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Forecasting of Futures Prices:
Using One Commodity to Help Forecast Another

Managers of businesses that involve agricultural commodities need price forecasts in order to
manage the risk in either the sale or purchase of agricultural commodities. This paper examines
whether commodity price forecasting model performance can be improved by the inclusion of price
forecasts for other commodities within the model specification. We estimate 760 different models to
forecast the prices of hog, cattle, corn, and soybean and find strong support for the inclusion of
other commodity price forecasts in the best forecasting models. Unfortunately, the out-of-sample
performance of these models is mixed at best. Still, the results suggest more work is called for to
determine how best to use other commodity price forecasts to improve forecasting performance.

Keywords: price forecasting, model specification, Bayesian econometrics.

Introduction

Commodity price forecasting has a long history in both the agricultural economics literature and
in the real-world application of farm and agribusiness management. People managing businesses
that involve agricultural commodities need price forecasts in order to optimally plan their actions,
including the use or non-use of hedging in order to manage their output or input price risk. Thus,
the ability to generate quality forecasts of commodity prices is important.

The question this research seeks to answer is if commodity price forecasting models can be
improved by the addition of forecasts of other, related commodity prices. While structural price
forecasting models have commonly included variables that relate to other commodity markets
(such as cattle slaughter data being included in a hog price forecasting model), the inclusion of the
price forecast itself is new and untested as far as we know. Such a method is equivalent to a hybrid
structural-reduced form model as the included commodity price forecasts are essentially a
composite of information deemed useful to forecasting that commodity.

We test the ability of included commodity price forecasts to improve the forecasts of other
commodities using data on the four most commonly forecast commodity prices: hog, cattle, corn,
and soybean. For each of these four commodities, we forecast future prices both with and without
other price forecasts included in the model to examine the relative forecast performance. We do all
this within a Bayesian model uncertainty framework that is well-suited to the estimation and
comparison of multiple models.

The paper proceeds with a literature review section, followed by an explanation of the
methodology employed. Next we describe the data and present the results. The final section
presents some conclusions.

Background and Literature Review

Price volatility is a fundamental feature of agricultural markets and one of the main sources of risk
in commodity markets. Futures markets play a crucial role in the pricing and distribution of
commodities. For farmers, processors, and other participants in commodity markets to properly
manage their risks and attempt to maximize profits, commodity price forecasts are often useful.
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Thus, these agents are continually looking for improved forecasts, as witnessed by the long history
of research on this topic.

Cromarty and Myers (1975) noted that parsimony is desirable in forecasting model selection and
good forecasting models are designed to incorporate new information as it becomes available,
which makes the Bayesian framework ideal. Brandt and Bessler (1981) examined the empirical
accuracy of several composite forecasting techniques for U.S hog prices based on the individual
forecasts of econometric, ARIMA, and expert opinion methods and provided empirical evidence on
the usefulness of composite forecasting. Brandt and Bessler (1983) found that combining forecasts
from individual methods into a composite reduced the forecast error below that of any individual
approach and that the use of price forecasts in developing a market strategy can improve the
average price received for the product. Brandt (1985) later developed alternative forecasting
approaches generating commodity price forecasts that can be combined with hedging to reduce
price variability.

Gerlow et al. (1993) on the other hand shed light on forecasting performance evaluation, using
several economic criteria, which are zero mean returns, zero risk-adjusted mean returns, the
Merton test of market timing ability, and the Cumby-Modest test of market timing ability, to
evaluate a set of well-known hog price forecasting models. Further, Dorfman (1998) created a new
Bayesian method to form composite qualitative forecasts and showed that forming composite
forecasts from a set of forecasts in the Bayesian framework improved performance in an application
to the hog prices. Dorfman and Sanders (2006) also introduced a systematic Bayesian approach to
handle model specification uncertainty in hedging models, which can be applied to data on the
hedging of corn and soybeans and on cross-hedging of corn oil using soybean oil futures.

In this paper, we are interested in investigating whether the forecasts of one commodity can help
improve the forecasts of a second commodity. Hog, cattle, corn, and soybean are chosen in this
paper because they are the four most common commodities that have been looked at the
agricultural economics literature on forecasting. Essentially, this is a new form of composite
forecasting where model specification uncertainty is taken to include the possible inclusion of the
forecasts from models of other, related commodities.

Methodology

The Basics

In this paper, we used the Bayesian approach to deal with model specification uncertainty for each
commodity price forecasting model. For each commodity price to be forecast, we start with a set of
possible forecasting models, estimate them all, and see which have the most posterior support from
the data. This is done in two parts: the estimation of each model and the computation of each
model’s support.

