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Density Forecasts of Lean Hog Futures Prices

Abstract

High price variability in agricultural commodities increases the importance of accurate fore-
casts. Density forecasts estimate the future probability distribution of a random variable, of-
fering a complete description of risk. In this paper we investigate density forecast of lean hog
prices for the 2002-2012 period for two weeks horizons. We estimate historical densities us-
ing GARCH models with different error distributions and generate forward looking implied
distributions, obtaining risk-neutral densities from the information contained in options prices.
Real-world densities, which incorporate risk, are obtained by parametric and non parametric
calibration of the risk-neutral densities. Then the predictive accuracy of the forecasts is eval-
uated and compared. Goodness of fit and out of sample log-likelihood comparisons indicate
that real-world densities outperform risk-neutral and historical densities, suggesting the pres-
ence of risk premiums in the lean hog markets. For the historical density forecasts, GED error
distributions for the GARCH estimations show an adequate predictive accuracy. Meanwhile,
historical densities with normal and t-distributions show a discrete performance.

Keywords: Density Forecast, Lean Hog prices, Options, Futures Prices.

Introduction
Increasing price variability in agricultural markets and the introduction of new risk management
instruments such as Volatility Index (VIX) contracts that allow investors to buy and sell volatility
like any other asset heighten the importance of developing accurate forecasting techniques. Isen-
gildina, Irwin, and Good (2004) argue that volatility of agricultural prices causes many individuals
to rely on forecasts in their decision making and that the value of agricultural forecasts is sub-
stantial. Adam, Garcia, and Hauser (1996) also demonstrate the value of improved agricultural
forecasts of the mean and variance in the presence of futures and options for the live hog contract.

However, traditional forecasting procedures based on a mean-variance framework may not fully
characterize the nature of risk in agricultural markets. There is evidence that agricultural prices
and returns exhibit non-Gaussian and non-linearity properties. Further the preferences of agents
in these markets are unlikely to be quadratic (Deaton and Laroque, 1992; Myers and Hanson,
1993; Koekebakker and Lien, 2004; Peterson and Tomek, 2005). In this context, by estimating the
future conditional probability distribution of prices, density forecasts offer a thorough description
of future uncertainty, providing decision makers with more information than point forecasts of
expected returns and volatilities.(Tay and Wallis, 2000; Timmermann, 2000).
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Moreover, recent studies by Wang, Fausti, and Qasmi (2012) and Wilson and Dahl (2009) identify
that the increased commodity price volatility has considerable implications on production, market-
ing and risk management practices. Higher price volatility reduces the effectiveness of traditional
risk managerial tools which may not be able to capture variance and tail risk directly. As a conse-
quence, instruments from the financial markets such as volatility index options and futures, which
are used to trade and hedge short term market volatility, are being implemented in the agricultural
markets. For instance, the CME introduced VIX (volatility index) contracts for corn and soybeans
in 2011. Wang, Fausti, and Qasmi (2012) claim that these kinds of products will enhance market
participants’ ability to accurately gauge price risk and manage volatility risk. Accurately pricing
these instruments require knowledge of higher moments of the price distributions, therefore den-
sity price forecasting may provide important insights in the analysis, management, and pricing of
these new tools.

Density forecast estimation techniques are not new, but it was not until the 1990s that significant
interest in the economics literature began to emerge. Applications to macroeconomic forecasting
by central banks, the development of Value at Risk measures for financial institutions, and the
increasing computational power stimulated their use. Furthermore, pioneering work by Diebold,
Gunther, and Tay (1998) promoted the development of density forecasting evaluation, which has
been a fast growing area of research with widespread applications in econometrics, asset pricing,
and portfolio selection (Amisano and Giacomini, 2007; Gneiting, 2008).

The importance of density forecasts for agricultural commodity prices was identified as early as
Bottum (1966) and Timm (1966), who recommended that probabilistic outlook forecasts be devel-
oped in the manner of weather forecasts. Yet, the use of density forecasts for agricultural commod-
ity prices is relatively scarce. Some papers have looked at estimation procedures (i.e. (Sherrick,
Garcia, and Tirupattur, 1996; Silva and Kahl, 1993)), but there is a lack of applications in the areas
of density forecast evaluation, comparison, and combination, although price volatility forecasting
has been an active area of research.

