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Measuring Asymmetric Price Transmission in the U.S. Hog/Pork Markets: 

A Dynamic Conditional Copula Approach 

 

Abstract 

This paper introduces the application of copula models to the empirical study of price 

transmission, with an empirical application to the U.S. hog/pork markets. Our copula 

approach corrects the potential bias in estimation that results from ignoring the volatility 

by modeling the marginal distribution of price changes through GARCH models. We also 

develop and apply a flexible time-varying copula framework to estimate dynamic 

transmission coefficients /elasticities. The model results confirm the existence of time-

varying and asymmetric behaviour in price co-movements between the farm and retail 

markets. Positive upper and zero lower tail dependences provide evidence that big 

increases in farm prices are matched at the retail level whereas negative shocks at the 

farm level are less likely to be passed on to consumers. The application of copula 

techniques provides multiple, useful extension and generalizations of conventional 

approaches for modeling asymmetric transmissions processes on the degree of market 

integration and its response to price shocks under the extreme market conditions.  

Keywords: asymmetric price transmission, copula, time-varying copula 

 

Introduction 

Vertical price transmission links input prices to output prices and often investigates the 

extent to which retail commodity markets are impacted by changes at the raw material 

level. The degree to which market shocks are transmitted up and down the marketing 

chain has long been considered to be an important indicator of the performance of the 

market. Much of the motivation underlying this line of research has involved concerns 

about market power and potential effects that increased market concentration may have 

on price adjustment processes.  

A wide variety of empirical research has been focused on the asymmetry of price 

transmission (APT). Meyer and von Cramon-Taubadel (2004) and Frey and Manera 

(2007) provided comprehensive reviews of the theoretical and empirical issues 

underlying this literature. Early work in asymmetric adjustments usually divided price 
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changes in input prices into two groups conditioned on the direction or magnitude of 

changes, and then investigated transmission coefficients of each case (e.g., Houck 1977). 

Recent empirical research realized the nonstationary feature of time series data and 

applied cointegration techniques while focusing on asymmetric adjustments using 

regime-switching models (e.g., Serra and Goodwin 2003) or asymmetric long run price 

linkage (e.g., Gervais 2011 and Abbassi et al. 2012).   

Several concerns are associated with the existing approaches. First, almost all of 

the existing empirical studies in price transmission have assumed constant variance, 

though price and price change data are often quite volatile. Ignoring volatility in 

empirical analysis can lead to bias estimation of the transmission and adjustment 

coefficients. Second, although these modern empirical tools (e.g., threshold and smooth 

transition models) have provided some convenience in modeling APT, they are not 

flexible enough to represent constantly changing market conditions, especially short run 

dynamics. For example, a three regime threshold or smooth transition error correction 

model allows price adjustment to have three different reactions based on the magnitude 

and/or direction of previous deviation from the long run price equilibrium. However, the 

adjustment speeds or transmission coefficients are still assumed to be linear and constant 

within each regime. In reality, even given the similar levels of deviation, the adjustments 

can still differ based on other forces such as policy intervention and market power.   

Another important feature in market integration is price co-movements under 

extreme market conditions. For instance, we are interested in investigating the probability 

that one will observe an extremely large adjustment of output price given an extremely 

large increase of input price. In statistics, we call this “tail dependence.”  Goodwin et al. 

(2011) argued that many regime-switching models (e.g., threshold and smooth transition 

error correction models) allow price adjustments to vary as the market situation changes. 

When the deviation serves as the forcing variable, the transmission coefficient in the 

regime that changes beyond (below) the upper (lower) threshold is intuitively equivalent 

to a reflection of upper (lower) tail dependence. This argument, however, is questionable 

as it ignores the fact that regime switching models require the threshold to lie between the 

maximum and minimum values of the series. A congenital practice is between 15th and 

85th quintiles of the observations. That said, the highest and lowest 15% of the values are 
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excluded from the search so as to ensure an adequate number of observations on each 

side of the threshold/regime. Therefore, these regime switching models cannot provide 

such close information as tail dependence.  

