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Portfolio Investment: Are Commodities Useful?

This paper investigates the usefulness of commodities in investors’ portfolios within a mean-
variance optimization framework. The analysis differs from previous research by considering
multiple investment tools including individual commodity futures contracts, three generations
of commodity indices and by controlling for estimation error in portfolio optimization pro-
cess. Rather generally, the results demonstrate that including individual commodities or the
first- and second-generation commodity indices do little to enhance portfolio performance.
Similarly, when an initial portfolio is diversified, the risk-reducing ability of agricultural
commodities is much weaker than identified by previous research. In contrast, including
the third-generation indices substantially improves the portfolio’s Sharpe ratio by generating
higher returns and lower risk.

Keywords: commodity index investments, portfolio diversification, mean-variance opti-
mization, estimation error

Introduction

Investments in commodities have grown rapidly in the past decade through commodity index
funds. The total value of commodity index investments was about $210 billion by the end
of 2012.1 This large inflow of investment funds is mainly based on the perception that in-
vestors can obtain diversification benefits by including commodity futures since commodities
show equity-like returns and low correlation with traditional assets (Gorton and Rouwen-
horst, 2006). The question of interest is whether including commodity futures can improve
a portfolio’s performance. The literature provides mixed evidence. Early studies show that
investors are better off in terms of reducing risk by including commodities in portfolios (e.g.,
Bodie and Rosansky, 1980; Fortenbery and Hauser, 1990; Ankrim and Hensel, 1993). How-
ever, recent research fails to identify consistent diversification benefits in an out-of-sample
setting (Daskalaki and Skiadopoulos, 2011; You and Daigler, 2013). Where do commodities
and particularly agricultural commodities fit into investors’ portfolios, and does their use-
fulness provide insights into future non-traditional investors in these markets?

We analyze that most academic research on the usefulness of commodities in portfolios suffers
from two shortcomings. First, most studies examine the role of commodities in a portfolio
by employing either a few individual commodity futures contracts or widely used indices
(e.g., S&P Goldman Sachs Commodity Index). Few investigate the roles that different com-
modity indices and multiple agricultural commodities can play in a portfolio. Miffre (2012)
argues that returns to commodity indices can greatly depend on imbedded strategies, which
suggests that the usefulness of commodities may vary by the type of index considered. In
addition, Commodity Index Traders (CITs) have become large participants in twelve agri-
cultural futures markets with an average percentage of positions rising from 7% to 34% for
2000-2009 (Aulerich et al., 2013). Despite the increasing exposure to agricultural commodity
markets, formal assessments on whether including agricultural commodity futures benefits a

1See CFTC Index Investment Data. http://www.cftc.gov/MarketReports/IndexInvestmentData/index.htm
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portfolio are scarce. Second, studies that apply portfolio theory to commodity futures often
ignore estimation error. Estimation error occurs whenever sample moments are used to esti-
mate population values. Standard portfolio optimization that replaces expected returns by
sample estimates often leads to concentrated and unstable asset allocations (Kan and Zhou,
2009). For example, You and Daigler (2013) find that the ex-post optimal portfolios are
quite unstable and suggest that reducing bias in the expected returns would make optimal
portfolio models more useful. Failure to account for these shortcomings can influence our
understanding of the role that commodities play particularly during periods of high volatility
which have occurred recently.

The paper re-examines the usefulness of commodities in a portfolio and contributes the lit-
erature in two dimensions. First, we evaluate the impacts on investor portfolios of twelve
agricultural commodities monitored by the CFTC, and three commodity indices (S&P Gold-
man Sachs Commodity Index (SPGSCI), Deutsche Bank Optimum Yield Commodity Index
(DBOYCI), and Morningstar Long-Short Commodity Index (MSLSCI)), which reflect the
classification scheme developed by Miffre (2012). The first two indices represent passive
long-only exposures to commodities, while MSLSCI allows for both long and short positions
and more aggressive momentum strategies.2 The different proxies for commodities help us
determine whether the usefulness of commodities varies by the type of investment tools.
Second, to control for estimation error, we use Black and Litterman’s (1992) procedure that
conducts portfolio optimization with shrinkage estimates. Historical returns for equities and
bonds are shrunk towards a prior, which is derived from reversing the Capital Asset Pricing
Model (CAPM) with equal weights. For commodities the prior returns are assumed to be
zero, consistent with findings in the literature (Sanders and Irwin, 2012) and our calculations
that returns to commodities are not significantly different from zero.

The data consist of monthly returns of multiple asset types for 1991-2012. We construct
benchmark portfolios using U.S. equities, U.S. bonds, global equities, and global bonds,
and assess the effect of adding commodity indices and individual commodities. The mean-
variance optimization with sample estimates and shrinkage estimates for expected returns
is implemented in both in- and out-of-sample settings. The results suggest that including
individual commodities does not significantly improve the portfolio performance as measured
by the Sharpe ratio. Similarly, including the first- or second-generation commodity indices
fails to increase the portfolio Sharpe ratio, but evidence does emerge that the third-generation
commodity indices can either increase returns or decrease risk (or both) which leads to
enhanced portfolio performance. The results also confirm previous findings that standard
mean-variance optimization leads to concentrated and unstable asset allocations through
time and controlling for estimation error produces more diversified and balanced portfolios.
However, we find that commodities play a much smaller role when the remainder of portfolio
is diversified. Our results are consistent over multiple robustness analyses.

2Added description of the indices is provided in the text below.
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Related Literature

In this section, we first review studies on commodity futures returns with focus on the dif-
ference in performance between individual futures and commodity indices. Next, we discuss
the correlation between equity and commodity returns, since low correlation is generally
viewed as a necessary condition for commodity to be part of a portfolio. While return and
correlation are two important factors that influence the commodities’ investment value, they
cannot assure portfolio benefits. Consequently, we discuss research that applies a portfolio
framework to evaluate the usefulness of commodities.

Literature on commodity futures returns falls into two categories. The first line of research,
dating back to Keynes (1930), seeks evidence on risk premium for individual commodity
futures markets. For instance, Dusak (1973) and Fama and French (1987) find only limited
evidence of a constant risk premium. However, Bessembinder and Chan (1992) and Bjornson
and Carter (1997), when allowing for a time-varying risk premium, do find support for a risk
premium in several commodity futures markets. Despite these mixed findings, the results
identify a few factors such as hedging pressure that appear to be related to risk premium.
The other line of literature examines returns to a portfolio of commodities or commodity
indices. For example, in a direct assessment Gorton and Rouwenhorst (2006) document
that an equally-weighted commodity portfolio can achieve “equity-like” returns. In contrast,
Sanders and Irwin (2012) show that returns to individual commodity futures contracts do
not differ from zero, question the source of value in an equally-weighted commodity port-
folio, and suggest that the superiority of commodity indices may be largely due to their
imbedded strategies. The notion that differences in strategies may influence commodity
portfolio performance is informative for investors and analysts seeking to understand com-
modity market behavior. Miffre (2012) classifies commodity indices into three generations.
First-generation indices provide passive long-only exposure to broad range of commodities
and include widely used ones (e.g., SPGSCI). Second-generation indices also are long-only,
but improve on the first generation indices by mitigating the impact of negative roll yields
from rolling positions when the market is in contango. Third-generation indices differ from
the former two by allowing both long and short positions based on selected strategies. Miffre
(2012) further shows that third-generation commodity indices perform best for 2008-2012.
This is consistent with recent research (Fuertes et al., 2010; Szymanowska et al., 2013) that
momentum and term structure based strategies can work well in commodity futures markets.