In this setting, the paper has two objectives, to estimate forecast densities for lean hog futures
prices using several alternative procedures, and to assess their predictive power using recently
developed evaluation and comparison measures. To generate the density forecasts we use two
general procedures: one is based on historical data using GARCH models, and the second is a
forward-looking procedure based on the information content of options prices which provides risk-
neutral and risk adjusted densities. To evaluate the forecast performance, we use the probability
integral transforms (PIT) adopted by Diebold, Gunther, and Tay (1998), and the Berkowitz test
introduced by Berkowitz (2001). For model comparison we use the out-of-sample log likelihood
based on the Kullback-Leiber information criterion as suggested by Bao, Lee, and Saltoglu (2007).
The analysis is performed with a two week forecasting horizon using daily settlement futures prices
and a set of options prices of lean hogs from December 1996 to February 2012. The starting date of
analysis corresponds to the switch in futures and options contracts from live to lean hog contracts,
and from physical delivery to cash settlement.

We focus on the hog market because considerable predictive performance research already exists,
often comparing econometric procedures to market generated forecasts. For instance, the reliability
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of hog futures prices to accurately reflect subsequent cash prices has been a traditional area of
market research. More recently researchers have begun to investigate the degree to which the
implied volatilities from the hog options reflect subsequent realized volatility.

While the recent evidence is mixed, the empirical findings using monthly and bimonthly observa-
tions (e.g., two and four months) suggest futures prices provide long-run unbiased forecasts, but
that short-run inefficiencies in forecasting may exist (McKenzie and Holt, 2002; Carter and Moha-
patra, 2008; Frank and Garcia, 2009). In terms of the options market, Szakmary et al. (2003) and
Egelkraut and Garcia (2006) identify biases in implied forward volatility forecasts of subsequent
realized volatility. Historical volatilities also add information to the market generated implied
volatilities in predicting realized volatility, implying options prices do not contain all available
information or may not account adequately for risk.

Similarly, McKenzie, Thomsen, and Phelan (2007) show that long hog straddle positions exited on
Hogs and Pigs Report days are profitable if transaction costs are under certain levels. However,
Urcola and Irwin (2010) analyze market efficiency of lean hog options contract looking at several
trading strategies such as options straddles and strangles. They find that returns on options are
often small, and even large returns are not statistically significant. They conclude that returns are
not sufficiently large enough to allow for consistent speculative profits for off-floor traders. Hence
the bulk of the evidence suggests that short-term biases in market prices and their volatilities are
likely to exist, but that developing selective strategies to take advantage of them may indeed prove
challenging for market participants.

In this context, short horizon density forecasts may offer useful information to decision makers
by providing them insights into the presence of added volatility, skewness, and kurtosis. Such
information could play an important role in understanding spreads and assist traders in managing
their daily risk. Accurate density forecasts also can help exchanges to determine appropriate mar-
gins and daily price limits and permit a clearer understanding of the existence and magnitude of
volatility and tail risk premiums. To date no research has investigated the ability to generate ac-
curate forecast densities in the hog market using either historical information or market generated
forecasts.

Density Forecast Estimation
Following Taylor (2005), Liu et al. (2007), and Høg and Tsiaras (2011) densities are derived us-
ing two approaches, historical and implied. We obtain historical densities by estimating GARCH
models and allowing the distributions of their standard errors to be characterized by several func-
tional forms. Implied densities rely on extracting the information contained in the prices of option
contracts, which should reflect aggregated risk-neutral market expectations on the underlying asset
when the option contracts expire.
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Historical Densities

Estimation
GARCH models of daily returns of lean hog futures prices are simulated in order to provide histor-
ical densities. For the in-sample specification of the mean and variance dynamics, we consider the
GJR-GARCH specification proposed by Glosten et al. (1993), which permits asymmetric volatil-
ity response to news and has been shown in various studies to reflect market reaction (e.g., (Wu,
Guan, and Myers, 2011)). The model is:

rt = µ0 +
m∑
i=1

δirt−i + εt (1)

ht = ω + α1ε
2
t−1 + α2ε

2
t−1 I(εt−1 < 0) + βht−1 (2)

εt =
√
htηt, ηt ∼ i.i.d D(0, 1) (3)

In equation 1, rt = log(Pt)− log(Pt−1) corresponds to the logarithmic return of lean hog price Pt,
which is equal to the sum of m lagged returns and the error term εt. In equation 2 the conditional
variance of price returns ht is the sum of past innovations ε2t−1 plus the lagged conditional variance
ht−1. The asymmetric response emerges through the indicator function (I(εt−1 < 0) that takes a
value of 1 if (εt−1 < 0) and 0 otherwise. Equation 3 describes the error term as the product of the
conditional standard deviation

√
ht by a random error ηt, where D(0,1) is a zero mean unit variance

probability distribution.