These limitations motivate the search for more flexible alternative measures of 

co-movements (or more broadly speaking, dependence structure). A flexible modeling 

technique, which 1) controls the volatility issue and 2) allows for a more flexible 

interrelationship (such as nonlinear, time-varying, multi-variable driven, and handles tail 

dependence) to exist, will be helpful in better understanding price transmission and 

market integration issues. Copula models separate marginals and dependence structures 

and allow more flexibility in modeling the dependence/relationship structures of price co-

adjustments. The copula approach thus serves as a promising candidate.  

The objective of this study is to introduce the application of copula models to the 

empirical study of APT, with an empirical application to the U.S. hog/pork markets. Our 

contributions are threefold. First, we correct the potential bias in estimation that results 

from ignoring the volatility by modeling the marginal distribution of price changes 

through GARCH models. Second, we extend Patton’s (2006) conditional copula concepts 

and adopt Patton (2012) and Creal’s et al. (2011) time varying concepts to allow the price 

co-movements to be dynamic. This provides more flexibility as it allows for the 

possibility of both asymmetric adjustments and structural changes in price transmission.  

 

Copula Approach 

What is a copula? Copula means join, couple, tie, and bond. A copula is a multivariate 

distribution whose marginals are all uniform over (0, 1). Given the fact that any 

continuous random variable can be transformed to be uniform over (0, 1) by its 

probability integral transformation, ( ) (0,1)i iU F Y Unif , copulas can be used to 

provide multivariate dependence structure separately from the marginal distributions. For 

example, a two-dimensional joint distribution can be decomposed into two marginal 

distributions and a two-dimensional copula: 

1 2 1 1 2 22 1Let [ , ]' ( , ),  with Y  and YY Y Y F y y F F  

2then  C: [0,1] [0,1]   
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2

1 2 1 1 2 1 22s.t. ( , ) ( ( ( ) ( , )), )F y y C F y F y y y R       (1) 

Patton (2006; 2012) extended the concept of standard copulas to conditional copulas: 

1 2 1 1 2 1 1 1 12 2Let [ , | ]' ( , ),  with Y |  and Y |t t tY Y Y M F y y M F M F    

2then  C: [0,1] [0,1]   

2

1 2 1 1 1 1 1 1 22 2s.t. ( , | ) ( ( | ( | ()) , )),t t tF y y M C F y M F y M y y R        (2) 

where 
1tM 
is the information set. 

A copula function contains all the information about the dependence between 

random variables. In the price transmission case, if we know the specific copula of the 

two price adjustments, then we shall be able to obtain all the relevant information 

regarding the co-movements and transmission between the two prices. However, 

numerous different copulas exist and each is associated with different dependence 

attributes (e.g., asymmetry or symmetry, tail dependence or no tail dependence, both 

upper and lower tail dependence or just one side tail dependence).  

For example, the Normal copula allows a symmetric dependence structure and 

does not allow the tail dependence; the Student’s t copula allows for joint extreme events 

in both tails. Assume a positive shock occurs in one market, and that prices are more 

likely to be co-adjusted when an extremely big price change has been observed, but price 

shocks would not be transmitted to one another when the changes are very small. Then 

the Gumbel copula, which is an asymmetric copula, exhibiting greater dependence in the 

upper tail than in the lower, might be an appropriate choice. The Clayton copula is also 

an asymmetric copula, but it exhibits greater dependence in the lower tail than in the 

upper. For more detailed discussions regarding the dependence attributes associated with 

different copulas, we recommend readers to Joe (1997) and Nelsen (2006), among many 

others.  