For a given model j, for one commodity price, assume a linear regression model:

y = Xjβj + εj , j = 1, . . . ,M, (1)

where y is the vector of observations on the dependent variable assumed identical in all models, Xj

is the matrix of the independent variables for the jth model considered, εj is the vector of random
errors for the jth model, and j denotes the model in the set of M models considered. The
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differences between the models are restricted here to the matrix X of independent variables.

The prior distribution on the regression parameters βj can be specified as

p(βj) ∼ N(b0j , σ
2
jV0j), j = 1, . . . ,M, (2)

where N represents the multivariate normal distribution, b0j is the prior mean of the regression
parameters for the jth model and σ2

jV0j is the prior covariance matrix. The prior on σ2
j is specified

as an inverse-gamma distribution, which is equivalent to a gamma distribution on σ−2
j ,

p(σ−2
j ) ∼ G(s−2

0j , d0j), j = 1, . . . ,M, (3)

where G stands for the gamma distribution, s−2
0j is the prior mean for the inverse error variance,

and d0j is the prior degrees of freedom. A higher value of d0j indicates a more informative prior
(Koop, 2003).

The likelihood function for each model can be specified as

Lj(y|βj , σ2
j , Xj) = (2πσ2

j )−n/2exp{−0.5(y −Xjβj)
′
σ−2
j (y −Xjβj)}, j = 1, . . . ,M, (4)

where the εj are assumed to follow a standard form of identically and independently distributed
normal random variables.

Given these priors and the above likelihood function, the joint posterior distribution of βj and σ2
j

can be derived according to Bayes Theorem that the posterior distribution is proportional to the
prior distribution times the likelihood function. The joint posterior can be written as

p(βj , σ
2
j |y,Xj) ∼ NG(bpj , Vpj , s

2
pj , dpj), j = 1, . . . ,M, (5)

where
Vpj = (V −1

0j +X
′

jXj)
−1, (6)

bpj = Vpj(V
−1
0j b0j + (X

′

jXj)β̂j), (7)

dpj = d0j + nj , (8)

and
s2pj = d−1

pj [d0js
2
0j + (nj − kj)s2j + (β̂j − b0j)

′
(V0j + (X

′

jXj)
−1)−1(β̂j − b0j)], (9)

where NG represents the joint normal-gamma distribution, β̂j and s2j are the standard OLS
quantities and nj and kj are the rows and columns of Xj , respectively. Equations (6) to (9)
together help define the parameters in the distribution. s2pjVpj is the posterior mean of the
variance, bpj is the posterior mean of the coefficients, which are the weighted averages of the
parameters of the prior distribution and the parameters that are derived from the maximum
likelihood estimator based on the data, and dpj is the posterior degrees of freedom.

Model Specification Uncertainty

Now we describe the process for handling model specification uncertainty. First, a discrete prior
weight is assigned to each model

p(Mj) = µj ,

M∑
j=1

µj = 1. (10)
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Here we choose to use uninformative priors across the model specification, so all models are treated
equally. In this case, µj = 1/M, ∀j. Then, using the above results for the posterior distributions
shown in (5), we derive the marginal likelihood functions by integrating out the parameter
uncertainty to leave a marginal likelihood for each model,

p(y|Mj) = cj [|Vpj |/|V0j ]1/2(dpjs
2
pj)

−dpj/2, (11)

where

cj =
Γ(dpj/2)(d0js

2
0j)

d0j/2

Γ(d0j/2)πn/2
, (12)

and Γ is the Gamma function. The marginal likelihood tells how well the model fits on average,
where the averaging is over all possible parameter values. As shown in equation (11), the smaller
the posterior mean of the variance is, the larger the marginal likelihood will be, which indicates
that the better the model fits, the larger the marginal likelihood will be. Combining (11) and (12)
by Bayes Theorem, the posterior probability of each model can be derived as follows

p(Mj |y) ∝ µj [|Vpj |/|V0j ]1/2(dpjs
2
pj)

−dpj/2 = µjp(y|Mj), j = 1, . . . ,M. (13)

Normalizing the values in (13) by dividing each value by the sum of the unnormalized posterior
probabilities across all M models will make sure that these posterior model probabilities sum to
unity. Denote these normalized posterior probabilities by

ωj =
µjp(y|Mj)

M∑
j=1

µjp(y|Mj)

, j = 1, . . . ,M. (14)

These posterior probabilities ωj are the key to evaluating both general model specification
uncertainty and the advantage of including forecasts of other commodity prices in the forecasting
model. Models which receive higher posterior probabilities are better supported by the data,
indicating that those models are preferred choices and can be expected to yield better forecasting
performance.