In addition to returns, correlation also plays an important role in determining portfolio per-
formance. Commodity futures have long been considered as an isolated asset class, whose
returns are uncorrelated or even negatively correlated with returns of traditional assets (Gor-
ton and Rouwenhorst, 2006). Recently, Büyükahin et al. (2010) investigate the time-varying
correlation between equity and commodity returns and find the correlation generally remains
low for 1991-2008 despite a temporary modest increase during the financial turmoil. How-
ever, low correlation only implies diversification opportunity not real diversification benefits.
Moreover, recent evidence points to increasing correlation between commodities (Tang and
Xiong, 2012) and between commodities and other financial assets (Silvennoinen and Thorp,
2013), which calls into question the diversification benefits of commodity futures.
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The investment potential of commodities also has been investigated in a portfolio choice
framework. Bodie and Rosansky (1980) and Georgiev (2001) show that blending commod-
ity futures with common stocks can reduce risk without sacrificing return for the periods
1950-1976 and 1990-2001. They form portfolios by considering a range of proportions be-
tween assets instead of using an optimization procedure. Other researchers examine this
issue within the Markowitz’s (1952) mean-variance optimization framework. Fortenbery and
Hauser (1990) find that the addition of agricultural futures contracts to a stock portfolio
rarely increases portfolio return but does reduce portfolio risk. Ankrim and Hensel (1993)
use SPGSCI to represent exposure to commodities and find similar improvement on return-
risk profile. Satyanarayan and Varangis (1996) augment Ankrim and Hensel’s (1993) work
by considering global investors with broader asset classes and find that the inclusion of
commodities shifts the efficient frontier upwards. While most prior research agrees on the
diversification benefits of commodities, contradictory results also exist. Daskalaki and Ski-
adopoulos (2011) extend analysis to an out-of-sample setting and find that the in-sample
benefits, if any, by including commodities do not persist out-of-sample.3 You and Daigler
(2013) also compare the in-sample and out-of-sample performance of portfolios with and
without futures contracts using mean-variance optimization. They find that portfolios with
futures outperform the traditional portfolio in-sample but out-of-sample gains in perfor-
mance are negligible.

The identified research on the role of commodities in investors’ portfolios is subject to two
shortcomings. First, studies on asset allocation with commodities examines either a few
individual commodities or a passive long-only index (e.g., SPGSCI), which fails to reflect the
variety of commodity indices (Miffre, 2012). Also, few examine the usefulness of including
the twelve agricultural commodity futures in portfolios in light of rapid growth of CIT
positions in those markets (Aulerich et al., 2013). You and Daigler (2013) examine 39
futures contracts which include these agricultural commodity futures within a classical mean-
variance optimization framework, but their results may be susceptible to estimation errors.
Second, previous research ignores estimation error that can arise when the sample estimates
of mean and variance of returns are treated as “true” values in optimization. You and
Daigler (2013) is the only study that recognizes the potential impact of estimation error.
They find that the optimal portfolio weights are highly volatile which is mainly driven by
errors in expected return estimates. With imprecise mean and variance as inputs, the derived
optimal portfolios tend to be concentrated and extremely sensitive to the mean estimate (e.g.,
Michaud, 1989). The problem is worse in a more realistic out-of-sample setting because
in-sample distributions of returns often do not persist out-of-sample (Kan and Zhou, 2009).
Failure to control estimation error can lead to misallocated portfolios and incorrect evaluation
on the role of commodities. To address these issues, we consider alternate ways of investing
in commodities including twelve agricultural commodity futures and three generations of
commodity indices. The use of alternative indices allows us to test whether the usefulness of

3Daskalaki and Skiadopoulos (2011) use different approaches to evaluate the role of commodities un-
der in-sample and out-of-sample settings. They conduct spanning tests in-sample and implement portfolio
optimization out-of-sample.
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commodities depends on specific investment instruments. Employing agricultural commodity
futures enables us to explore whether they can provide diversification benefits to a portfolio
given increasing CIT exposures. With regards to the estimation error, different methods
have been proposed (Fabozzi et al., 2007). Here, we follow Black and Litterman’s (1992)
approach which allows us to incorporate the priors that many economists have about the
zero expected returns to agricultural futures markets.

Data

The dataset consists of monthly returns of multiple types of assets for 1991-2012. To investi-
gate the role of commodities in a portfolio, we construct a benchmark portfolio that includes
four asset types - U.S. equities, U.S. bonds, global equities, and global bonds. The U.S.
equity market is represented by the S&P 500 Index - a widely used investment benchmark.
The Barclays US Aggregate Bond Index is chosen to reflect the performance of investment
grade bonds as it covers treasury bonds, government agency bonds, mortgage-backed bonds,
corporate bonds, and a small amount of foreign bonds traded in US. Global equity perfor-
mance is measured by the MSCI World Index (ex U.S.), which includes securities from 23
countries and is often used as a common benchmark for global stock funds. The JPMorgan
Global Aggregate Bond Index is considered as a representative of global bonds which tracks
instruments from over 60 countries.

For commodities, we consider both commodity indices and individual commodity futures
contracts. In particular, we use three commodity indices - S&P Goldman Sachs Commod-
ity Index (SPGSCI), Deutsche Bank Optimum Yield Commodities Index (DBOYCI), and
Morningstar Long-Short Commodity Index (MSLSCI), which belong to the three genera-
tions classified by Miffre (2012).4 The first-generation indices are designed to provide broad
exposure to commodities, among which SPGSCI is widely used as a benchmark. These in-
dices hold liquid contracts with the shortest maturity, which can lead to poor performance
when prices of distant futures contracts are higher than near-by contract prices. The second-
generation indices differ in that they take into account the shape of futures price curve and
also are willing to invest in distant contracts. DBOYCI, as its name suggests, choose con-
tracts with the maximum implied roll yield.5,6 The first two generations indices are both
passive long-only exposures to commodities. In contrast, the third-generation indices can
take long and short positions based on strategies they identify. For example, strategies based
on momentum and term structure signal have been shown to work well (Fuertes et al., 2010;
Szymanowska et al., 2013). MSLSCI uses a momentum rule to determine its long or short

4These three indices are chosen because they have historical data back to 1991, which is uncommon. We
also use another set of indices for a robustness check.