Given a wide range of copulas, how one should choose the most appropriate 

copula is an essential issue in real applications. It is important to first investigate the 

summary dependence attributes of the interested variables before the choice of potential 

copula models. Careful pre-estimation explanatory analysis and post-estimation model 

selection and comparison tests will help to find the most appropriate copula models.   
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The empirical procedure for the copula application in the price transmission 

analysis can be divided into 4 steps. First, model the conditional marginal distribution 

functions for the two price adjustments. Second, estimate the parameters for selected 

copula models based on the estimation of the marginal distributions from the first step 

and preliminary dependence investigation. Third, compare and select the appropriate 

copula(s) using certain selection criteria. Fourth, interpret the copula results and apply 

them to the analysis of APT. 

Model Marginal Distributions 

We denote the retail, wholesale, and farm prices as a  , nd R W FP PP , respectively, 

and log-differences as ,  and R W Fp p p  correspondingly, where 1log( ) log( )i i i

t t tp P P   is 

the difference of natural logarithm prices.  

The first step is to model the marginal distribution for each price changes, which 

is equivalent to modeling the distribution of standardized residuals. Before we proceed to 

the marginal distribution modeling, we first need to model the conditional mean and 

variance to obtain the standardized residuals. We specify the conditional means and 

variances for log-difference of the prices using an autoregressive and GARCH 

framework, and Cross-equation effects are also included in the conditional mean models 

when applied: 

1 1 1 1 1

1 1

2 2 2 2 2

1

1

1

1

2 2

, and (0,1)

, and (0,1)

input input output

t i t i j t j t t

i j

output input output

t i t i j t j t t

i j

t

t

p p p F

p p p F

     

     

 

 

 

 


   



    


 

 

  (3) 

where 

=retail price changes and wholesale price changes,  for the retail-wholesale pair

=retail price changes and farm price changes,  for the retail-farm pair

=wholesale pri

input output

input output

input

p p

p p

p





ce changes and farm price changes, for the wholesale-farm pairoutputp 

 

After the estimation of AR-GARCH models for the price adjustments, we construct the 

standardized residuals as: 
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1 1

ˆˆ ˆ

ˆ ,   ,
ˆ

input output

k ki t i kj t j

i j

k

t

k

kt

p p p

k output input

  




 

 

 
   
  

 
   (4) 

 

Many choices are possible for the parametric model for marginal distributions for 

the standardized residuals, including Normal, standardized t, skewed t (as in Patton 2012) 

and others. In this study, we test and estimate the skewed t, which allows Normal (when 

the degree of freedom is close to infinite) and standardized t (when the skewness 

parameter equals zero) as two special cases.  The Cramer-von Mises (CvM) test can be 

utilized to test the null of skew t distribution.  

 

 

Pre-Copula Measurement of Sample Dependence 

By far the most familiar dependence concept is the correlation coefficient. Correlation 

coefficient has important applications in price transmission studies. For the two variable 

case, the estimated transmission (elasticity) coefficient ̂  is simply a product of Pearson 

correlation coefficient and the ratio of standard deviations of prices, i.e. ˆ ˆ ˆ ˆ* /y x    . 

Constant variance (as usual in the existing literature) means asymmetric response or 

speed of adjustment ̂  will be determined by the correlation coefficient alone. The 

dependence structure of elliptical copula family is fully determined by the correlation 

coefficient (bivariate case) or correlation matrix (multivariate case). 

Person correlation has certain unpleasant limitations as a way to measure the 

dependence structure such as it is only valid under strict linear transformations. When 

applied to the price transmission study, the transmission or adjust coefficient changes 

when one uses the logarithm of the prices. As a remedy, the rank correlation is invariant 

under strictly increasing transformations. Mimicking the familiar approach of Pearson to 

the measurement of dependence, a natural idea is to compute the correlation between the 

ranks.  
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In some cases, the concordance between tail (extreme) values of random variables 

is of interest. For example, one may be interested in the probability that price adjustments 

in two markets exceed or fall below given levels. This requires a dependence measure for 

the upper or lower tails of the distribution. Such a dependence measure is essentially 

related to the conditional probability that one price change exceeds some value, given 

that another exceeds some extreme value. The coefficients of upper and lower tail 

dependence of (X,Y) are defined as: 