Data

Data on the four commodity prices were collected from the CME Group, using monthly futures
prices for lean hogs ($/lb), live cattle futures ($/lb), corn futures ($/bushel), and soybean futures
($/bushel).

Possible independent variables were selected based on ones commonly employed in previous studies
in the literature. For the hog price forecasting models, these variables include the natural log of
monthly disposable personal income (billion dollars), monthly commercial cattle slaughter (million
heads), monthly broiler-type poultry eggs hatched (million eggs), the monthly number of sows
farrowing (thousand heads), and monthly pork cold storage (million pounds). For the cattle price
forecasting models, the independent variables considered are the same as the hog price forecasting
model except pork storage is not included.

In the corn price forecasting model, the exogenous variables considered are monthly corn exports
(million units), monthly corn inventory (million bushels), monthly lagged acres planted to corn
(thousand acres), and monthly fuel ethanol production (million gallons). For the soybean price
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forecasting model, the independent variables considered are the same things as in the corn model
except the ethanol variable is not included.

Data come from Chicago Mercantile Exchange (CME), National Agricultural Statistics Services
(NASS), and National Ocean Atmospheric Administration (NOAA).

All data are monthly extending from January 1981 to December 2012. We used the first twenty-six
years for in-sample estimation, and then evaluated out-of-sample forecast performance over the last
72 observations, which are from 2007 to 2012.

Table 1 shows the set of variables considered in the model specification and the total number of
forecasting models estimated for each of the four commodity prices.

Empirical Results

Beginning with the hog price forecasting models, Table 2 presents the posterior probabilities for
the model specification. The probabilities shown in Table 2 are the probability that each of the
variables listed belongs in the true model. These probabilities show that there is clear and
overwhelming support for the inclusion of DSPI, HATCH, SF, PKST, and forecasts of cattle prices
in the hog price forecasting model. Other variables have little to no posterior support for inclusion
in the hog price forecasting model.

In terms of forecasting performance, Table 3 presents the mean squared error (MSE) over the 72
out-of-sample forecasts for the hog price for the five best and five worst performing forecasting
models while Table 4 presents the MSEs of the five most probable and five least probable models;
these are the models with the highest and lowest posterior model probabilities. The five most
probable models are those that one would be most likely to choose ex ante before seeing
out-of-sample forecasting performance. Unfortunately, what Table 4 shows is that the most
probable models have forecasting performance, as measured by MSE, that is noticeably worse than
the best hog price forecasting models in Table 3. The most probable model does have a smaller
MSE than the average of the 240 hog price forecasting models, but it is not as good as hoped.

Moving to the cattle price forecasting models, Table 5 presents the posterior probabilities in favor
of variable inclusion in the forecasting model. These results show that DSPI, CTSL, SF, and hog
price forecasts have enormous support for inclusion in the cattle price forecasting model. No other
variables have posterior support that reaches 0.10, so the model specification is quite clear. Tables
6 and 7 hold the MSEs of the best/worst performing models and the most/least probable models,
respectively. These results show that the most probable cattle price forecasting models perform
significantly worse than the best forecasting models, and even worse than the average MSE over all
the cattle price forecasting models.

The corn price forecasting models provide mixed results in terms of the forecasting performance of
the most probable models. Table 8 presents the posterior probabilities in favor of variable inclusion
in the corn price forecasting model. These probabilities are not as clear on the correct model
specification as for the hog and cattle price forecasting models. Hog forecasts have an 88 percent
posterior probability of inclusion, ethanol production has a 58 percent probability and corn exports
have a 40 percent probability. Every other variable has even lower posterior support for inclusion
in the model than these three.
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Tables 9 presents the MSEs of the five best and five worst performing corn price forecasting
models. Table 10 displays the MSEs of the five most and least probable corn price forecasting
models. While the most probable corn price forecasting model has terrible forecasting performance
(nearly making it into the list of the five worst performing models), the second and third most
probable corn price forecasting models have excellent forecasting performance with their MSEs
being just outside the five best corn price forecasting models. This provides the best indication yet
that this method has some promise.

