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Abstract

Agricultural futures price features stochastic volatility, seasonal spot price volatility,
and stochastic cost-of-carry. We propose a single comprehensive model that inludes all
these features. We apply the proposed model to analyze the corn futures market from
January 3rd, 1989, to December 31st, 2008. We conduct parameter estimation using
Markov chain Monte Carlo (MCMC) with a novel dynamic tuning scheme. We also
employ a parallel MCMC scheme for state variable estimation. Parameter estimates
and model errors indicate the comprehensive model to be effective for modeling corn
futures.

1 Introduction

Trading and interest in agricultural commodities has increased within the past decade lead-
ing to new highs in both price and trading volume for many tradable crops such as corn,
soybeans, and wheat. The increase in trading activity can be attributable to a number of
different factors, most notably an increase in global food prices, active pursuit of alterna-
tive energy, such as biofuels – ethanol and diesel, and financalization of commodities, such
ad tradeable commodity indices. As the markets focus more attention on the agricultural
commodities, practitioners and regulators both seek research defining and examining char-
acteristic behaviors of these markets, futures markets in particular.

Previous studies on commodity futures have examined various characteristics of the price
behavior, including mean reverting price, mean reverting stochastic volatility, seasonal spot
price changes, and the term structure of futures price. A widely used form of stochastic
volatility is Heston’s (1993) mean reverting square root model that was proposed for fi-
nancial options. Brooks and Prokopczuk (2013) model the log spot using a Heston-style
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stochastic volatility model with a seasonal price drift for energy, hard metals, and agricul-
tural commodities as well as the S&P 500. Back et al. (2011) model natural gas futures
and options using a stochastic volatility model with a seasonal long run mean. Geman and
Nguyen (2005) use two-factor and three-factor models with mean reversion and seasonality
in both the spot price and volatility using monthly soybean data from U.S., Argentina, and
Brazil. Back et al. (2013) model the deseasonalized commodity spot as mean reverting in
price with a seasonal volatility component for soybean and heating oil options. The log spot
consists of the deseasonalized spot and a seasonal component. Trolle and Schwartz (2009)
model crude oil spot using a two factor spanned mean reverting volatility model with term
cost of carry. Sørensen (2002) and Richter and Sørensen (2003) study the effects of seasonal
prices for agricultural commodities. Jin et al. (2010) generalize the model in Schwartz (1997)
including spot price mean reversion and seasonality. Lence et al. (2013) construct the wheat
futures curve using a two-factor mean-reverting model with spot seasonality.

The existing literature examines price characteristics of agricultural commodities separately.
Specifically, Trolle and Schwartz (2009) use a model with stochastic volatility and conve-
nience yield (indirectly modeling term structure of futures); Sørensen (2002) and Richter
and Sørensen (2003) study the affects of seasonality on agricultural commodity prices; and
Brooks and Prokopczuk (2013) model the log spot price with stochastic volatility and sea-
sonality. We propose a comprehensive agricultural futures model that incorporates the char-
acteristic behaviors of mean-reverting stochastic volatility, seasonalized spot volatility and
stochastic convenience yield into a single model form.

We adopt Markov chain Monte Carlo (MCMC) method to estimate the proposed model.
MCMC simulation has been widely used in parameter estimation for equity and commodi-
ties models, especially when there are a large number of parameters and state variables.
Karali et al. (2011) and Schmitz et al. (2014) use a Bayesian procedure for parameter
estimation of a stochastic volatility model for agricultural commodities futures and options,
respectively. Equity model estimation via MCMC is used in Eraker (2004). Because of the
number of state variables and super parameters in our comprehensive futures model, we find
that MCMC is the most effective form of parameter estimation.