In addition to the standard normal (N), we consider different families of error distributions such
as and the standardize t (T), the generalized error distribution (GED), the normal inverse Gaus-
sian (NIG), and the generalized hyperbolic (GH). Since these last distributions allow for skewness
and kurtosis, they provide a more flexible and comprehensive simulation of density forecasts. For
model selection, we use AIC and BIC criteria and tests misspecification of the standardized resid-
uals of the estimated models such as test of autocorrelation, and LM-ARCH homoscedasticity.
Tests suggest the use of a AR(5)-GJR-GARCH(1,1).1 Although we found a few estimations for
which different order models in the GARCH component were selected by the information criteria,
we maintain the GJR-GARCH(1,1) specification for model consistency, following the procedure
of Høg and Tsiaras (2011). Furthermore, Bao, Lee, and Saltoglu (2007) found that the accuracy
of density forecasts depends more on the choice of the distribution of the standardized innovations
than on lags of the conditional variance.

Simulation
The AR(5)-GJR-GARCH-based forecast densities are constructed using a procedure suggested by
Taylor (2005). First, for a particular date, t, we use the 5 most recent years of daily logarithmic
1The models are estimated in R using the package rugarch version 1.0.9. Mispecification tests of the 406 GARCH
estimations are available from the authors. Those correspond to 81 forecasts of each of the 5 specifications.
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returns to estimate the parameters of the model by maximum likelihood. By drawing a random
number from the D distribution and multiplying it by

√
ht a set of new residuals εt are generated.

These are used to update the conditional variance and then calculate simulated returns. This is
repeated from time t until the forecast horizon t + n. In this paper n corresponds to ten business
days, since we are looking to obtain a density prediction of the final price of the futures/options
contract two weeks before expiration. The simulated returns are compounded and are multiplied
by the price at time t to generate the forecast, Pt+n = Ptexp(rt+1 + rt+2 + ... + rt+n). To create
the density forecast we repeat this process 100,000 times.2 To produce a smoother distribution
we apply a Gaussian kernel density with bandwidth equal to 0.9N−

1
5σ, where σ is the standard

deviation of the forecast value and N the number of simulations.3

Risk-neutral Densities from Options
An option contract gives the holder the right to make a transaction on an underlying asset at a later
date for a specific price (strike price). The owner of a call option has the right but not the obligation
to buy the underlying asset, while the owner of a put option has the right but not the obligation
to sell. Option prices contain useful information about aggregate market expectations that can be
used to extract the implied distribution of future commodity prices. The price of a European call
option is equal to the present value of its final payoffs, therefore:

c(X) = e−rfTEQ[(ST −X)] (4)

= e−rfT
∫ ∞
0

max(x−X, 0)fQ(x)dx

= e−rfT
∫ ∞
x

max(x−X)fQ(x)dx

where X is the strike price, c(X) is the price of the call option, ST is the price of the underly-
ing contract, rf is the free risk rate, T is the time to maturity, fQ is the risk-neutral probability
distribution, and EQ is an expectation. This holds for a complete set of exercise prices X ≥ 0,
and

∫∞
0
fQ(x)dx = 1. Breeden and Litzenberger (1978) show that the existence and uniqueness

of a risk neutral density fQ can be inferred from European call prices c(X) from contracts with
continuous strike prices and lack of arbitrage opportunities. The risk-neutral density (RND) is then
given by:

f(x) = erfT
∂2C

∂X2
(5)

The estimation task is to find a RND fQ(x) that provides a reasonable approximation to observed
market prices. Several methods have been proposed to recover risk-neutral densities from option
2Bootstraping techniques have also been used, examples include Rosenberg (2002) and Pascual, Romo, and Ruiz
(2006).

3The differences in the results before and after applying the Gaussian kernel density are almost negligible.
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prices as reviewed by Jackwerth (2000) and Taylor (2005). For instance Shimko (1993) estimates
interpolations for the volatility smile, Melick and Thomas (1997) use log normal mixtures, and
Aı̈t-Sahalia and Lo (1998) follow non-parametric estimations. Examples in the agricultural eco-
nomics literature include Fackler and King (1990), Sherrick, Garcia, and Tirupattur (1996), and
Egelkraut, Garcia, and Sherrick (2007). We follow a similar approach but using the Generalized
Beta distribution of the second kind (GB2) as the implied density as in Liu et al. (2007) and Høg
and Tsiaras (2011).4 In addition to its flexibility, Taylor (2005) advocates the use of the GB2
because it has several desirable characteristics including: the tails are fat relative to lognormal
distributions, estimates are not sensitive to the discreteness in options prices, it has closed-form
expressions for the probability density and cumulative distribution functions, and solutions and
calibrations are relatively easy to obtain.