Finally, the soybean price forecasting model specification results are in Table 11. The posterior
probabilities show strong support for including soybean exports and hog price forecasts in the
soybean price forecasting model and little posterior support for any other variables. Table 12
presents the MSEs for the five best and five worst performing forecasting models, while Table 13
displays the MSEs for the five most and five least probable models. While three of the five most
probable soybean price forecasting models have smaller MSEs than the average, none is particular
good.

Overall, the most probable models for our four commodities display only average forecasting
performance among the entire set of models estimated. Yet, while the forecasting performance of
these most probable models is not what we might have hoped for, we do find that within the lists
of the five best forecasting models for each of the four commodity prices, models that include
commodity price forecasts are heavily represented. Of those twenty top-performing models,
thirteen include a forecast of a different commodity price. This suggests that it is worth pursuing
how commodity price forecasts can be improved by the inclusion of other commodity price
forecasts in the forecasting models.

Conclusions

The Bayesian model specification procedure applied here to the forecasting of four important
commodity prices provided clear signals for three of the four commodity prices on model
specification. Unfortunately, the models with the highest model probabilities based on the
in-sample data did not deliver above average out-of-sample forecasting performance. Still, the fact
that thirteen of the twenty best performing forecasting model specifications, as measured by
out-of-sample mean squared error, contained price forecasts for a different commodity suggest that
the idea of improving commodity price forecasting by including other forecasts in the model is
correct. We need to do some more work on choosing the correct model for forecasting, but we are
headed in the correct direction.
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Table 1. Variables Used to Predict Commodity Prices

Dependent Variable Lags Exogenous Variables

PH AR(3) ∼ AR(12) DSPI; CTSL; HATCH; SF ;PKST

(cents per pound)

(240 models)

PCA AR(3) ∼ AR(12) DSPI; CTSL; HATCH; SF

(cents per pound)

(200 models)

PC AR(3) ∼ AR(6) EXPORTc; INVTc; ACRESc; ETHANOL

(cents per bushel)

(176 models)

PS AR(3) ∼ AR(6) EXPORTs; INVTs; ACRESs

(cents per bushel)

(144 models)

As listed in Table 1, in the hog forecasting model, the hog price (PH) to be forecast is the monthly
lean hog futures price ($/lb) as given by CME group. Among the exogenous variables considered
for the hog forecasting model, DSPI denotes the monthly disposable personal income (billion
dollars) which has been taken natural logarithm; CTSL denotes monthly commercial cattle
slaughter (million heads); HATCH denotes monthly broiler-type poultry eggs hatched (million
eggs); SF denotes monthly number of sows farrowing (thousand heads); PKST denotes monthly
pork cold storage (million pounds). In the cattle forecasting model, the cattle price (PCA) to be
forecast is the monthly live cattle futures price ($/lb) as given by CME group. The independent
variables considered are basically the same things as in the hog model except the PKST variable.
In the corn forecasting model, the corn price (PC) to be forecast is the monthly corn futures price
($/bushel) as given by CME group. Among the exogenous variables considered for the corn
forecasting model, EXPORTc denotes monthly corn export (million units); INVTc denotes
monthly corn inventory (million bushels); ACRESc denotes monthly lagged acreages planted for
corn (thousand acres); ETHANOL denotes monthly fuel ethanol production (million gallons). In
the soybean forecasting model, the soybean price (PS) to be forecast is the monthly soybean
futures price ($/bushel) as given by CME group. The independent variables considered are the
same things as in the corn model except the ETHANOL variable.
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Table 2. Hog Price Forecasting Model Specification (240 Models)

Model Traits Post Probability

Include AR(3) 0.991

Include DSPI 1.000

Include CTSL 0.019

Include HATCH 0.983

Include SF 1.000

Include PKST 0.999

Include Cattle Forecasts 0.929

Include Corn Forecasts 0.034

Include Soybean Forecasts 0.038

No Forecasts <0.001
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Table 3. Top 5 and Bottom 5 Hog Price Forecasting Models by MSE

Top 5 Models by MSE MSE Post Probability

1) AR(11)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 34.093 <0.001

2) AR(11)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 34.369 <0.001
+Cattle Forecastst

3) AR(10)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 34.463 < 0.001

4) AR(6)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 34.674 < 0.001

5) AR(7)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 34.722 < 0.001

Bottom 5 Models by MSE

1) AR(6)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+PKSTt−1 51.708 <0.001
+Corn Forecastst

2) AR(7)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+PKSTt−1 51.555 <0.001
+Corn Forecastst

3) AR(10)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+PKSTt−1 51.343 <0.001
+Corn Forecastst

