move forward in
time, these posterior probabilities generally drop (in almost all cases monotonically).
For the last sub-sample, 2004-2011, the posterior probabilities of stationarity have de-
creased to the range of 14 to 69 percent. All the probabilities of stationarity for the
last sub-sample are below the lowest one for the first sub-sample. A clear conclusion
from these results is that something, perhaps commodity index fund-driven volume,
has led commodity futures markets to be more non-stationary (more “efficient”) in the
past seven or eight years.

Correlation Results

Given the stationarity test results, we discuss the correlation results next, before the
cointegration test results. Table 4 shows the correlation coefficients for our pairs of
commodity futures prices. Because the variance of a correlation coefficient is simply
1/T , any correlation coefficient in the sub-samples that are greater in absolute value
than 0.15, 0.13, 0.12, or 0.20 respectively for our four sub-samples is significantly
different from zero. The numbers in the table show that all but two pairs (cocoa-crude
oil and cocoa-cotton) are significantly correlated in the earliest sub-sample. In the
final sub-sample, 2004-2011, all the pairs are significantly correlated and the two pairs
that were not are now highly correlated with estimated correlation coefficients of 0.63
and 0.64, respectively. All but one pair become more positively correlated over time
and three pairs switch from negative correlation coefficients to strongly positive ones.
When comparing the first and last sub-samples (1990-2003 and 2004-2011), a difference
greater than 0.26 is a significant change in the correlation coefficient. We observe such
significant changes in seven of the eleven pairs of future prices series.

These results certainly add to the empirical evidence in favor of an effect from the
growth of commodity index funds. While correlation coefficients certainly do not prove
causation, given the timing of the changes and the unlikeliness of an alternative expla-
nation this evidence seems to provide at least some argument in favor of commodity
index funds being behind these changes. After all, what production-based reason is
there for cocoa and crude oil prices to be highly correlated? Why would no pairs of
futures prices display a negative correlation?

Cointegration Test Results

Turning now to cointegration, table 5 contains the results of our Bayesian cointegration
tests. Because of the low probability of non-stationarity in the earlier sub-samples, we
present the cointegration results two ways. The first set of results shows the uncon-
ditional posterior probabilities of cointegration for each pair or trio of future prices
for each of our four sub-periods. The second set of results presents conditional pos-
terior probabilities of cointegration where the conditioning is on the presence of non-
stationarity; that is, these results are the probability of cointegration conditional on
the series being non-stationary. By construction, the conditional posterior probabilities
are much larger than the unconditional since they are equal to the unconditional prob-
ability of cointegration divided by the probability of the series being non-stationary.
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The unconditional results in the left half of the table show that the posterior probabil-
ity of cointegration increases for every pair and trio in our study as we move from the
pre-commodity index fund period to the later sub-samples. While the probability of
cointegration generally remains low in all cases, never reaching a majority, the direction
of change in the probabilities is clear. However, when the conditional probabilities of
cointegration in the right half of the table are examined a different picture emerges.
Eight of the eleven pairs and trios show declines in the posterior probability of cointe-
gration when it is conditional on non-stationarity and none of the three that increase
show large increases. When combined with the unconditional cointegration results,
what this shows is that the increase in the unconditional probability of cointegration
is due entirely to the increase in the probability of non-stationarity in the individual
future price series.

There is no increase in the probability of shared trends or equilibrium long-run rela-
tionships when we control for the changes in the probability of non-stationarity. The
cointegration test results provide no evidence in favor of any impact of commodity
index funds on the linkages between futures markets. However, it is worth noting
that if the commodity index funds are simply buying commodities in fixed proportions
(dictated by the basket weights specified in many of their prospectuses), such buying
behavior would not tend to induce cointegration where it did not previously exist since
buying of that sort does not revolve around any long-run equilibrium relationship nor
arbitrage-style elimination of deviations from such an equilibrium.

Summary and Conclusions

In this paper we investigated whether the growth in the size of commodity index funds
over the past eight years has caused impacts in commodity futures markets that we
can observe through changes in the dynamic behavior of the time series of futures
prices. The empirical evidence we uncover is mixed. Examining the behavior of pairs
and trios of futures prices, we find significant changes in the correlation coefficients
of many pairs of futures prices including those of series without much rationale for
being linked. All the changes in correlation that are statistically significant are in
the direction of more strongly positive correlation which is exactly the behavior that
would be expected from a new long-only buyer purchasing contracts in a fixed basket of
(virtually) all commodities. We also find strong empirical evidence in favor of increased
non-stationarity in the studied commodity futures prices, which could be caused by the
increased volume brought about by the participation of the commodity index funds or
by those same funds using some amount of market timing in their purchases.