1 2 2

1 1

2 1 1
1

( , ) lim ( ( ) | ( )),U
h

Y Y P Y F h Y F h


 


    

1 2 2

1 1

2 1 1
0

( , ) lim ( ( ) | ( )),L
h

Y Y P Y F h Y F h


 


   , 

Tail dependence is a measure of the dependence between extreme events, and population 

tail dependence can be obtained as the limit of population quantile dependence as h 0 

or h 1.   

 

Copula Estimation and Model Selection 

After exploring the summarized dependence statistics of the sample data, the next step 

would be to choose the potential appropriate copulas for estimation. The most commonly 

used estimation method is the maximum likelihood. Simultaneous estimation of all 

parameters using the full maximum likelihood (FML) approach is the most direct 

estimation method. Although estimating all of the coefficients simultaneously yields the 

most efficient estimates, the large number of parameters can make numerical 

maximization of the likelihood function difficult.  

An alternative method would be a sequential 2-step maximum likelihood method 

(TSML) in which the marginals are estimated in the first step and the dependence 

parameter is estimated in the second step, using the copula after the estimated marginal 

distributions have been substituted into it. This method exploits an attractive feature of 

copulas for which the dependence structure is independent of the marginal distributions. 

This second method has additional variants depending upon whether the first step is 

implemented parametrically or non-parametrically, and on the method used to estimate 

the variance of the dependence parameter(s) at the second stage. Under standard 
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conditions, the estimates obtained from TSML are consistent and asymptotically normal 

(Patton 2006).  

We adopt the TSML method in this study. Estimate the marginal distributions first and 

then use the estimated parameters to estimate the copulas using the maximum likelihood 

function. In addition to the constant copulas, we also test and estimate the time-varying 

copula as discussed in Creal et al (2011).  The specification allows the dependence 

parameters to be a function of the lagged copula parameter and a “forcing variable” that 

is related to the standardized score of the copula log-likelihood. 

Our model selection is based on the goodness of fit tests and in-sample model 

comparison discussed in Patton (2012).  The former determine whether the proposed 

copula model is different from the (unknown) true copula.  The latter seeks to determine 

which model in a given set of competing copula models is the “best”, according to some 

measure.   

 

Data 

Monthly data on hog and pork prices from January 1970 to March 2003 are collected 

from USDA. Prices are deflated to the real price level using the CPI (1982-1984=100). 

Figure 1 displays the logarithm farm, wholesale and retail price series. We are interested 

in investigating the dependence structure between any pair-wise price adjustments/co-

movements. The farm price reached a historical minimum in November 1994 and 

dropped to the lowest level in December 1998, the so called “hog crisis”. The wholesale 

price and farm price are relatively correlated to each other as shown in this graph.  In the 

early days, two series are seemed to be more correlated to each other. However, the 

margin becomes larger as time goes by and as the real price declined. Figure 2 present the 

pair-wise price and price changes time series plots. 

 

Results 

All analyses are conducted based on the data series in logarithms. We begin by assessing 

the time series properties of price series using the standard Augmented Dickey-Fuller 

(ADF) test and the Phillips–Perron test. Both unit root tests fail to reject the unit root 

hypothesis for the price series, but are not able to reject stationarity for the price change 
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series. Thus, the price change series may be considered as stationary processes. Summary 

statistics of three price change series are presented in Table 1.  

Marginal Distributions 

Based on the AIC or BIC, the results of the conditional means and variances as well as 

the cross-equation effects for each pair-wised price change using Equations (3) are 

presented in Table 2. For the farm-whole case, the optimal models were found to be an 

AR(2) for the farm price changes and an AR(1) for the wholesale price changes. Testing 

for the significance of three lags of the “other series”, conditional on these models, finds 

no evidence of significant cross-equation effects in the conditional mean. For the 

wholesale-retail and farm-retail cases, we find two and one lag cross-equation effects 

respectively.  