In addition to estimating parameters via MCMC, we employ a relatively new estimation
procedure for (unobserverable) state variables. Previous studies that employ MCMC esti-
mation often simulate state varaibles in a sequential fashion (see Erkaer (2004) for financial
index options and Schmitz et al. (2014) for agricultural commodity options). The sequential
estimation of state variables requires that a state variable could be only simulated once for
any given iteration. When the number of days in the sample data increases, the total number
of iterations to obtain a complete series of a state variable, which is equal to days multiplied
by iterations, will increase linearly in a sequential estimation. Because the number of iter-
ations is usually in hundreds of thousands, even adding one more day of state variable will
result in a significant increase in simulation time. To expedite the simulation of state vari-
ables, we estimate them in parallel as proposed in Wilkinson (2005). The parallel simulation
of state variables is implemented by splitting the daily time series into even and odd days, in
which the even days are estimated first in a parallel fashion and then, using the immediately
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estimated even days, the odd days are estimated in the same parallel fashion. In addition,
for both sequential and parallel estimation, we propose a dynamic tuning scheme in which
tuning parameters are adjusted so that parameter acceptance is within the acceptable range
of 15% to 30% as described in Roberts and Rosenthal (2001).

We apply the comprehensive model and estimation procedure to corn futures from January
3rd, 1989, to December 31st, 2008, and find model absolute relative errors are on average
7.35% with a standard deviation of 6.05%. Parameter estimates imply that long run mean
variance is 0.3622 with a low mean reversion rate of 0.0010 (with a half time of about two
years). There is very low but positive correlation between the volatility and spot processes.
Furthermore, statistically significant spot volatility parameters imply a seasonal component
to the volatility in the spot prices. These parameters indicate that the spot volatility tends
to increase as harvest approaches and then decreases thereafter.

The remainder of this paper is as follows: Section 2 states the model and propositions
for the calculation of the state variables; Section 3 outlines the data used in the study and
the methodologies employed in parameter estimation; Section 4 analyzes the results of the es-
timation procedure and the model errors; Section 5 makes concluding remarks and discusses
possible future research using the comprehensive model.

2 Models for Agricultural Futures

The dynamics for spot St, forward cost of carry yt and volatility of spot price Vt are specified
as follow:

dSt

St

= δ(t)dt+ σ1

√
VtdW1,t (1)

dyt = µy(t)dt+ σ2(t, T )
√

VtdW2,t (2)

dVt = κ(V − Vt)dt+ σ3

√
VtdW3,t (3)

with drift for the cost of carry

µy(t) = µ+ η sin (2π(t+ ζ))

and seasonal volatility
σ1 = eΨ = eΘsin(2π(t+ζ))

and correlations
dW1,tdW3,t = ρ13dt.

The latent volatility follows a mean reverting process as in Heston (1993). The spot price
has seasonal changes around a long-run mean. Instantaneous correlation between the spot
price and volatility processes ρ13 captures the leverage effect.
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Following Trolle and Schwartz (2009) we introduce the integrated forward cost of carry

Y (t, T ) =

∫ T

t

y(t, u)du

and find

dY (t, T ) =

(
−δ(t) +

∫ T

t

µy(t, u)du

)
dt+

√
Vt

∫ T

t

σ2(t, u)du dW2,t.

The time-t price of futures with expiration T can be written as

F (t, T ) = S(t)eY (t,T ). (4)

Using Itô’s Lemma we find

dF (t, T )

F (t, T )
=

dS(t)

S(t)
+ dY (t, T ) +

1

2
(dY (t, T ))2 +

dS(t)

S(t)
dY (t, T ).

Here we have

(dY (t, T ))2 = V (t)

(∫ T

t

σ2(t, u)du

)2

dt.

and

dS(t)

S(t)
dY (t, T ) =

(
V (t)eΨρ13

∫ T

t

σ2(t, u)du

)
dt.

Now we obtain the futures price dynamics:

dF (t, T )

F (t, T )
= δ(t)dt+ eΨ

√
VtdW1,t

+

(
−δ(t) +

∫ T

t

µy(t, u)du

)
dt+

√
V (t)

∫ T

t

σ2(t, u)du dW2,t

+
1

2

((
V (t)

(∫ T

t

σ2(t, u)du

)2
)
dt+ V (t)eΨρ13

∫ T

t

σ2(t, u)du

)
dt.