5Implied roll yields are measured as price differences between near-by and distant futures contracts
scaled by maturity differences. For a market in contango, negative roll yield arises by rolling from the
near-by contract to the distant contract that has higher price. DBOYCI is designed to invest into a
particular distant contract that generates the smallest negative roll yield. See DBOYCI index guide.
https://index.db.com/dbiqweb2/data/guides/DBLCI-OY v15.pdf

6Recently, researchers have begun to explore the sources of commodity index returns and cast doubt
on the role of roll yields (Willenbrock, 2011; Sanders and Irwin, 2012). Here, we abstract away from those
questions and simply use the indices as commonly done in the industry.
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positions every month - taking long in the subsequent month if current price exceeds its 12-
month moving average and taking short otherwise.7 Note these three commodity indices are
all broad and cover major commodity sectors including energy, precious metals, industrial
metals, and agriculture. The data on equities, bonds, and commodity indices come from the
Bloomberg database.8 We also consider twelve agricultural commodities, including cocoa,
coffee, cotton, sugar, feeder cattle, lean hogs, live cattle, corn, soybeans, soybean oil, Chicago
wheat, and Kansas wheat. These twelve commodities are monitored by the CFTC in their
weekly Supplemental Commitment of Traders reports and research has shown that the CIT
positions in those markets have increased pronounced since 2004. The prices of individual
commodity futures come from the Commodity Research Bureau.

Monthly returns are calculated as the percentage changes of asset prices,

Rt = ln(
pt
pt−1

)× 100 (1)

where pt is the closing price on the last trading day in month t.9 Several points require at-
tention in excess return construction. First, total return indices are used for equities, bonds,
and commodity indices since they are target indices tracked by many funds. Excess returns
are obtained by subtracting total returns from equation 1 by risk-free rate, which is repre-
sented by the one-month Libor rate. Second, investing in futures, different from investing in
equities or bonds, requires no principal except margins. Futures margins are typically much
smaller than the contracts’ nominal values; that is, futures investments involve substantial
leverage. To draw a meaningful comparison between the performance of futures and other
asset classes, a full-collateralized assumption is often made (Gorton and Rouwenhorst, 2006;
Sanders and Irwin, 2012). Following this convention the excess returns to futures positions
are just percentage changes in futures prices as shown in equation 1.10 Third, commodity
futures returns are calculated using near-by contracts and adjusted for roll dates (see ap-
pendix of Singleton, 2014).

Table 1 provides annualized mean and standard deviation of monthly excess returns for all
assets for different periods. For 1991-2012, investing in U.S. equities and bonds achieved
average returns about 5.7% and 3.23% per year, while allocating funds to global equities
and bonds obtained 0.4% and 3.28% per year. The average returns for three commodity
indices are 0.25%, 6.12%, and 5.28%. Returns for individual commodities vary considerably,
ranging from 6.38% (soybeans) to -6.24% (cotton). Compared with equities, bonds tend

7See MSLSCI Fact Sheet.
http://corporate.morningstar.com/US/documents/Indexes/CommodityFactsheet.pdf

8Second- and third-generation commodity indices are all launched after 2005, but some provide historical
data based on backward computation using the same strategies. Use of these returns to make comparisons
here assumes that the relative effectiveness of the strategies has not changed.

9pt denotes the settlement price for futures contract.
10Leverage only matters in calculating return for individual commodity futures, commodity indices are

designed to be fully collateralized. Investing in a particular index is typically performed through an index
fund, which ties to mimic the index performance by holding positions in both commodity futures and risk-free
bonds markets.
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to display much lower standard deviations and most commodities (except feeder cattle and
live cattle) exhibit higher standard deviations as expected. The second- and third-generation
commodity indices (DBOYCI and MSLSCI) show equity-like returns and moderate standard
deviations. We also report test results for the hypothesis that the mean excess returns are
equal to zero. Five markets show significantly positive returns at the 10% significance level
including US equities, US bonds, global bonds, the third-generation commodity index, and
live cattle futures. The strong performance of MSLSCI is probably related to its embedded
strategies. In contrast, all individual commodity futures returns do not differ from zero
except live cattle, which is consistent with findings by Erb and Harvey (2006) and Sanders
and Irwin (2012) that the historical returns for individual commodities are almost zero.11

Table 1 also reports the mean and standard deviation of monthly excess returns for temporal
subsamples. To reflect increases in commodity prices beginning in 2004 and their collapse
following financial crisis in mid-2008, we consider three subsamples - 1991-2003, 2004-2007,
and 2008-2012. Wide differences in asset performance can be identified across subsamples.
For example, U.S. equities performed best before 2004; global equities did best for 2004-
2007; U.S. and global bonds have become more valuable since 2008. For the commodity
indices, DBOYCI provides consistently higher excess return and lower standard deviation
than SPGSCI. Interestingly, MSLSCI shows moderate return or loss but consistently lower
standard deviation compared to the other two indices. Seven of twelve individual commodi-
ties show higher excess returns in the commodity boom period 2004-2007. Three commodities
(cotton, sugar, and soybeans) perform better after 2008 and the two cattle contracts show
similar performance across subsamples. The standard deviations tend to increase for most
of assets post 2008. The p-values are not reported for subsamples due to limited observations.

Table 2 provides correlations between asset returns for different periods. For the entire pe-
riod, U.S. equities are highly correlated with global equities (0.78) but are weakly correlated
with U.S. and global bonds (0.02 and 0.09). The correlation between U.S. equities and three
generations of commodity indices are 0.2, 0.23, and -0.1. For the subsamples, we find that
U.S. equities are nearly uncorrelated or negatively correlated with commodities before crisis,
but the correlation increases considerably in 2008-2012. This is consistent with Büyükahin
et al. (2010) and Silvennoinen and Thorp (2013), who find a recent increase in correlation be-
tween equity and commodity markets. Informatively, the third-generation commodity index
MSLSCI maintains negative correlation with equities even in the post-crisis period, which
is a reflection of its ability to take short positions in the downside market. The last column
provides the average correlation between equities or bonds return and twelve agricultural
commodity futures returns.12 Despite an increase after 2008, average correlations between
traditional assets and twelve individual commodity futures are generally low. U.S. bonds are
highly correlated with global bonds and almost uncorrelated with commodities throughout
the sample, and global equities and bonds seem to have higher correlations with commodities

11Erb and Harvey (2006) also find that the live cattle shows marginally significant positive returns in
1982-2004. In part, this may be related to the marginally significant time-varying risk premium found by
Frank and Garcia (2009) in the live cattle market.

12Since we add only one commodity to the traditional portfolio at time, the pairwise correlations between
individual commodities do not matter. So, we report average values to save space.
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than U.S. equities and bonds in all periods.13

Methods

In this section, we first briefly review the classical mean-variance optimization framework.
We then discuss the importance of estimation error and introduce Black and Litterman’s
(1992) approach to mitigate its effect. Finally, we describe in-sample and out-of-sample
implementation of portfolio optimization.