Using the estimated results of the conditional mean and volatility, we obtain the 

standardized residuals via Equation (4).  Results from modeling the marginal distribution 

of skewed t distribution and the Cramer-von Mises (CvM) test results are presented in 

Table 3. For the standardized residuals obtained from farm price changes, the skewness 

parameters are close to zero, which indicate a standard t distribution with no skews. For 

those standardized residuals from the wholesale and retail price changes, the positive 

skewness parameter means the distributions are asymmetric positively skewed. CvM test 

results fail to reject the null hypothesis that skew t is an appropriate distribution for 

modeling all of the six standardized residuals. Figure 3 visualizes the goodness of fit.  

Pre-Copula Dependency Investigation 

We then obtain the standardized residuals for dependence analysis. Figure 3 shows the 

pair-wise scatter plots of price changes and standardized residuals to visualize the 

dependency between different markets. Before we move to the copula modeling, it is 

necessary and helpful to explore some summary statistics of dependence to help choose 

the appropriate copula model(s). Pre-Copula dependency investigation results using 

nonparametric methods are summarized in Table 4. Pearson and Spearman correlation 

coefficients indicate that the farm level and wholesale level prices are more linked to 

each other and potentially more likely to be co-adjusted. The tail dependence presented in 

Table 4 utilized the nonparametric method proposed by Frahm (2005). All three pairs 

present positive upper and lower tail dependence. Farm-wholesale price changes exhibit 
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stronger tail dependence than the farm-retail and wholesale-retail cases. These indicate 

that under the market extremes, farm and wholesale market prices are more likely to 

adjust/move together. Under each price pair, the upper tail dependence is higher than the 

lower tail dependence. This indicates that price co-adjustments are more likely to be 

observed when there are extremely large price increases, compared to the extremely large 

price decrease situations. However for the wholesale-retail and the farm-retail cases, the 

90% bootstrapping confidence intervals include the zero (or close to zero), which means 

it is possible for these price changes to have no/zero dependence.  

Based on the above results, we may narrow down the copula options which allow 

one-direction dependence structure (positive); copulas with and without tail dependence; 

and we don’t limit the candidates to have asymmetric tail dependence only. Thus we 

narrow down our potential copula to the following eight models: Normal, Clayton, 

Rotated Clayton, Plackett, Frank, Gumbel, Rotated Gumbel and Student t.
1
 

Constant Copulas 

The estimate results from eight constant copulas are listed in Table 5. Based on the log 

likelihood (LL) values, we picked the two best-fit copula models for each pair of price 

adjustments. For the farm-wholesale and farm-retail cases, the two best fit copulas are 

Gumbel and Student t. The Gumbel copula allows for upper tail dependence and no lower 

dependence; while the Student t copula indicates both upper and lower tail dependences 

exist. For the wholesale-retail case, the two best fit copulas are Normal and Student t. The 

Normal copula indicates no tail dependence, which in the price co-movement case means 

market do not integrated to each other when there are extremely large shocks in the 

market price. Tail dependences from the two best-fit copulas for each case are presented 

in Table 6. This is just a preliminary procedure of the model selection to narrow down the 

final options. We will need some formal tests to help us decide the best choice based on 

the information we have.  

Based on our estimations, we have two potential copula models available for 

each pair of markets. Since different copulas could have very different interpretations of 

dependence structure, we need to be very careful in the model selection. We adopt the 

                                                 
1
  For more detailed information regarding the associated attributes for these commonly used copulas, see 

Nelsen (2006). 
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CvM and Kolmogorov-Smirnov (KS) goodness of fit tests (Patton 2012) to see if the 

estimated models have the same distribution as the empirical distribution functions. The 

results of goodness of fit tests are presented in Table 7. All tests cannot reject the null that 

the selected copulas have the same family as the empirical copula. The selection ranks 

are based on the in-sample model comparison discussed by Patton (2012). Model 

comparison indicates that the student t copula fits the best for the farm-wholesale and 

wholesale-retail cases, but the Gumbel copula fits the best. 