The GB2 density has four parameters θ = (a, b, p, q), allowing for the estimation of the mean,
variance, skewness, kurtosis, and its probability distribution function is defined as:

fGB2(x|a, b, p, q) =
a

baB(p, q)

xap−1

[1 + (x/b)p+q]
, x > 0 (6)

with B(p, q) = Γ(p)Γ(q)/Γ(p + q) where Γ is the gamma function. The density is risk-neutral
when the underlying futures price F is

F = EQ[ST ] = bB(p+
1

a
, q − 1

a
)/B(p, q) (7)

To obtain the RND for the GB2, we find the paramater vector θ that minimizes the sum of the
squared differences between the observed market and a panel of theoretical option prices (Ji and
Brorsen, 2009):

min h(θ) =
n∑
i=1

(Cmarket(xi)− C(Xi|θ))2 + (Pmarket(xi)− P (Xi|θ))2 (8)

whereCmarket(xi) and Pmarket(xi) the call and put prices at strikesXi, and the theoretical prices are
structured in the following manner. Replace fq by fGB2(x|a, b, p, q) in equation (4) and applying
the constraint in equation (7) then the European call option price is given by

c = (X|θ) = e−rfT
∫ ∞
x

(x−X)fGB2(x|θ)dx (9)

Fe−rfT [1− FGB2(x|a, b, p+
1

a
, q − 1

a
)]−Xe−rfT [1− FGB2(x|θ)]

where FGB2 is the cumulative distribution function of GB2 density. The functional form in equation
(9) is used in the minimization problem, and the put is calculated using the put-call parity condition.

4Sherrick, Garcia, and Tirupattur (1996) use the Burr-3 distribution which is a special case of the GB2 when q = 1.
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From Risk-Neutral to Real-World Densities
A fundamental idea in pricing theory is that the value of an asset is equal to its expected discounted
cash flows. Risk-neutral densities assume that risk is irrelevant for pricing future cash flows, but if
an investor is risk-averse and rational then risk-neutral implied densities from option contracts are
likely to provide inaccurate forecasts. In fact, the difference between the risk-neutral-density and
the objective forecast can be used to infer the degree of risk aversion of the representative agent
(Bliss and Panigirtzoglou, 2004).

A possible approach to adjust densities from risk-neutral to real-world, which incorporate risk, is
to assume a particular utility function and degree of a risk aversion for the agent, as implemented
for equity markets in Bakshi, Kapadia, and Madan (2003), and Liu et al. (2007). According to Høg
and Tsiaras (2011) using such simple transformations is usually problematic since the estimated
stochastic discount factors generally do not match the expected risk aversion behavior of investors.

In the case of agricultural commodity futures the situation seems even more complex than in eq-
uities because it has been difficult to establish if a risk premium exists. For instance, Frank and
Garcia (2009) found no evidence of time varying risk premium on corn, soybean meal, and lean
hogs at two and four month horizons. However, Egelkraut and Garcia (2006) looked at differ-
ent forecasting horizons for volatility found evidence that the lean hog markets may demand a
risk premium for bearing volatility risk when volatility becomes less predictable. How volatility
risk affects risk premium is also a puzzling question. Han (2011) argues that risk premiums are
positively related to volatility and negatively related to volatility risk, and it is the volatility risk
premium that distorts the positive relation between the market risk premium and market systematic
risk.

An alternative approach that avoids some of the previous difficulties involves the use of statistical
methods. Real-world densities are obtained via statistical calibration of the risk-neutral densities
that are considered to be misspecified. Fackler and King (1990) describe the calibration process as
one that improves a set of densities judged against the assumption that the random variables defined
by their cumulative distribution functions (cdf) are uniformly distributed. In this section we follow
this strategy, using the approach of Shackleton, Taylor, and Yu (2010) to perform parametric and
non-parametric density calibration.