Mean-variance optimization

Markowitz’s (1952) mean-variance paradigm is by far the most common framework to study
portfolio choice. Consider N risky assets with an N×1 random return vector r̃ and a risk-free
asset with known return rf . Define excess returns as r̃e = r̃−rf ι, ι = [1, 1, ..., 1]′, and denote
the expected mean and variance-covariance matrix by µ = E[r̃e] and Σ = E[(r̃e−µ)(r̃e−µ)′].
Given a weight vector w = [w1, w2, ..., wN ]′ the portfolio’s expected return and variance are
w′µ and w′Σw, respectively.

When there is a risk-free asset, the two-fund separation theorem implies that all investors
should hold a combination of the risk-free asset and the same portfolio of risky assets - the
tangent portfolio (Tobin, 1958). The tangent portfolio is achieved by maximizing the Sharpe
ratio, which is defined as the ratio of excess return and standard deviation,

max
w

w′µ√
w′Σw

(2)

s.t. w′ι = 1, ι′ = [1, 1, ..., 1]

Optimal portfolio weights can be solved as,

w∗ =
1

ι′Σ−1µ
Σ−1µ (3)

In the analysis we also impose non-negative constraints on asset weights, consistent with the
common practice that most investors only hold long asset positions.

Estimation error and shrinkage estimation

In practice, classical mean-variance optimization does not always perform well. To imple-
ment it, sample mean and covariance are used as inputs (µ̂ and Σ̂) to solve for optimal
weights based on equation (3). There is considerable research documenting the imprecision
of sample estimates (e.g., Michaud, 1989; Kan and Zhou, 2009). The general conclusions
are that sample estimates involve large estimation error and the derived optimal weights
inherit those errors, resulting in unreliable portfolios. In addition to being imprecise, sample

13The reason why commodities are more correlated with global financial markets than U.S. markets is
unclear and warrants further research.
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estimates tend to produce concentrated allocations, which seems to contradict the notion of
diversification.

The literature has suggested different ways to control estimation error.14 Shrinkage estima-
tion is attractive because of its ability to incorporate investors’ own beliefs. Developed by
James and Stein (1961) and applied to portfolio choice by (e.g., Jorion, 1986; Ledoit and
Wolf, 2003), the idea is to shrink the sample mean towards a prior, 15

µs = (1− δ)µ0 + δµ̂ (4)

where µs, µ0, and µ̂ denote the shrinkage estimate, the prior, and the sample estimate for
expected excess return. The shrinkage factor δ ∈ [0, 1] reflects the relative precision between
sample and prior estimates. When δ → 0 the shrinkage estimate converges to the prior and
when δ → 1 it converges to the sample estimate, leading to the traditional mean-variance
optimization. As illustrated in table 1, the sample estimate µ̂ varies considerably across sub-
samples, but the prior µ0 by specification will be more stable. In this sense, the shrinkage
estimates provide a more conservative framework in which investors underreact to both good
and bad past performance in optimizing their portfolios. There is no fixed rule to select δ.
The literature often assume that the prior is more precise than the sample estimate (e.g.,
Drobetz, 2001). Here, we use δ = 0.2 and check the sensitivity of the results to alternate
values in robustness analyses.

While appealing, the shrinkage estimation requires an informative prior. Black and Litter-
man (1992) lend an intuitive way of specifying the prior µ0. Originally, Black and Litterman
(1992) propose a framework to combine investor’s subjective views and implied returns which
derived from the CAPM model. To make correspondence, our prior returns refer to the im-
plied returns and the sample returns are used to represent investor’s subjective views. The
use of sample returns as a proxy of investor’s views reflects the fact that many investors
make decisions based only on past prices. The implied returns are derived using the reverse
optimization process described in Sharpe (1974). The intuition is that the market itself is in
equilibrium and investors should only deviate from the CAPM market equilibrium returns
if they have reliable information on future returns. Start with the CAPM model,

E(r̃i)− rf = βi(E(r̃m)− rf ), βi =
cov(r̃i, r̃m)

σ2
m

(5)

where E(r̃i), E(r̃m), and rf are the expected return on asset i, the expected return on market
portfolio, and the risk-free rate, respectively. cov(r̃i, r̃m) and σ2

m denote the covariance be-
tween returns of asset i and market portfolio and the variance of returns of market portfolio.
Let wm = (wm,1, ..., wm,N)′ be market capitalization, then r̃m =

∑N
j=1wm,j r̃j. Substitute r̃m

14Fabozzi et al. (2007) provide a review on recent developments in robust optimization and its applications
in portfolio management.

15Shrinkage estimation can also be applied to the covariance matrix. We focus on the mean because the
prior on covariance is more difficult to establish and because estimation errors in mean have a much larger
influence (Best and Grauer, 1991).
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in equation (5) and put it in matrix form,

µ0 ≡ E(r̃)− rf ι = γΣwm, γ =
E(rm)− rf

σ2
m

, ι = [1, 1, ..., 1]′ (6)

where µ0 ≡ E(r̃) − rf ι is defined as the CAPM market equilibrium return vector, Σ is the
covariance matrix, wm is the weight vector measured by market capitalization, and γ can be
explained as the coefficient of risk aversion (He and Litterman, 1999). In the same way op-
tions traders imply volatility from option prices using the Black-Scholes model, the implied
returns are implied from market capitalization weights and covariance matrix.

To implement equation (6), we need to specify each term on the right-hand side: Σ, γ,
and wm. The sample covariance (Σ̂) can be used as an estimate for Σ. Since E(rm) is
unobservable, Black and Litterman (1992) suggest calibrating γ such that the resulting
implied return µ0 (or Sharpe ratio) for particular asset looks reasonable. In the original
paper, they solve γ to make sure that the Sharpe ratio of U.S. equities is equal to 0.5. If the
annualized standard deviation of U.S. equities ranges between 16% and 20%, fixing Sharpe
ratio at 0.5 corresponds to a total return from 8% to 10% per year. Both these numbers are
reasonable and widely accepted by industry and academia, and their procedure is used to
calibrate γ. To develop a structure for wm, Black and Litterman (1992) argue for the use
of market capitalization, but the difficulty is to measure the scale of any asset market. For
commodity futures, market capitalization is not a meaningful concept since the net position
is always equal to zero. Moreover, it is unclear whether commodity futures can be priced
using the CAPM model. To circumvent these issues we directly specify the prior returns
of commodities to be zero, which is consistent with Sanders and Irwin (2012) and our own
findings that the average returns to commodity futures are almost zero.16 For the other assets
(U.S. equities, U.S. bonds, global equities, and global bonds), we simply use equal weights
(wm = [1

4
1
4

1
4

1
4
]′) to derive their prior returns, which may capture real world constraints

often placed by investors to ensure a more diversified portfolio (Brentani, 2004). Once we
obtain the prior (µ0) based on equation (6), the shrinkage estimates µs are then calculated
as the weighted average between µ0 and µ̂ from equation (4).

Implementation

The impact of including commodities in a portfolio is evaluated in three steps. First, we
construct sample estimates for the mean (µ̂) and covariance (Σ̂) of expected returns. To
control for estimation error the shrinkage estimate for the mean (µ0) is also established fol-
lowing procedure just described.