Time-Varying Copulas 

As previously mentioned, the dependence structure may also exhibit time-varying 

attributes because of factors like the structural change of the industry, new policy regime, 

improvement in infrastructural facility and unexpected market shocks. We thus test the 

time-varying correlation to see if the dependence structure changes dynamically. We 

adopt Patton’s (2006) test for time-varying dependence that allows for a break in the rank 

correlation coefficient at some unknown date. The results are showed in Table 7. For the 

farm-wholesale and wholesale-retail cases, the results are not able to reject the null 

hypothesis of constant dependence structure. However, for the farm-retail case, the test 

rejects the constant rank correlation hypothesis. We therefore proceed to the time-varying 

copula estimation procedure for the farm-retail case. The model specification follows the 

Creal suggestion. The estimate results (Table 8) indicate that the time-varying copulas 

have higher AIC compare to its corresponding constant copula cases. 

For the tail dependence of the time-varying copula models, the t copula suggests a 

close to zero dependence and the Gumbel indicates declining positive upper tail 

dependence and zero lower tail dependence. Consider the situations near the two very 

extreme conditions, the 1994 and 1998 crisis. The two markets had very limited linkage 

when the prices were dramatically declining. This provides some evidence for the market 

power APT hypothesis, which argues the retailers have more market power. When there 

is a huge positive shock in the farm level price, the retail price will increase 

correspondingly; however, if there is a negative price adjustment (i.e., decrease in prices), 

the retailers might not lower the price accordingly. 

Time-Varying Pearson Correlation Coefficients 
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Though the Pearson correlation coefficient is associated with many limitations as a 

measurement of dependency, it is still the most widely used tool when measuring the 

relationship between two prices and price adjustments. More specifically, the linear 

correlation coefficient has important implications in the price transmission literature. The 

transmission coefficient (or elasticity, or adjust speed) is a product of the Pearson 

correlation coefficient and the ratio of standard deviations. The widely adopted regime-

switching models allow the transmission coefficient or speed to be different in each 

regime. However, within the same regime, it is still just a product of linear correlation 

coefficient and ratio of standard deviations. Time-varying linear correlation coefficient 

can be derived from the time-varying copulas. Given the specification for our price 

change time series model in equation (2), the time-varying correlations of the two 

variables can be expressed as: 

1 1 1 2 1 1 1 2 1

1 1 1 2 1 1 1

1 1

1 1 1 2 2

( , ) ( , )

( , ), where | (0,1)

[ ( ), ( )]

t t t t t

t t t it t i

t

Corr Y Y Corr

E M F

E F U F U

  

  

    

    

 



 





 

The expression usually cannot be obtained analytically, however this can be 

solved by using the two-dimensional numerical integration as suggested by Patton (2012): 

1 1 1 1

1 1 1 2 2 1 1 2 2 1 2 1

1 1

2
0 0

[ ( ), ( )] ( ) ( ) ( , ; ( ))tE F U F U F u F u c u u t du du   

        (5) 

where c is the probability density function of the copula. The results of the numerical 

integrated dynamic Pearson correlation coefficients from the time-varying Gumbel and t 

copula are plotted in Figure 5.
2
  

As a summary, these results from copula models indicate that farm and wholesale 

markets are more closely related to each other. Retail price adjustment is less dependent 

on the other two markets. Farm-retail and retail-wholesale price adjustments have 

relatively constant dependence structures, but farm-retail price adjustments exhibit a 

dynamic, time-varying relationship. The dynamic linear correlation coefficients decrease 

as time goes by (as real prices decrease). This relationship may reflect the market power 

of retailers.  