Let fQ(v) and FQ(v) be the risk-neutral density and the cumulative distribution function of the
underlying asset v at time T ,vT . Denote G(u) as the real-world cumulative distribution of random
variable U = FQ(vt), and g(u) its first derivative. Then the real-world cumulative distribution
function Fp(v) and probability density function fp(v) of vt are

Fp(v) = G(FQ(v)) (10)

fp(v) =
dFp(v)

dv
=
dG(FQ(v))

dv
=

dG

dFQ

dFQ
dv

= g(FQ(v))fQ(v) (11)
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Therefore the real-world density is a function of the calibration function, and the cdf and pdf
of the risk-neutral density. In order to estimate the real-world densities we use the risk-neutral
densities obtained from the solution of equation (8), θGB2, and the Beta distribution as a calibration
function. Fackler and King (1990) recommended using the cdf of the Beta distribution because this
parametric distribution is defined on the interval [0, 1], has a flexible shape, and the parameters
can be easily estimated by applying maximum likelihood.

If G(.) is the cumulative distribution function of the Beta distribution defined as

G(u|α, β) =
1

B(α, β)

∫ u

0

sα−1(1− s)β−1ds (12)

where B(α, β) =
Γ(α)Γ(β)

Γ(α + β)

then the calibration density g(.) is its derivative

g(u|α, β) =
uα−1(1− u)β−1

B(α, β)
(13)

The parameters of the Beta density α and β are estimated by maximizing the following log-
likelihood function:

log(L(v1, v2, ..., vt)) =
n∑
t=1

log(fp(vt|θGB2, α, β)) (14)

Fackler and King (1990) acknowledge that a disadvantage of a parametric approach is that the
form chosen may not represent the calibration function well in particular cases. Therefore, as
an alternative we also employ non-parametric calibration. The non-parametric calibration allows
multimodal shapes in the density, a stylized fact that is common in practice. Following Shackleton,
Taylor, and Yu (2010), we construct the real-world density using the past realizations of ut =
FQ,t(vt) then the series is transformed into a new series zt = Φ−1(ut), where Φ(.) is the cdf of the
standard normal. A normal kernel density h(z) is obtained with empirical distribution H(z). The
empirical calibration of utis thenG(u) = H(Φ−1(ut)), therefore the real-world cdf and pdf of the
forecasted quantity is

Fp(v) = G(FQ(v)) and fp(v) =
fq(v)h(z)

Φ(z)
(15)

Evaluation of the Density Forecasting Performance
Diebold, Gunther, and Tay (1998) introduced the probability integral transform (PIT) developed
by Rosenblatt (1952) as a method to evaluate whether the density forecast correctly specifies the
actual realizations of the underlying random variable. Let f(yt) and F (yt) denote the probability
and cumulative density function forecast of a random variable yt at time t, and Yt+n correspond

8



to the actual realization of the random variable at the forecast horizon. The probability integral
transform (PIT) is given by:

PITt =

∫ Yt+n

−∞
f(yt)dy ≡ F (Yt+n) (16)

The PIT is the value that the predictive cdf attains at the observation Yt+n. Although the true
random variable distribution is often unobservable, Diebold, Gunther, and Tay (1998) and the
subsequent literature exploit the fact that when the forecast density equals the true density, then the
PIT follows a uniform variable in the [0, 1] interval (U(0, 1)) and is independent and identically
distributed (iid). In this context, evaluation of whether the conditional forecast density matches the
true conditional density can be performed by a test of the joint hypothesis of independence and
uniformity of the sequence of PIT. Similar to the idea behind the calibration of Fackler and King
(1990).

Berkowitz (2001) suggests a further transformation of the PIT distribution from Uniform to Nor-
mal. This transformation offers the advantage of working with normally distributed variables
which facilitates testing of the hypothesis. Suppose φ−1 denote the inverse of the standard normal
distribution, Berkowitz (2001) shows that for any sequence of PIT that is iid U(0, 1), it follows
that zt = φ−1(PITt) is an iid N(0, 1). Under the Berkowitz transformation, independence and
normality are tested jointly by using a likelihood ratio test on the following model:

zt − µ = ρ(zt−1 − µ) + εt, εt ∼ i.i.d N(0, σ2) (17)

The null hypothesis is that zt follows an uncorrelated Gaussian process with zero mean unit vari-
ance against an AR(1) with unspecified mean and variance. Therefore, the likelihood ratio can be
set as LR3 = −2(L(0, 1, 0) − L(µ̂, σ̂2, ρ̂)), that follows a χ2 distribution with three degrees of
freedom.