We gather the drift terms (dt) and differentiate it with respect to T . Because the futures
price should be diftless under the risk neutral measure, setting it to zero yields the following:

∂

∂T

(∫ T

t

µy(t, u)du+
1

2

((
V (t)

(∫ T

t

σ2(t, u)du

)2
)
dt+ V (t)eΨρ13

∫ T

t

σ2(t, u)du

))
= 0.
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Further simplification shows

µy(t, T ) = −
(
V (t)σ2(t, T )

∫ T

t

σ2(t, u)du+ V (t)eΨρ13σ2(t, T )

)
= −

(
V (t)σ2(t, T )

(
eΨρ13 +

∫ T

t

σ2(t, u)du

)
To incorporate the Samuelson Effect we model σyi(t, T ) as a determinstic process. We

set the following:
σ2(t, T ) = αe−γ(T−t)

with the requirement of both α and γ to be greater than or equal to 0.

Adapting the solution procedure in Trolle and Schwartz (2009) to our problem, we find
the time t cost-of-carry:

y(t, T ) = y(0, T ) +

∫ 1

0

µy(u, T )du+

∫ 1

0

σ2(u, T )
√

V (u)dW2(t)

= y(0, T ) +
(
αe−γ(T−t)x(t) + αe−2γ(T−t)ϕ(t)

)
with

x(t) = −
∫ t

0

V (u)

(
α

γ
+ ρ13e

Ψ

)
e−γ(t−u)du+

∫ t

0

e−γ(t−u)
√

V (u)dW2(u),

ϕ(t) =

∫ t

0

V (u)
α

γ
e−2γ(t−u)du.

Now we apply Itô’s Lemma to the above to get the dynamics of the state variables x and ϕ
to get

dx(t) =

(
−γx(t)−

(
α

γ
+ ρ13e

Ψ

)
V (t)

)
dt+

√
V (t)dW2(t),

dϕ(t) =

(
−2γϕ(t) +

α

γ
V (t)

)
dt.

We let s(t) ≡ log S(t) be log spot price and apply Itô’s Lemma to obtain the following log
spot price process:

ds(t) =

[
y(0, t) + α(x(t) + ϕt)−

1

2
σ2
1Vt

]
dt+ σ1

√
VtdW1(t).
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For ease of reference, we summarize the state variables in the following:

ds(t) =

[
y(0, t) + α(xt + ϕt)−

1

2
σ2
1Vt

]
dt+ σ1

√
VtdW1(t) (5)

dx(t) =

(
−γx(t)−

(
α

γ
+ ρ13e

Ψ

)
V (t)

)
dt+

√
V (t)dW2(t) (6)

dVt = κ(V − Vt)dt+ σ3

√
VtdW2,t. (7)

Taking the logarithm of Equation 4, we obtain the log futures price at time t expiring at
T as follows:

logF (t, T ) = φ+ s(t) +
α

2γ
(1− e−2γτ )x(t) +

α

2γ
(1− e−2γτ ). (8)

3 Data and Methodology

3.1 Data

Daily corn futures prices are obtained from the CME group. Futures with maturities less 5
days are removed from the sample due to the potential microstructural noise. The dataset
ranges from January 3rd, 1989 to December 31st, 2008, which amounts to 5,037 trading
days. On any given day, the nearest March, May, July, September and December contracts
are employed for the subsequent analysis. Descriptive statistics are reported in Table 1.

Table 1 shows that corn futures prices exhibit a contango structure, higher prices for longer
maturities. The excess kurtosis and non-zero skewness indicate non-normal distribution of
futures prices. The inverse relationship between standard deviation and length to matu-
rity increases indicates that futures contracts become more volatile the nearer they are to
maturity. This effect is known as the “Samuelson effect” (Samuelson 1965).