The empirical evidence shows no increase in cointegration over time. While this is not
direct evidence in favor or against the impact of commodity index funds, it would be
consistent with funds buying futures contracts in fixed proportions as they get new in-
vestments without regard for which commodities are good buys at that particular time.
In combination with our results on correlation coefficients and non-stationarity, these
empirical results are indicative, but not fully convincing, of the growth of commodity
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index funds impacting commodity futures market linkages over the last eight years.
While this result is somewhat opposite to Sanders and Irwin (2010), the difference is
not that great when one considers the moderate strength of our results and the fact
that our attribution of the empirical changes observed to commodity index funds is
based solely on the time periods examined, not on any concrete evidence.
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Table 1: Futures Contracts

Contract
Months

Contract
Size

Price
Quotation

Expiration

Corn 3,5,7,9,12 5,000 bushels �/bushel Last business day before the 15th of contract month

Soybeans 1,3,5,7,8,9,11 5,000 bushels �/bushel Last business day before the 15th of contract month

Live Cattle 2,4,6,8,10,12 40,000 pounds �/pound Last business day of contract month

Feeder Cattle 1,3,4,5,8,9,10,11 50,000 pounds �/pound Last Thursday of contract month

Lean Hogs 2,4,5,6,7,8,10,12 40,000 pounds �/pound 10th business day of contract month

Cotton 3,5,7,10,12 50,000 pounds �/pound 17 business days before the end of contract month

Cocoa 3,5,7,9,12 10 metric tons $/metric ton 11 business days before the end of contract month

Crude Oil All months 1,000 barrels $/barrel 3rd business day before the 25th of month preceding delivery

Table 2: Summary Statistics (1990-2011)

Mean Standard Deviation Minimum Maximum

Corn 295.767 119.939 180.250 757.500

Soybeans 711.308 250.747 421.000 1,605.000

Live Cattle 78.396 12.597 57.350 122.150

Feeder Cattle 89.662 17.300 50.975 140.520

Lean Hogs 63.909 12.028 28.550 102.775

Cotton 67.126 23.938 29.900 200.230

Cocoa 1,599.306 668.748 704.000 3,757.000

Crude Oil 39.788 27.581 11.220 140.000
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Table 3: Posterior Probabilities of Stationarity

1990-
2003

1990-
2008

1990-
2011

2004-
2011

C-CT 0.854 0.666 0.668 0.218

C-S 0.839 0.617 0.600 0.564

C-LH 0.868 0.686 0.695 0.400

C-LC 0.800 0.407 0.259 0.328

C-CL 0.861 0.507 0.552 0.686

CC-CL 0.842 0.553 0.503 0.622

S-LH 0.822 0.821 0.682 0.424

LC-FC 0.791 0.438 0.186 0.212

C-S-LH 0.769 0.592 0.532 0.310

C-LC-FC 0.748 0.318 0.145 0.156

C-CC-CT 0.784 0.509 0.470 0.140

Table 4: Correlation Coefficients

1990-
2003

1990-
2008

1990-
2011

2004-
2011

C-CT 0.469 0.254 0.634 0.757

C-S 0.723 0.883 0.913 0.910

C-LH 0.435 0.281 0.490 0.448

C-LC -0.220 0.400 0.662 0.754

C-CL -0.238 0.622 0.731 0.757

CC-CL 0.050 0.690 0.783 0.631

S-LH 0.481 0.301 0.454 0.296

LC-FC 0.717 0.870 0.912 0.794

C-FC -0.610 0.146 0.489 0.450

C-CC 0.192 0.661 0.760 0.767

CC-CT 0.037 -0.042 0.414 0.638
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Table 5: Bayesian Cointegration Test Results

Unconditional Posterior Conditional Posterior
Probability of Cointegration Probability of Cointegration

1990-
2003

1990-
2008

1990-
2011

2004-
2011

1990-
2003

1990-
2008

1990-
2011

2004-
2011

C-CT 0.097 0.149 0.142 0.162 0.664 0.445 0.430 0.208

C-S 0.094 0.233 0.211 0.147 0.587 0.607 0.529 0.337

C-LH 0.085 0.130 0.118 0.187 0.649 0.415 0.385 0.312

C-LC 0.077 0.185 0.218 0.305 0.386 0.311 0.294 0.454

C-CL 0.052 0.106 0.085 0.067 0.375 0.216 0.191 0.213

CC-CL 0.111 0.189 0.254 0.169 0.699 0.422 0.511 0.449

S-LH 0.064 0.069 0.124 0.179 0.359 0.385 0.391 0.310

LC-FC 0.120 0.219 0.373 0.247 0.574 0.391 0.458 0.313

C-S-LH 0.032 0.070 0.097 0.102 0.140 0.172 0.207 0.148

C-LC-FC 0.033 0.113 0.226 0.160 0.133 0.166 0.264 0.190

C-CC-CT 0.042 0.071 0.080 0.093 0.194 0.145 0.151 0.108
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