4) AR(9)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+PKSTt−1 51.203 <0.001
+Corn Forecastst

5) AR(3)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+PKSTt−1 50.899 <0.001
+Corn Forecastst

Mean MSE 38.998

Median MSE 37.391
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Table 4. Top 5 and Bottom 5 Hog Price Forecasting Models
by Posterior Probability

5 Most Probable Models Post Probability MSE

1) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.908 37.872
+Cattle Forecastst

2) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.035 45.230
+Soybean Forecastst

3) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.030 47.612
+Corn Forecastst

4) AR(3)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.011 38.179
+Cattle Forecastst

5) AR(4)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.007 37.347
+Cattle Forecastst

5 Least Probable Models

1) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 <0.001 36.099
+Soybean Forecastst

2) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 <0.001 36.628
+Corn Forecastst

3) AR(12)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 <0.001 38.287
+Soybean Forecastst

4) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 <0.001 37.138
+Cattle Forecastst

5) AR(12)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 <0.001 42.396
+Corn Forecastst
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Table 5. Cattle Price Forecasting Model Specification (200 Models)

Model Traits Post Probability

Include DSPI 0.999

Include CTSL 0.957

Include HATCH 0.054

Include SF 0.991

Include Hog Forecasts 1.000

Include Corn Forecasts <0.001

Include Soybean Forecasts <0.001

No Forecasts <0.001
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Table 6. Top 5 and Bottom 5 Cattle Price Forecasting Models by MSE

Top 5 Models by MSE MSE Post Probability

1) AR(3)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 17.390 <0.001
+Soybean Forecastst

2) AR(5)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 17.418 <0.001
+Corn Forecastst

3) AR(5)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 17.437 <0.001

4) AR(3)+DSPIt+CTSLt−1+HATCHt−1+Soybean Forecastst 17.528 <0.001

5) AR(5)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 17.610 <0.001
+Soybean Forecastst

Bottom 5 Models by MSE

1) AR(3)+DSPIt+HATCHt−1+SFt−1,t−2 25.129 <0.001

2) AR(3)+DSPIt+HATCHt−1+SFt−1,t−2+Hog Forecastst 24.998 0.007

3) AR(4)+DSPIt+HATCHt−1+SFt−1,t−2+Hog Forecastst 24.370 0.001

4) AR(4)+DSPIt+HATCHt−1+SFt−1,t−2 23.341 <0.001

5) AR(3)+CTSLt−1+HATCHt−1+SFt−1,t−2+Corn Forecastst 23.202 <0.001

Mean MSE 19.794

Median MSE 19.741

13



Table 7. Top 5 and Bottom 5 Cattle Price Forecasting Models
by Posterior Probability

5 Most Probable Models Post Probability MSE

1) AR(6)+DSPIt+CTSLt−1+SFt−1,t−2+Hog Forecastst 0.449 20.023

2) AR(3)+DSPIt+CTSLt−1+SFt−1,t−2+Hog Forecastst 0.276 22.553

3) AR(5)+DSPIt+CTSLt−1+SFt−1,t−2+Hog Forecastst 0.157 19.960

4) AR(4)+DSPIt+CTSLt−1+SFt−1,t−2+Hog Forecastst 0.060 21.556

5) AR(6)+DSPIt+HATCHt−1+SFt−1,t−2+Hog Forecastst 0.032 21.577

5 Least Probable Models

1) AR(12)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 20.042
+Soybean Forecastst

2) AR(12)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 19.234
+Corn Forecastst

3) AR(12)+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 19.488
+Soybean Forecastst

4) AR(12)+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 21.044
+Corn Forecastst

5) AR(11)+DSPIt+CTSLt−1+HATCHt−1+SFt−1,t−2 <0.001 20.121
+Soybean Forecastst
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Table 8. Corn Price Forecasting Model Specification (176 Models)

Model Traits Post Probability

Include AR(3) 0.999

Include EXPORTc 0.396

Include ETHANOL 0.585

Include INVTc 0.018

Include ACRESc 0.001

Include Hog Forecasts 0.879

Include Cattle Forecasts 0.121

Include Soybean Forecasts <0.001

No Forecasts <0.001
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Table 9. Top 5 and Bottom 5 Corn Price Forecasting Models by MSE