                                                 
2
  Dynamic price transmission coefficients can be obtained by using the time-varying correlation 

coefficients and the time-varying standard deviation obtained from the marginal distribution estimation. 

This is an ongoing work and shall provide more informative data regarding the asymmetric transmission 

or adjustment. 
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In terms of price co-movements under market extremes for the farm-wholesale 

and wholesale-retail situations, constant tail dependence indicates that markets are linked 

to each other under extreme market conditions. Shocks, both positive and negative, in one 

market would transfer to the other market. For the farm-retail case, dependency under 

extreme market conditions is decreasing dynamically. Under very extreme conditions 

(i.e., in December 1994 when hog prices reach the historical low, and the 1998 hog crisis), 

lower tail dependence reached a very low (close to zero) level. This provides evidence 

that a retail price does not respond to a dramatic reduction in a farm level price. 

 

Conclusions 

Copulas are useful extensions and generalizations of approaches for modeling joint 

distributions and dependency that have appeared in the literature. Their applications on 

price transmission (e.g., long-run equilibrium, short-run adjustment and price linkage 

among relevant markets or along the supply chain), when allowing time-varying 

transmission coefficients, shall offer valuable information for understanding the price 

transmission and draw significant attention at the meeting section discussion.    
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Table 1. Summary Statistics of Log Price Changes 

 

 

 

 

 

 

 

 

 

Table 2. Models for Conditional Mean and Variance 

Farm and wholesale Wholesale and retail Farm and retail 

F: AR(2)-GARCH(1,1) W: AR(1)-CE(2)-

GARCH(1,1) 

F: AR(2)-CE(1)-

GARCH(1,1) 

W: AR(1)-GARCH(1,1) R: AR(1)-CE(2)-GARCH(1,1) R: AR(1)-CE(1)-

GARCH(1,1) 

 

 

 

 

 

Table 3. Skew t Density Parameters and Tests 

 Farm Wholesale  Wholesale Retail  Farm Retail 

Degree of Freedom 14.389 15.738  17.774 4.149  17.231 3.893 

Skewness 0.024 0.173  0.158 0.158  0.038 0.130 

CvM p value 0.380 0.460  0.720 1.000  0.200 0.580 

 

 

 Farm Wholesale Retail 

Mean -0.003 -0.003 -0.001 

Std dev 0.088 0.048 0.025 

Skewness 0.481 0.441 1.325 

Kurtosis 7.074 4.151 11.798 
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Table 4. Pre-Copula Dependency Summary 

 

Farm and wholesale Wholesale and retail Farm and retail 

Pearson 0.87 0.55 0.42 

Spearman 

(90% bootstrapping CI) 

0.87 

(0.83, 0.89) 

0.48 

(0.41, 0.54) 

0.41 

(0.34, 0.48) 

Lower tail 0.46 

(0.14, 0.83) 

0.26 

(0.02, 0.65) 

0.12 

(0.00, 0.54) 

Upper tail 0.67 

(0.31, 0.95) 

0.31 

(0.05, 0.71) 

0.23 

(0.02, 0.66) 
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Table 5. Estimate some constant copulas 

Farm & wholesale param1 param2 LL 

Normal 0.874 

 

288.5 

Clayton 2.321 

 

197.9 

Rot Clayton 3.016 

 

255.1 

Plackett 32.630 

 

280.1 

Frank 9.000 

 

266.5 

Gumbel 3.040 

 

292.1 

 (0.122)   

Rot Gumbel 2.804 

 

258.0 

Student's t 0.877 0.110 292.1 

 (0.011) (0.052)  

Wholesale & retail param1 param2 LL 

Normal 0.506 

 

58.9 

 (0.060)   

Clayton 0.695 

 

43.9 

Rot Clayton 0.732 

 

48.7 

Plackett 4.686 

 