Table 1: Descriptive statistics for the five nearest corn futures

Corn Mean Std. Dev. Skewness Kurtosis Min Max

Futures1 2.6810 0.8378 2.4980 10.2866 1.7450 7.5450
Futures2 2.7374 0.8274 2.6659 11.3973 1.8650 7.6800
Futures3 2.7811 0.8191 2.9062 12.9918 1.9600 7.8800
Futures4 2.8106 0.8096 3.1436 14.5454 2.0700 8.0500
Futures5 2.8336 0.8073 3.2975 15.4398 2.1425 8.1300

3.2 Methodology for Parameter Estimation

The futures model consists of eight super parameters, κ, V , σ3, found in Equation 3, Θ, ζ,
found in Equation 1, α, found in Equations 6, and 5, γ, found in Equation 6, and ρ13, and the
three state variables of cost-of-carry process, χt, Equation 6, spot price process, st, Equation

6



5, and the volatility process, Vt, Equation 3. These parameters and state variables are all
simulated using the Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm.
The first step in the algorithm is to choose a candidate value randomly from a distribution
and then test that value against the current parameter value. Testing involves measuring
the ratio of probabilities generated from the current value to the proposed value. A ratio
greater than one makes the proposed parameter value the current parameter value. If the
ratio is less than one, a random number g between 0 and 1 is drawn. If the proposed value
is greater than g then the proposed becomes the current. Otherwise, the current remains
the parameter value. One point worth to note is that there is one spot price st but with
five futures prices. We first estimate contract-specific spot price and then average the five
estimates to obtain the model-implied spot price for every day.

State variable estimation is conducted in both a sequential and a parallel emulated fash-
ion.1 All state variables utilize the days prior to and after the currently estimated day. We
use Vt as an example to explain the two schemes. Let V i

t represent the estimated volatility
on day t in ith iteration. First of all, the estimation of Vt utilizes both Vt−1 and Vt+1. For

sequential estimation, the simulation of V
(i)
t utilizes both the values of V

(i)
t−1 and V

(i−1)
t+1 . More

specifically, the current iterative value of day t, V i
t , is based on the value of day t− 1, V i

t−1

and the previous iterative value of day t+ 1, V i−1
t+1 .

For parallel state estimation the current day’s state is estimated using the estimates based
on the last iteration, or V

(i)
t utilizes V

(i−1)
t−1 and V

(i−1)
t+1 . Wilkinson (2005) suggests that a

vector of even days be split evenly among the available processors and estimated. After
the even days have been estimated, the vector of odd days should be estimated in the same
way but with the updated even values. We emulate this procedure by first estimating the
even days in a sequential manner and then estimating the odd days. Errors and parame-
ter estimates will be compared between the sequential estimation and the parallel emulation.

For all super and state parameters we employ a dynamic tuning scheme. The rate of pro-
posed parameter acceptance using the Metropolis-Hastings algorithm should neither be too
high nor too low. Statisticians suggest an acceptance rate in the range of 15% to 30%. The
rate of acceptance is controlled by the parameter’s tuning factor. For the “burn-in” period,
depending on the acceptance rate, we allow the tuning factors to increase or decrease by 10%
for every 1,000 grand iterations. An acceptance rate that is too high (low) indicates that
the tuning factor should be increased (decreased). After the burn-in period, tuning factors
are frozen for the remainder of the iterations.

4 Results

In this section we first present the super parameter and state variable estimates generated
from the sequential and parallel MCMC methods with analysis. We then analyze the er-

1Although we do not actually estimate the states in a parallel fashion, we employ the same technique that
would be used with parallelization. In fact, our technique is the parallel technique but with the employment
of a single processor instead of multiple.
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rors generated from the estimated super parameters and state variables for both estimation
methods.