Second, we implement the mean-variance optimization for two sets of assets - benchmark
and expanded. The benchmark consists of U.S. equities, U.S. bonds, global equities, and
global bonds, and the expanded portfolio includes these assets as well as commodities. One
commodity (either an index or an individual commodity futures contract) is introduced at

16This may be inappropriate for MSLSCI since it shows significantly positive returns. Shrinking towards
zero provides a conservative assessment of the impact of MSLSCI on a portfolio.
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a time. We explore the role of commodity under both in-sample and out-of-sample settings.
Most of the literature falls into the in-sample category - deriving optimal portfolios and as-
sessing their performance based on the same sample period. Out-of-sample analysis may be
more meaningful to investors who are concerned more about future performance. We follow
Daskalaki and Skiadopoulos (2011) in assessing out-of-sample portfolio performance with a
monthly rebalancing scheme. At the end of each month, the previous K-months returns are
used to generate the mean and covariance estimates, which are then used for mean-variance
maximization to derive optimal weights. The portfolio’s return in the next month is product
of optimal weights and the month K + 1 return vector. This process is repeated until the
end of the sample is reached. By doing so, we obtain a series of monthly portfolio returns,
which are used for evaluation. Note we use K observations for estimation and the portfolio
evaluation is actually for 1996-2012 instead the whole period 1991-2012. Estimation window
K is set at 60 months and alternative sizes of K = 36, 48, 72 are checked for robustness.17

Finally, we compare the performance between benchmark and expanded portfolios to assess
if including commodities is beneficial. In particular, we calculate the portfolio’s annualized
excess return (Mean), annualized standard deviation (SD), and Sharpe ratio (Sharpe). If the
expanded portfolio achieves a higher Sharpe ratio, we conclude that including commodities
is beneficial to portfolios. Optimal weights are also examined to fully reveal the role of
commodities in a portfolio.

Results

In-sample performance

Table 3 compares in-sample performance of the benchmark and expanded portfolios. Panel
A is based on mean-variance optimization with sample estimates for expected returns. The
benchmark portfolio achieves a Sharpe ratio 0.98 with annualized excess return and standard
deviation 3.45% and 3.54%. The first two generations of commodity indices, represented by
SPGSCI and DBOYCI, have limited influence on the portfolio, while including the third-
generation commodity index MSLSCI improves return-risk profile, resulting in a substantial
enhancement in Sharpe ratio. For many individual commodities (cocoa, coffee, cotton,lean
hogs, corn, soybean oil, wheat CBOT, wheat KBOT) Sharpe ratios of expanded portfolios do
not change from those of the benchmark because these commodities do not enter portfolio.
The exceptions are feeder cattle and live cattle, which is partly explained by their marginally
significant positive returns identified earlier. Since including twelve individual agricultural
commodity futures fail to improve portfolio performance except for feeder cattle and live
cattle, we only report those two in table 3 for conciseness.

Panel B shows the results from mean-variance maximization with shrinkage estimates. Com-
pared with results in panel A, the means are similar but the standard deviations have in-
creased substantially, leading to a drop in the Sharpe ratios. Including the third-generation

17In a forecasting context, one may be interested in the optimal selection of K in terms of trade-off between
reliability and flexibility especially in the presence of structural breaks. Selecting optimal estimation window
is not considered in the paper. Instead, we show the effect of different lengths on the results.
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commodity index MSLSCI still improves the portfolio performance relative to the bench-
mark, but the effects of individual commodities on the portfolio are negligible.

These results can be further understood by examining the optimal portfolio weights. Table
4, panel A shows the optimal weights based on in-sample mean-variance maximization with
sample and shrinkage estimates. With sample estimates, the optimal portfolios are dom-
inated by U.S. bonds with a weight around 90%. Global equities and bonds are entirely
excluded. This confirms the argument that classical mean-variance tends to generate con-
centrated asset allocations (e.g., Michaud, 1989). Of the three commodity indices, SPGSCI
plays no role in the portfolio, DBOYCI takes 5.9%, while MSLSCI has the largest proportion
16.4%. On average, the individual commodities have a small part in the portfolio (1.7%).
In contrast, the optimal weights based on optimization with shrinkage estimates are more
balanced. The proportion of U.S. bonds declines to about 37%, and both U.S. equities and
global bonds play larger roles in the portfolio. The increased share of equities raises both
return and standard deviation of the whole portfolio which was seen in table 3. Weights
on commodities are reduced, suggesting commodities are even less useful in more diversi-
fied portfolio. These small weights are consistent with findings in table 3 that individual
commodities have limited impacts on the portfolios.

Out-of-sample performance

Table 5 shows the out-of-sample performance of benchmark and expanded portfolios us-
ing both sample and shrinkage estimates. Recall the estimates are generated using past
60-months observations and the portfolio is rebalanced monthly. To test whether the dif-
ferences between Sharpe ratios from the benchmark and expanded portfolios are significant,
we use the test proposed by Ledoit and Wolf (2008) which has demonstrated robust finite
sample properties when returns are non-i.i.d..

Panel A shows the out-of-sample performance based on mean-variance optimization with
sample estimates. The Sharpe ratio for the benchmark portfolio is 0.31, which does not
differ statistically from those of the expanded portfolios except for the third-generation com-
modity index. Including MSLSCI achieves higher returns, lower risk, and a significantly
higher Sharpe ratio (0.67). With regards to the individual commodities, ten of twelve re-
duce the portfolio’s standard deviation, although they also decrease the returns. Again, we
report expanded portfolios by feeder cattle and live cattle as they improve the Sharpe ratios
though insignificantly. The standard deviation of benchmark portfolio is 6.78%, and the av-
erage standard deviation of portfolios expanded by those ten commodities is 6.56%, a 0.22%
average reduction in portfolio risk. This risk reduction result is consistent with findings by
early literature that commodities contribute to the portfolio by reducing the volatility (e.g.,
Fortenbery and Hauser, 1990).

Panel B shows results based on mean-variance optimization with shrinkage estimators.
MSLSCI still improves the portfolio’s Sharpe ratio (from 0.29 to 0.4), reflecting higher re-
turns, lower risk, and negative correlation with traditional assets identified earlier. Com-
pared with panel A, commodities appear to play a smaller role in portfolios. First, the
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third-generation commodity index MSLSCI raises the portfolio Sharpe ratio from 0.29 to
0.4, which is smaller in magnitude than the Sharpe ratio increase (from 0.31 to 0.67) when
sample estimates are used. However, this Sharpe ratio increase becomes insignificant with
p-value of 0.21. Second, the second-generation commodity index DBOYCI and two agricul-
tural commodity futures (feeder cattle and live cattle) have no impact on the Sharpe ratio.
Third, the risk-reducing ability of agricultural commodity futures is also weaker. Although
ten of twelve expanded portfolios show some degree of reduction in standard deviation, the
magnitude decreases from 0.22% to 0.05% when shrinkage estimates are used.