Out-of-Sample Forecast Comparisons
The preceding methods offer measures of the reliability of density forecasts relative to the data
generating process; however, in practice we are also interested in comparing competing forecasting
methods. We implement that comparison by assigning scoring rules, which are defined by Gneiting
and Raftery (2007) as functions of predictive distributions and realized outcomes used to evaluate
predictive densities. In this paper as a scoring rule we use the out-of-sample log likelihood values
(OLL), in a similar fashion as Bao, Lee, and Saltoglu (2007), Shackleton, Taylor, and Yu (2010)
and Mitchell and Wallis (2011). As explained in Bjørnland et al. (2011) logarithmic scores are
linked to the Kullback-Leibler information criterion (KLIC), the KLIC of the ith model is given by:

KLICi = E

(
log

(
h(yt)

fi(yt)

))
(18)

where this expectation is taken with respect to the true unknown density h(yt). For a continuous
distribution the expectation can be expressed as:
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KLICi =

∞∫
−∞

log

(
h(yt)

fi(yt)

)
h(yt)dy (19)

∞∫
−∞

log (h(yt))h(yt)dy −
∞∫

−∞

log (fi(yt))h(yt)dy

The KLIC represents the expected divergence of the model density relative to the true unobserv-
able density across the domain of the true density. Therefore, the KLIC would attain a lower
bound of zero only if h(yt) = fi(yt). Furthermore, although the expected value of h(yt) is un-
known, it is considered as a fixed constant. Therefore, the KLIC is minimized by maximizing∫∞
−∞ log (fi(yt))h(yt)dy (Bao, Lee, and Saltoglu, 2007; Bjørnland et al., 2011) Assuming ergod-

icity this expression can be expressed by:

OLL =
n−1∑
t=0

log(ft(yt)) (20)

The out-of-sample log-likelihood statistic (OLL) can be used to rank predictive accuracy of alter-
native procedures. The best forecast method yields the highest value which corresponds to the
procedure that produces the closest to the true but unknown density.

Data
The data set consists of daily settlement prices of lean hog futures and options traded at the Chicago
Mercantile Exchange (CME) obtained from the Commodity Research Bureau (CRB). The futures
data start on January 31, 1996 and end on February 14, 2012; the options data start on January
16, 2002 and end on the same day as the futures data. For the estimation of GARCH models,
logarithmic returns calculated as rt = [ln(Pt) − ln(Pt−1)], and are obtained using the nearby
contract, except when there are ten days or less to delivery, in which case the returns are calculated
using the next closest delivery contract. Returns are always calculated using the same delivery
contract. We proxy the short-run interest rate (rf ) with the 3-month Treasury Bill rate that is
obtained from the Federal Reserve Bank.

The options in the dataset are American-style written on futures contracts of lean hogs. The under-
lying futures contract expires on the tenth business day of the month of expiration, the same day as
the option contract. There are eight contracts in a calendar year for lean hog options and futures,
with expirations in February, April, May, June, July, August, October, and December. The lean
hog future contract uses cash settlement to the CME Lean Hog Index,5 that is a two-day weighted
average of lean hog values collected by USDA from the Western Cornbelt, Eastern Cornbelt, and
MidSouth regions, this ensures convergence between futures and cash prices.

5Settlement procedures can be found at http://www.cmegroup.com/rulebook/CME/II/150/152/152.pdf.
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We collect option prices ten business days before expiration, which usually corresponds to fifteen
calendar days. The final dataset consists of 81 panels of option prices. In order to construct
real-world densities from risk-neutral ones, previous data are required to estimate the calibration
function. We start using the first 2 years of data (16 observations) for the initial calibration, after
which calibration is done recursively by adding observations to the calibration set. As a result we
generate 65 real-world densities. Since the dataset corresponds to call prices of American options
and our estimation requires the use of European options, the Barone-Adesi and Whaley (1987)
approximation is used. We filtered the options data eliminating strikes with no volume trade, and
not complying with the put-call parity conditions.

Results
Table 1 presents summary statistics of daily prices and returns of lean hogs from December 1996
to February 2012. Lean hog prices moved in a range of $86 from $21.10 to $107.45. However the
prices observed between the 25th and 75th percentile only move within $22.12 range. Similarly
for returns, while the overall range moves between -7.6 and 6.3 percent, the interquartile range
only moved within the range of -0.83 to 0.83 percent. Mean and median for returns are close to
zero as frequently observed in commodity prices. The price distribution for the whole period is
slightly negatively skewed and shows some excess kurtosis.