4.1 Sequential Parameter Estimates and Analysis

Estimates for the eight super parameters are shown in Table 2 for the sample period be-
ginning in 1989 and ending in 2008. We ran a total of 100,000 iterations and calculated
the mean of the last 90,000 for the parameter estimate. This left the first 10,000 as the
“burn-in” and was discarded. All parameters are statistically significant at the 5% level.
The parameters for stochastic volatility are κ, V , and σ3. We find that the volatility process
is persistent with the mean reversion speed κ being low. The half time of volatility (ln(2)/κ)
is approximately 700 days indicating a substantial amount of time for volatility dispersion.
The long-run average of deseasonalized variance, V , is estimated to be 0.3622 while volatility
of volatility, σ3, is estimated to be 0.0428. The correlation parameter ρ13 is slightly positive
at 0.00031 but statistically significant indicating that spot prices and volatility are positively
correlated. Spot volatility parameters Θ and ζ indicate a seasonal trend to the spot price
volatility. Figure 1 shows that the seasonal trend to spot volatility increases as harvest ap-
proaches in September and October and then decreases once the harvest is finished. This is
consistent with previous research which also shows increasing volatility with an approaching
harvest.

Latent volatility is shown in Figure 2. The mean and standard deviation of this process
is 1.3108 and 0.0022 respectively. We find in this figure that the Vt process is fairly constant
over the time frame indicating little movement during estimation. Although there is little
movement in estimation on an absolute scale, the trends in the estimated volatility process
generally follow the empirical price volatility trends. In addition, the magnitudes of the
volatility plot roughly match the volatility seen in the corn markets. Figures 4.1 and 4 show
the estimated spot and corn futures prices over the time period under study, respectively.
As the corn prices start to increase in the middle 1990’s, the volatility plot also increases
indicating that the estimation process is capturing this change. Also, as corn prices start
to decrease from the late 1990’s to the middle 2000’s, the volatility plot decreases. Finally,
the volatility of the most recent phenomenon of dramatic price increases in the late 2000’s is
also captured by the estimated volatility process as there is also a dramatic increase in the
volatility over this period.

4.2 Sequential Pricing Error Analysis

We analyze the pricing performance of the model by calculating the absolute dollar and
absolute relative pricing errors generated from the parameter estimates. We compute the
absolute dollar errors as

|PMod,t − PMkt,t|
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Table 2: Parameter estimates from the MCMC method
Parameter Mean Std.Dev. 95% C.I.

κ 0.0010 0.0011 [0.0001, 0.0001]

V 0.3622 0.4948 [0.3588, 0.3656]
Θ 0.0067 0.1014 [0.0060, 0.0074]
ζ 0.0013 0.1164 [0.0005, 0.0021]
σ3 0.0428 0.1079 [0.0421, 0.0435]
ρ13 3.1e-4 0.0190 [1.9e-4, 4.3e-4]
α 1.5994 1.6021 [1.5883, 1.6105]
γ 7.9392 4.3012 [7.9094, 7.9690]

and the absolute relative errors as

|PMod,t − PMkt,t|
PMkt,t
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Figure 1: Seasonality of Volatility
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Figure 2: Latent Stochastic Volatility

with “Mod” being our model price and “Mkt” being the market price. The mean and
standard deviation for the sequential absolute dollar errors are $0.076 and $0.067 respectively.
The mean and standard deviation for the sequential relative dollar errors are 7.35% and 6.05%
respectively. Figure 5 shows the absolute relative errors over time.

4.3 Parallel Estimation Results

As with the sequential estimation, parallel estimation burn-in is for the first 10,000 itera-
tions. During these iterations all state variables are estimated in a sequential manner with
the parallel emulation scheme starting after the burn-in period. The mean and standard de-
viation of the absolute relative errors are 14.38% and 10.19% respectively. Figure 6 displays
the errors for the parallel MCMC estimation. As a comparison, the errors generated from
the sequential estimation procedure are lower and in a tighter range.

Table 3 displays the parameter estimates and standard deviations from both the sequen-
tial and parallel estimations. With the exceptions of α and γ, parameter estimates for the
sequential and parallel methods are not inline with some being orders of magnitude off. An
explanation for this may have to do with the loss of information inherent in the parallel
method. When the sequential method estimates day i’s state variable, it is using new infor-
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Figure 3: Spot prices over time

mation in the other parameters that were estimated on the previous grand iteration. In the
parallel method, the information in the state estimation is from an even earlier iteration,
namely the two iterations preceding the current one. Given this loss of information, the
parallel scheme may require more iterations than the sequential. The increase in time for
requiring more iterations can be more than offset by parallelizing the estimation process over
multiple processors.