These findings can be further understood by inspecting the optimal portfolio weights. Table
4, panel B reports the out-of-sample optimal weights and their standard deviations. Each
value represents the average optimal weights over time for a particular asset and values in
the last column denote an average over twelve individual commodities for the period. With
sample estimates, U.S. bonds has a weight close to 54%, much larger than weights estimated
for the other assets. SPGSCI assumes only 3.1%, but the other two commodity indices are
weighted heavily, reaching 12.8% and 22.7%. The individual commodities are on average
3.5%. With shrinkage estimates, the portfolios are more diversified. The weight of U.S.
bonds is less than 34% and other assets contribute more in the portfolio. Note the weights of
the commodity indices and composites are all reduced, suggesting weaker impacts. Standard
deviations of optimal weights are shown in parentheses. The variability of optimal weights
is uniformly smaller when shrinkage estimates are used, which again confirms that shrinkage
estimation generate stable portfolios in an out-of-sample environment.

Robust analysis

We provide several robustness checks.18. First, we use different indices to represent the three
generations of commodity indices. Second, we consider including all twelve agricultural com-
modity futures in the portfolio instead of just one at a time. Third, we examine alternative
values of the shrinkage factor δ. Fourth, we examine how the usefulness of commodities
changes over time by repeating analysis for different periods. Furthermore, we investigate
the impact of futures leverage, different sizes of estimation window, and transaction costs.

Alternate commodity indices

We consider a different set of commodity indices - Dow Jones UBS Commodity Index
(DJUBS), Merrill Lynch Commodity Index (MLCI), and CYD Long-Short Commodity In-
dex (CYDLS), which enables examining whether the usefulness of commodity indices varies
by the index type. DJUBS is a first generation index similar to SPGSCI but differs by being
less highly concentrated on energy and by imposing upper bounds on individual commodity
(15%) and sector (33%) to ensure diversification. MLCI is a second generation index similar
to DBOYCI which reduces the negative effects of rolling contracts when the market is in

18Due to space limit, we only report a portion of the results. The complete set of findings are available
from the authors. All robust tests are conducted in an out-of-sample setting since the in-sample portfolio is
dominated by bonds and is less useful.
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contango.19 Similar to MLSCI, the CYDLS index also allows for long and short positions
depending on the term structural signals.20

Table 6 shows the out-of-sample portfolio performance with sample and shrinkage estimates.
For both the sample and shrinkage estimates, the DJUBS and MLCI indices fail to improve
the Sharpe ratio, but including CYDLS does increase the Sharpe ratio though insignificantly
from 0.31 to 0.58 with the sample estimates. Again, the benefit from Sharpe ratio increase
disappears when shrinkage estimates are used.

Multiple commodities

In table 7, we include all twelve individual commodities in the portfolio, which enables us to
check whether there exists any subset of commodities that jointly benefit the portfolio. Panel
A shows the performance measures for benchmark and expanded portfolios. Based on mean-
variance optimization with sample estimates, the expanded portfolio has a lower Shapre
ratio (0.20) compared to the benchmark portfolio (0.31). Although including commodities
can reduce standard deviation from 6.78% to 6.33%, it decreases the return even more from
2.13% to 1.27%. Similar results arise using the shrinkage estimates. Panel B provides the
average optimal weights for each asset. With sample estimates, the U.S. bonds are 55%
of the portfolio, followed by global bonds (21%), U.S. equities (19%), and global equities
(5%). Once commodities are included, the weights of benchmark assets drop, and eight
commodities enter the portfolio with a total weight about 21%. If the shrinkage estimates
are used, the portfolios become more diversified. The total weight of commodities is reduced
to 9%, indicating a less important role in the portfolio. On balance, including multiple
commodities does not improve the portfolio performance.

Shrinkage factor

We examine the impact of shrinkage factor δ by changing it from 0.2 to 0.5, in which case
the sample estimates and the prior are equally weighted. Since larger δ represents a more
confident for the sample estimates, it is expected that the results using shrinkage estimates
will look closer to those using sample estimates. The general conclusions are similar. All
commodities fail to improve the portfolio’s Sharpe ratio except MSLSCI. Including individual
commodities seems to reduce the portfolio’s standard deviation, but the magnitude is smaller
with shrinkage estimates.

Subsamples

To investigate the temporal usefulness of commodities, we split the whole period into three
subsamples, 1991-2003, 2004-2007, and 2008-2012. Period 2004-2007 represents the com-
modity price boom period, while 2008-2012 includes the market meltdown and subsequent
period in which cross-market correlation is strengthened. Recall that the out-of-sample
optimization needs 60-month observations for parameter estimation. We use returns for

19See Merrill Lynch commodity paper. http://www.ml.com/media/67354.pdf
20See CYD indices overview. http://www.cyd-research.com/en/indices/longshort tr index.php
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1991-1995, 1999-2003, and 2003-2007 to start the optimization for each subsamples. Table
8, panel A reports the Sharpe ratios derived from optimization with sample estimates. As
expected, the first- and second-generation commodity indices (SPGSCI and DBOYCI) in-
creases portfolio Sharpe ratio only in the commodity boom period 2004-2007. In contrast,
the third-generation commodity index MSLSCI improves the portfolio performance in the
other periods. Including agricultural commodity futures barely enhances portfolio perfor-
mance in any periods except feeder cattle and live cattle. When shrinkage estimates are used
(table 8, panel B), benefits to commodities almost disappear except for the third-generation
commodity index in 1991-2003.

Other robustness tests

In addition, we consider the impacts of full-collateralization, length of estimation window,
and transaction costs. First, we relax the full-collateralized assumption since trading in-
dividual commodity futures does not require principal except a small margin. Following
Egelkraut et al. (2005), we assume a futures margin as 10% of the contract value.21 Given
the leverage, the futures return is ten times as the usual return measured by percentage
price changes. Using these levered returns we re-examine the role of twelve individual com-
modity futures and find similar results. The reason is that the leverage amplifies return and
volatility simultaneously, leading to no difference in portfolio performance. We also consider
alternative sizes of estimation window (K) in the out-of-sample optimization. The initial K
is specified as 60 months. We check for the cases K = 36, 48, 72 and the results are rather
robust.

To include transaction costs, we define the net-of-transaction-cost returns as,

rnc,t+1 = (1 + rc,t+1)[1− c×
N∑
j=1

(|wj,t+1 − wj,t|)] (7)

where rc,t+1 and rnc,t+1 are portfolio returns before and after the transaction costs in period

t+ 1, c denotes the transaction cost vector, and
∑N

j=1(|wj,t+1 − wj,t|) measures the amount
of portfolio rebalanced. Since the transaction costs may differ between asset types, we
follow Daskalaki and Skiadopoulos (2011) by setting c equal to 50 basis points (0.5%) per
transaction for equities and bonds and 35 basis points (0.35%) for individual commodity
futures contracts.22 For commodity indices we set it at 100 basis point (1%) since the fee
charged by most commodity index funds ranges from 0.75% to 1.5%. We obtain qualitatively
similar conclusions when allowing for transaction costs.