Figure 1 shows the price and returns during the period. Prices exhibit an overall positive trend,
however strong swings can be observed in several periods. Since 2006 lean hog prices seem to
follow the pattern seen in other agricultural commodities. A strong price increase until 2008, a
sharp decrease in late 2008 and beginning of 2009 during the financial crisis, followed by a swift
recovery that lasted at least until the end of 2011.

Densities
Eighty one density forecasts are generated for the contracts expiring from January 2002 until
February 2012, and calibration of risk-neutral densities leads to generating sixty five real-world
densities starting in January 2004. Figures 2 and 3 show examples of two density forecasts gener-
ated in October, 2009 and August, 2011.6

Even though the GJR-GARCH density forecasts do vary with time, several patterns emerged across
the period. The normal and the standardize t-distribution exhibit very similar patterns. In a few
occasions all the distributions generate nearly the same shape, however the GARCH estimations
that allow higher moments often exhibit a more leptokurtic distribution and also are slightly skewed
to the right. In the case of the risk-neutral distributions the variation is more pronounced. Although
the RND and the GARCH-GJR densities often produce similar looking distributions, the RND are
usually more leptokurtic and exhibit mass concentrated in the right tail, perhaps reflecting a market
sentiment of increasing prices. The real-world density calibrated parametrically show patterns that

6The eighty one density forecast figures can be found in the electronic appendix at: http://bit.ly/JEaWh3
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do not seem to deviate from the risk-neutral density, but the non-parametric calibrated densities
exhibit less leptokurtosis than the risk-neutral densities.

PIT Histograms and Berkowitz Test
Histograms of PIT values are used as a preliminary assessment of uniformity, in a similar way that
ACF are used to explore autocorrelation or QQ plots in the case of normality. If the PIT values are
spread evenly in the [0, 1] interval, then the bins in PIT histogram would be uniform. We present the
PIT histograms of the GARCH models and the RND in in Figure 2 that corresponds to eighty one
observations from January 2002 to February 2012. In Figure 3 we include the real-world densities;
recall calibration requires a training period, therefore real-world densities are from January 2004
to February 2012 corresponding to sixty five observations. The densities for the GARCH models
and RND are also presented for that period.

The histograms in Figures 4 and 5 have been divided in 10 bins, corresponding to deciles. Although
somewhat uniform, the PIT series exhibit under-dispersion since observations are clustered in the
first and the last bins. Høg and Tsiaras (2011) indicate this means that the variance or kurtosis (of
the target density) is underestimated.

To evaluate the uniformity and independence of the PITs we use the Berkowitz test. We evalu-
ate the same two periods used to construct the PIT histograms in Figures 4 and 5. Results of the
test presented in Table 2 indicate that for the sixty five observations the real-world parametric,
real-world non-parametric, risk-neutral density, GARCH-GED, and GARCH-NIG are satisfactory
forecasts since tests fails to reject the null hypothesis at the 10% level. Real-world densities out-
perform the risk neutral and forward looking estimated densities exhibit a better goodness of fit
than the historical models. For the eighty one observations, the GARCH-NIG becomes significant
at 10%, and the GARCH-GH is in a gray zone since it is not significant at 5% but it is significant
at 10%. The GARCH-T and in particular the GARCH-N are close to the critical value at the 5%
level, rejecting the null hypothesis in both periodsindicating their density forecast performance is
inferior.

Out-of-Sample Log-Likelihood
Table 3 presents the results of the out-of-sample log-likelihood. According to the Kullback-Leibler
information criterion the densities which are closer to the true density have the highest out of
sample log likelihood. Following this criterion the results for the sixty five observations starting
in 2004 show that as in the goodness of fit test the real-world densities are the preferred methods.
Those are followed by the GJR-GARCH-GED that outperforms the risk-neutral densities. The
historical models assuming normality and t-distribution display the worst performance. Results
for the eighty one observations starting in January 2002 that do not include the evaluation of the
calibrated real-world densities are consistent with the results from observations starting in 2004.
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Conclusions
In this paper we estimate and evaluate density forecasts of lean hog futures prices using two ap-
proaches. The first method generates forecasts based on historical data, using an AR(5)-GJR-
GARCH(1,1) model and different error distributions. The second method is a forward looking
approach that obtains an implied risk-neutral density from options prices assuming a generalized
beta distribution (GB2). Assuming the RNDs fail to adequately account for risk, the RND func-
tions also are adjusted parametrically and non-parametrically.