Implementing the parallel scheme in a lower level language such as C may make the results
more reliable because of the control the user has over the pseudo random number generator.
When using random number generators over separate processors it is crucial those processors
are generating streams of numbers that are statistically independent from each other. Using
a Scalable Parallel Random Number Generator (SPRNG) programs each processor so that
a unique and independent stream of numbers is generated on that processor.2

2Find more information on SPRNGs at http://www.sprng.org/.
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5 Conclusion

Stochastic volatility, spot seasonality, cost-of-carry, and seasonal spot volatility are all ac-
cepted characteristic behaviors of agricultural futures. These behaviors have been treated
separately before in Back, et al. (2011), Sørensen (2002), and Brooks and Prokopczuk (2013).
We propose to model these behaviors in an all-inclusive, comprehensive model and apply this
model to the corn futures market.

Given the number of super parameters and state variables, we implement the MCMC proce-
dure for parameter estimation. These techniques have been previously used in Eraker (2004)
for financial derivatives, and Karali et al. (2011) and Schmitz et al. (2014) for commod-
ity derivatives. We propose a novel technique for adjusting the tuning parameters so that
parameter estimation remains viable throughout the run of the program. In addition to
dynamic tuning, we implement a parallel estimation scheme proposed in Wilkinson (2005).
This scheme separates the vector of daily state observations into an even and odd group in
which both are estimated separately.

The parameter estimates from the sequential run of the MCMC procedure are all statistically
significant. The estimates imply that mean reversion of volatility is quite slow meaning that
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Figure 5: Absolute relative errors over time

volatility disruptions dissipate at a slow rate. The spot volatility indicates that volatility
in the spot price is highest when the harvest is near and decreases afterwards. This finding
is inline with previous studies of spot price seasonality. There is little correlation between
volatility and spot. However, the correlation is positive and statistically significant. Errors
generated from the sequential MCMC parameter estimation are reasonable with the overall
relative mean of approximately 7%.

Parallel parameter estimates are different from and model errors are inferior to the cor-
responding sequential results when the same number of iterations is simulated for both
MCMC methods. Inherent in the parallel scheme is the loss of information due to the fact
that the parallel method requires the use of V

(i−1)
t−1 and V

(i−1)
t+1 which were themselves esti-

mated without using the most recent parameter estimates. This loss of information may
require the increase in the number of iterations needed for the parallel method. However,
the benefit of the parallel method can still be achieved by dividing the parallel tasks among
a large number of CPUs or GPUs, thereby offsetting the disadvantage of information loss in
the paralle scheme.

Future studies using the comprehensive agricultural futures model would likely include en-
hancements to the underlying model. These enhancements could include seasonal volatility
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Table 3: Parameter estimates from sequential and parallel MCMC methods

Parameter Mean (Seq.) Std.Dev. (Seq.) Mean (Par.) Std.Dev. (Par.)

κ 0.0010 0.0011 0.0151 0.0110

V 0.3622 0.4948 0.1132 0.0648
Θ 0.0067 0.1014 -0.0693 0.0804
ζ 0.0013 0.1164 0.0474 0.1037
σ3 0.0428 0.1079 1.5847 0.1716
ρ13 3.1e-4 0.0190 -0.0248 0.1022
α 1.5994 1.6021 1.4432 0.1019
γ 7.9392 4.3012 7.5304 4.3304
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Figure 6: Absolute relative errors over time for the parallel MCMC procedure

of volatility. It is reasonable that as the spot price increases in volatility, the latent volatility
process may also increase. The inclusion of spanned stochastic volatility as found in Trolle
and Schwartz (2009) would indicate the degree of unhedgable volatility. Spot and volatiltiy
jumps using a Poisson process may enhance the ability of the model to deal with extreme
changes in price and volatility. In our study, we have found that stochastic volatility, spot
seasonality, and cost-of-carry are necessary behaviors for inclusion in an agricultural futures
model.
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