21The actual margins are not available for all commodities. Analyzing several commodities including
corn, soybeans, wheat, live cattle, and lean hogs, we find that the historical margins fluctuate about 5-
10%. See historical margins from CME. http://www.cmegroup.com/clearing/risk-management/historical-
margins.html

22Daskalaki and Skiadopoulos (2011) establish the transaction costs levels based on discussion with prac-
titioners. Trading commodities may induce much lower transaction costs (Fuertes et al., 2010). To ensure
the robustness, we have also considered lower cost values for trading commodities and the results remain
similar.
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Concluding remarks

This paper examines whether investors benefit by including commodities in their portfolios.
We differ from previous literature in two aspects. First, we evaluate whether the usefulness
of commodities varies by the type of investment tool. Specifically, we use the twelve agricul-
tural commodities monitored by the CFTC, and three commodity indices, which allow for
a broader range of commodities and represent the three generations of commodity indices
developed by Miffre (2012). Second, we explicitly control for estimation error in the process
of optimization, which has been ignored in prior research on this topic. Estimation error has
been shown to induce concentrated and unstable portfolios, which may mislead the evalu-
ation on the role of commodities. To reduce estimation error we shrink the sample mean
estimates to a prior following Black and Litterman’s (1992) approach. For commodities the
prior returns are assumed to be zero, consistent with findings that returns to commodities
do not differ from zero (Sanders and Irwin, 2012), while the prior returns of traditional com-
ponents - U.S. and global equities and bonds - are derived from reversing the CAPM with
equal weights.

Overall, the findings indicate that including individual agricultural commodity futures or the
first- or second-generation commodity indices fail to significantly improve portfolio Sharpe
ratios in both in-sample and out-of-sample analyses. In contrast, the third-generation com-
modity indices improve the portfolio performance due to their imbedding strategies related
to momentum and term structure signals. Accounting for estimation error with shrinkage
estimates, we find that the optimal asset allocations are more diversified and stable and that
commodities play a smaller role in a more diversified portfolio. Specifically, while includ-
ing commodities can reduce volatility in highly concentrated portfolios, their risk-reducing
effects almost disappear in the more diversified portfolios considered here. In general, the
results are robust to alternative commodity indices, degree of shrinkage, and including multi-
ple commodities together. We also relax the full-collateralized assumption, take into account
transaction costs, change sizes of estimation window, and perform the analysis over subsam-
ples, and find similar results.

Our findings are largely consistent with recent studies on the role of commodities in investor’s
portfolios. Using out-of-sample utility maximization, Daskalaki and Skiadopoulos (2011)
find no significant improvements in Sharpe ratios by including popular commodity indices
(SPGSCI and DJUBS) and five individual commodities (cotton, crude oil, copper, gold, and
live cattle) in a portfolio. Similarly, You and Daigler (2013) examine a number of commodity
and financial futures in a mean-variance framework and find that the portfolio with futures
contracts outperforms the traditional portfolio in-sample but improved performance does
not continue in an out-of-sample context. Here, we identify limited improvement in Sharpe
ratios for some commodities (e.g., feeder and live cattle) in the in-sample analysis, but no
out-of-sample evidence of statistically significant portfolio improvement for both individual
commodities and the first-generation indices emerges. We expand the literature by consid-
ering the second- and third-generation commodity indices and find that the third-generation
commodity indices can improve portfolio Sharpe ratios significantly in most cases. This
finding highlights the importance of commodity index categorization (Miffre, 2012) when
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studying portfolio investment by researchers as well as investors.

Our findings contrast to some degree with the view that including commodities in portfolios
will be beneficial to investors by reducing volatility (e.g., Bodie and Rosansky, 1980; Forten-
bery and Hauser, 1990; Ankrim and Hensel, 1993). While commodities can marginally reduce
risk in concentrated portfolios, we show that in more balanced portfolios the risk reducing
ability of commodities is negligible. Here, the more balanced portfolios resulted from using
shrinkage estimates to reduce estimation error. You and Daigler’s (2013) conjecture that the
failure to account for estimation error, which can lead to concentrated portfolio allocations,
might influence our understanding of the role commodities play in portfolios was perceptive.
Our analysis demonstrates that in terms of risk mitigation their role is reduced.

These findings have practical implications in a broader investment context and implications
for market behavior. Investors often place constraints on portfolio allocations to diversify
their risk, and the notion that more balanced portfolios makes commodities less useful may
influence allocations and the presence of some financial investors in commodity markets.
Our findings seem to be consistent with recent actions by some large pension funds. For
example, the California Public Employees Retirement System (CalPERS), the largest U.S.
pension fund, reduced its commodity allocation from 1.4% to 0.6% in October 2012 and to
0.5% in early 2013. The same has been done by the California State Teachers’ Retirement
System and the Ohio Police & Fire Pension Fund.23 On the market level, since the top ten
largest exchanged-traded products (ETPs) on broad commodities track the first- or second-
generation commodity indices according to the 2013 Q1 report by ETF Securities,24 the
growth of commodity index investments may slow given few benefits to portfolios. However,
investors may shift investment tools. Since some of the third-generation commodity indices
produce better performance, it is likely that investors may move towards third-generation in-
dices and be selective in identifying those indices that provides most attractive performance.
In a market context, this suggests that future non-traditional investors in commodity markets
may be more informed and selective in their market activities.

23http://www.pionline.com/article/20130218/PRINT/302189978/investors-get-active-over-commodities
24http://www.etfsecurities.com/Documents/Global%20Commodity%20ETP%20Quarterly%20-

%20Q1%202013%Europe.pdf
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Table 1: Summary statistics on asset excess returns

1991 - 2012 1991 - 2003 2004 - 2007 2008 - 2012
Mean SD p Mean SD Mean SD Mean SD

U.S. equities 5.70 14.76 0.07 7.30 13.86 5.45 8.56 1.83 20.09
U.S. bonds 3.23 3.57 0.00 3.32 3.58 0.79 3.12 4.89 3.83
Global equities 0.40 16.93 0.91 -0.36 14.72 11.05 10.19 -6.05 24.67
Global bonds 3.28 5.92 0.01 3.28 5.89 1.65 4.96 4.57 6.70
SPGSCI 0.25 21.53 0.96 0.89 17.95 8.86 21.49 -8.17 28.90
DBOYCI 6.12 17.41 0.10 4.29 14.35 22.47 14.42 -2.08 24.79
MSLSCI 5.28 10.67 0.02 6.30 8.82 6.80 11.49 1.48 13.97
Cocoa -2.38 28.88 0.70 -7.90 27.38 9.53 25.05 2.34 34.98
Coffee -2.94 35.39 0.70 -5.10 38.85 6.46 26.10 -4.81 32.71
Cotton -6.24 29.07 0.31 -6.01 25.84 -21.82 25.15 5.44 38.35
Sugar 4.41 32.27 0.52 4.79 29.06 -1.21 27.32 7.87 42.57
Feeder cattle 3.43 11.69 0.17 3.14 11.20 8.65 11.88 0.04 12.80
Lean hogs -1.89 27.42 0.75 -2.66 29.30 2.98 24.58 -3.76 24.82
Live cattle 5.52 14.09 0.07 5.16 14.90 7.73 13.19 4.68 12.81
Corn -4.31 25.48 0.43 -5.56 19.65 -7.10 29.60 1.09 34.18
Soybeans 6.38 23.90 0.21 5.15 18.93 3.57 29.90 11.71 29.75
Soybean oil 0.05 24.56 0.99 0.26 20.24 7.22 27.14 -6.12 31.82
Wheat CBOT -3.13 28.19 0.60 -0.10 24.76 1.70 25.04 -14.67 37.51
Wheat KBOT 3.71 26.78 0.52 4.71 22.67 17.73 23.14 -9.89 37.16