53.6 

Frank 3.310 

 

51.9 

Gumbel 1.465 

 

56.7 

    

Rot Gumbel 1.449 

 

54.2 

Student's t 0.505 0.107 61.2 

 (0.060) (0.062)  

Farm & retail param1 param2 LL 

Normal 0.433 

 

41.3 

Clayton 0.502 

 

24.8 

Rot Clayton 0.611 

 

38.4 

Plackett 3.646 

 

37.6 

Frank 2.761 

 

37.2 

Gumbel 1.367 

 

41.5 

 (0.061)   

Rot Gumbel 1.333 

 

32.6 

Student's t 0.436 0.050 41.8 

 (0.046) (0.044)  

Note: bootstrap standard errors in parentheses.  
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Table 6. Tail dependence from the best two copulas 

Farm & wholesale Upper tail Lower tail 

Gumbel 0.795 0 

Student's t 0.829 0.829 

Wholesale & retail   

Normal 0 0 

Student's t 0.646 0.646 

Farm & retail   

Gumbel 0.322 0 

Student's t 0.632 0.632 

 

 

Table 7. Goodness of Fit Tests 

 

 

KS_R CvM_R Rank  

Farm & wholesale 

  Normal 0.5 0.5 3 

Gumbel 1 1 2 

Student t 0.5 0 1 

Wholesale & retail 

  Normal 0.4 0.4 2 

Gumbel 0.4 0.4 3 

Student t 0.95 1 1 

Farm & retail 

  Normal 0.95 0.95 3 

Gumbel 0.85 1 2 

Stud t 0.9 0.9 1 

Time-Varying Gumbel 0.35 0.2 NA 

Time-Varying-Student t 0.15 0.35 NA 

 

 

 

Table 8. Tests for Time-Varying Dependence 

 

p-value 

Farm & wholesale    0.74 

Wholesale & retail  0.19 

Farm & retail 0.05 
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Table 9. Estimate Time-Varying Copulas for Farm-Retail Price Changes 

  Parametric 

Gumbel Omega -0.0067 

  (0.0652) 

 Alpha 0.0646 

  (0.1066) 

 Beta 0.9990 

  (0.1106) 

 Log L 50.3323 

   

Student t Omega -0.0022 

  (0.0344) 

 Alpha 0.0693 

  (0.0523) 

 Beta 0.9982 

  (0.0294) 

 V_1 0.0101 

  (0.0021) 

 Log L 56.3352 
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Table 9. Goodness of Fit Tests 

 

 

KS_R CvM_R Rank  

Farm & wholesale 

  Normal 0.5 0.5 3 

Gumbel 1 1 2 

Student t 0.5 0 1 

Wholesale & retail 

  Normal 0.4 0.4 2 

Gumbel 0.4 0.4 3 

Student t 0.95 1 1 

Farm & retail 

  Normal 0.95 0.95 3 

Gumbel 0.85 1 1 

Stud t 0.9 0.9 2 

Time-Varying 

Gumbel 0.35 0.2 NA 

Time-Varying-

Student t 0.15 0.35 NA 
Note: the rank is based on the in-sample model comparison method proposed by Patton (2012).  
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Figure 1. Monthly Pork/Hog (Log) Real Prices: Jan 1970-Mar 2003 
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a) Farm and Wholesale Prices and Price Changes  

 

b) Retail and Wholesale Prices and Price Changes 

 

c) Farm and Retail Prices and Price Changes 

 

Figure 2. Pair-Wise Monthly Pork/Hog (Log) Prices and Price Changes: 1970-2003 
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Figure 3. Fit Skew t for Standardized Residuals. 
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Figure 4. Pair-Wise Scatter Plots of Price Changes and Standardized Residuals 
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Figure 5. Tail Dependence from Time-Varying Copulas 

 

 

 

 

Figure 6. Linear Correlation Coefficient Derived from the Time-Varying Copulas 
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