Overall, the findings suggest the risk-neutral and real-world density functions generally provide the
most accurate representations of the price distributions, with the non-parametrically real-world ad-
justed model exhibiting the best out-of-sample performance. Among the historical GARCH mod-
els, only the GED error structure seems to reflect the price distributions reasonably well. Clearly,
using the most current market information from options prices improves the density forecasts and
suggests the historical forecasts may not contain much additional information. Interestingly, ad-
justing the risk-neutral densities does seem to improve the forecasts, indicating that the RND do
not completely reflect the underlying densities. This is consistent with results found in other mar-
kets, for instance Shackleton, Taylor, and Yu (2010) for equities, and Høg and Tsiaras (2011) for
crude oil, show that real-world densities outperform RND and historical densities.

Our results show that historical approach models using the Normal or Std-t distributions do not
work well and deviate from the true density. The Generalized Error distribution (GED) captures
the skewness of the price distribution and does perform better. The density forecasts obtained
from the forward looking approach are correctly specified since risk-neutral and real-world den-
sities exhibit satisfactory goodness of fit. Out of sample log likelihood allows to compare which
distributions are closer to the true but unobserved distribution of prices. Again the GED and the
calibrated distributions exhibit the best performance, and for the horizon of two weeks, the real-
world densities are superior to the historical densities.

Improvements to goodness of fit and accuracy of the forecasts are obtained by the calibration from
risk-neutral to real-world densities. This implies that risk premiums exist in the lean hog futures
markets, a finding consistent with Szakmary et al. (2003), Egelkraut and Garcia (2006), McKenzie,
Thomsen, and Phelan (2007) for volatility risk. The markets value not only risk premiums on the
mean levels, but also in volatility, and in the tails. New instruments such as Volatility Index (VIX)
and Skew Index, developed in the equities derivative markets, acknowledge these dimensions of
risk and the need to price, trade, and hedge them. Agricultural markets have already started to
adopt such instruments and density forecasting is a tool that should guide decision making on these
markets. Traditional options markets can also benefit from more accurate forecasts that incorporate
higher moments.
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Tables and Figures

Table 1: Descriptive Statistics

Prices Returns

Num observations 3806 3806
Minimum 21.10 -7.63
Maximum 107.45 6.31
1st Quartile 54.83 -0.83
3rd Quartile 72.95 0.83
Mean 63.90 -0.04
Median 62.80 0.00
Variance 179.69 2.26
SD 13.40 1.50
Skewness 0.20 -0.23
Excess kurtosis 1.05 1.68
Coef. of Variation 0.21 37.40

Notes: Returns are multiplied by 100
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Table 2: Berkowitz Test

Density Forecasting LR3 LR3

Method 81 observations p-value 65 observations p-value

GARCH-N 7.8454 0.0493 7.9121 0.0478
GARCH-T 7.7475 0.0515 7.5110 0.0572
GARCH-GED 6.1092 0.1064 6.0109 0.1111
GARCH-NIG 6.5920 0.0861 6.1084 0.1064
GARCH-GH 6.8206 0.0778 6.6192 0.0851
RND 4.6765 0.1970 4.8400 0.1838
RWD-P 3.7712 0.2872
RWD-NP 3.4711 0.3245

Notes: 81 observations start in January 2002, 65 observations start in January 2004,
both series end in February 2012.
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Table 3: Out-of-Sample Log-Likelihood

Density Forecasting Method 81 observations 65 observations

GJR-GARCH-N -220.35 -180.06
GJR-GARCH-T -220.14 -180.05
GJR-GARCH-GED -215.36 -172.89
GJR-GARCH-NIG -217.86 -174.49
GJR-GARCH-GH -218.35 -176.18
RND -216.21 -173.11
RWD-P -169.46
RWD-NP -167.42

Notes: 81 observations start in January 2002, 65 observations start in
January 2004, both series end in February 2012.
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Figure 2: Fifteen Day Ahead Density Forecasts for GJR-GARCH Models, Risk-Neutral Density,
and Real-World Density on October 14, 2009
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Figure 3: Fifteen Day Ahead Density Forecasts for GJR-GARCH Models, Risk-Neutral Density,
and Real-World Density on August 12, 2011

23



Normal
D

en
si

ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Std T

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

GED

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

NIG

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

GH

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

RND

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

Figure 4: Probability Integral Transforms (PIT) Histograms January 2002 to February 2012 (81
observations)
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Figure 5: Probability Integral Transforms (PIT) Histograms January 2004 to February 2012 (65
observations)
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