Top 5 Models by MSE MSE Post Probability

1) AR(3)+INVTc
t+ETHANOLt+Hog Forecastst 3212.168 <0.001

2) AR(4)+INVTc
t+ETHANOLt+Hog Forecastst 3217.035 <0.001

3) AR(4)+INVTc
t+ETHANOLt 3230.131 <0.001

4) AR(3)+INVTc
t+ETHANOLt+Cattle Forecastst 3231.853 <0.001

5) AR(3)+INVTc
t+ETHANOLt 3232.035 <0.001

Bottom 5 Models by MSE

1) AR(5)+EXPORTc
t+ACRESc

t+Hog Forecastst 4267.035 <0.001

2) AR(4)+EXPORTc
t+ACRESc

t+Hog Forecastst 4262.992 <0.001

3) AR(3)+EXPORTc
t+ACRESc

t+Hog Forecastst 4259.665 <0.001

4) AR(6)+EXPORTc
t+ACRESc

t+Hog Forecastst 4244.118 <0.001

5) AR(5)+EXPORTc
t+Hog Forecastst 4240.135 <0.001

Mean MSE 3621.853

Median MSE 3612.215
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Table 10. Top 5 and Bottom 5 Corn Price Forecasting Models
by Posterior Probability

5 Most Probable Models Post Probability MSE

1) AR(3)+EXPORTc
t+Hog Forecastst 0.341 4234.079

2) AR(3)+ETHANOLt+Hog Forecastst 0.278 3290.471

3) AR(3)+ETHANOLt−1+Hog Forecastst 0.245 3281.752

4) AR(3)+EXPORTc
t+Cattle Forecastst 0.055 3795.655

5) AR(3)+ETHANOLt+Cattle Forecastst 0.031 3425.002

5 Least Probable Models

1) AR(6)+ACRESc
t+INVTc

t <0.001 3626.306

2) AR(6)+ACRESc
t+ETHANOLt <0.001 3425.822

3) AR(6)+ACRESc
t+EXPORTc

t <0.001 3985.728

4) AR(5)+ACRESc
t+INVTc

t <0.001 3663.519

5) AR(6)+EXPORTc
t+INVTc

t <0.001 3678.861
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Table 11. Soybean Price Forecasting Model Specification (144 Models)

Model Traits Post Probability

Include AR(3) 0.995

Include EXPORTs 0.971

Include INVTs 0.027

Include ACRESs 0.002

Include Hog Forecasts 0.787

Include Cattle Forecasts 0.208

Include Corn Forecasts 0.005

No Forecasts <0.001
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Table 12. Top 5 and Bottom 5 Soybean Price Forecasting Models by MSE

Top 5 Models by MSE MSE Post Probability

1) AR(6)+EXPORTs
t+Corn Forecastst 128.819 <0.001

2) AR(6)+EXPORTs
t+ACRESs

t+Corn Forecastst 128.858 <0.001

3) AR(6)+EXPORTs
t+INVTs

t+Corn Forecastst 129.932 <0.001

4) AR(5)+EXPORTs
t+Corn Forecastst 130.166 <0.001

5) AR(5)+EXPORTs
t+ACRESs

t+Corn Forecastst 130.202 <0.001

Bottom 5 Models by MSE

1) AR(3)+ACRESs
t−1+Hog Forecastst 163.636 <0.001

2) AR(3)+ACRESs
t+Hog Forecastst 161.507 <0.001

3) AR(4)+ACRESs
t−1+Hog Forecastst 159.932 <0.001

4) AR(5)+ACRESs
t−1+Hog Forecastst 159.880 <0.001

5) AR(6)+ACRESs
t−1+Hog Forecastst 159.647 <0.001

Mean MSE 142.796

Median MSE 141.178
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Table 13. Top 5 and Bottom 5 Soybean Price Forecasting Models
by Posterior Probability

5 Most Probable Models Post Probability MSE

1) AR(3)+EXPORTs
t+Hog Forecastst 0.393 140.806

2) AR(3)+EXPORTs
t−1+Hog Forecastst 0.367 144.052

3) AR(3)+EXPORTs
t+Cattle Forecastst 0.116 138.946

4) AR(3)+EXPORTs
t−1+Cattle Forecastst 0.084 141.242

5) AR(3)+INVTs
t+Hog Forecastst 0.012 151.086

5 Least Probable Models

1) AR(6)+ACRESs
t+INVTs

t <0.001 142.848

2) AR(5)+ACRESs
t+INVTs

t <0.001 144.382

3) AR(6)+ACRESs
t+EXPORTs

t <0.001 133.947

4) AR(4)+ACRESs
t+INVTs

t <0.001 145.016

5) AR(5)+ACRESs
t+EXPORTs

t <0.001 135.064
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