Note: Excess returns are defined as the percentage changes of monthly prices in excess of risk-free
rate. Mean and SD denote the average annualized excess returns and standard deviations in
percentage formats. The p-value is for a two-tailed t-test that the mean equals to zero.

Table 2: Correlation between asset excess returns

U.S.
bonds

Global
equities

Global
bonds

SPGSCI DBOYCI MSLSCI Comm-
odities

U.S. equities 1991-2012 0.02 0.78 0.09 0.20 0.23 -0.10 0.14
1991-2003 0.03 0.69 -0.01 -0.02 0.00 -0.14 0.06
2004-2007 -0.14 0.70 -0.09 -0.24 -0.11 -0.24 0.08
2008-2012 0.06 0.91 0.30 0.57 0.55 -0.03 0.29

U.S. bonds 1991-2012 0.06 0.68 -0.01 -0.02 -0.08 0.04
1991-2003 0.02 0.66 0.04 -0.04 -0.02 0.02
2004-2007 0.02 0.68 0.02 0.12 0.12 0.02
2008-2012 0.15 0.74 -0.07 0.01 -0.28 0.10

Global equities 1991-2012 0.32 0.37 0.40 0.03 0.16
1991-2003 0.23 0.18 0.17 0.01 0.04
2004-2007 0.27 0.09 0.22 0.12 0.07
2008-2012 0.48 0.63 0.62 0.01 0.33

Global bonds 1991-2012 0.14 0.16 0.05 0.07
1991-2003 0.12 0.07 0.04 0.00
2004-2007 0.20 0.30 0.23 0.04
2008-2012 0.16 0.26 -0.02 0.20

Note: The last column reports averaged correlations across twelve individual commodity futures.
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Table 3: Portfolio performance comparison: In-sample, 1991-2012

Benchmark
portfolio

Expanded portfolio
SPGSCI DBOYCI MSLSCI Feeder cattle Live cattle

Panel A: Mean-variance optimization with sample estimates

Mean % 3.45 3.45 3.57 3.77 3.44 3.61
SD % 3.54 3.54 3.51 3.27 3.41 3.47
Sharpe 0.98 0.98 1.02 1.15 1.01 1.04

Panel B: Mean-variance optimization with shrinkage estimates

Mean % 3.44 3.44 3.44 3.62 3.44 3.45
SD % 6.70 6.71 6.71 6.12 6.71 6.71
Sharpe 0.51 0.51 0.51 0.59 0.51 0.51

Note: Benchmark portfolio consists of U.S. equities, U.S. bonds, global equities, and global bonds and
is expanded by adding one commodity at a time. Mean and SD are based on the annualized portfolio
excess returns. Sharpe ratio (Sharpe) is defined as the ratio between Mean and SD. The shrinkage
factor δ is assumed to be 0.2 when shrinkage estimates are used.
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Table 4: Optimal portfolio weights: In-sample and out-of-sample

Sample estimates Shrinkage estimates
Benchmark SPGSCI DBOYCI MSLSCI Commodities Benchmark SPGSCI DBOYCI MSLSCI Commodities

Panel A: In-sample

US equities 0.090 0.090 0.070 0.082 0.087 0.254 0.254 0.254 0.244 0.254
US bonds 0.910 0.910 0.872 0.753 0.896 0.374 0.374 0.374 0.375 0.373
Global equities 0.000 0.000 0.000 0.000 0.000 0.149 0.150 0.150 0.127 0.150
Global bonds 0.000 0.000 0.000 0.000 0.000 0.222 0.222 0.222 0.186 0.223
Commodities 0.000 0.059 0.164 0.017 0.000 0.000 0.069 0.000

Panel B: Out-of-sample

US equities 0.189 0.195 0.188 0.138 0.177 0.266 0.268 0.267 0.258 0.263
(0.276) (0.273) (0.239) (0.184) (0.257) (0.070) (0.068) (0.068) (0.045) (0.069)

US bonds 0.546 0.542 0.601 0.513 0.564 0.338 0.340 0.339 0.341 0.332
(0.332) (0.322) (0.342) (0.297) (0.360) (0.128) (0.127) (0.127) (0.124) (0.129)

Global equities 0.050 0.038 0.009 0.032 0.047 0.167 0.164 0.163 0.126 0.166
(0.128) (0.098) (0.028) (0.087) (0.120) (0.071) (0.067) (0.068) (0.069) (0.070)

Global bonds 0.215 0.194 0.075 0.090 0.178 0.230 0.226 0.227 0.184 0.231
(0.199) (0.192) (0.131) (0.136) (0.204) (0.080) (0.079) (0.079) (0.078) (0.081)

Commodities 0.031 0.128 0.227 0.035 0.003 0.004 0.091 0.009
(0.041) (0.108) (0.114) (0.044) (0.009) (0.010) (0.057) (0.013)

Note: Benchmark portfolio consists of U.S. equities, U.S. bonds, global equities, and global bonds and is expanded by adding one commodity at a
time. For twelve individual commodities, the weights are further averaged across commodities and reported in the last column. Standard deviations
of weights over periods are reported in the parenthesis. The out-of-sample optimization is based on 60-months estimation window (K = 60) and
monthly rebalancing, and the weights are reported as averages over periods. The shrinkage factor δ is assumed to be 0.2 when shrinkage estimates
are used.
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Table 5: Portfolio performance comparison: Out-sample, 1991-2012

Benchmark
portfolio

Expanded portfolio
SPGSCI DBOYCI MSLSCI Feeder cattle Live cattle

Panel A: Mean-variance optimization with sample estimates

Mean % 2.13 1.90 2.32 3.62 2.40 2.74
SD % 6.78 6.86 7.36 5.40 6.60 6.48
Sharpe 0.31 0.28 0.32 0.67 0.36 0.42
p-value 0.67 0.99 0.05 0.50 0.17

Panel B: Mean-variance optimization with shrinkage estimates

Mean % 2.24 2.22 2.26 2.79 2.15 2.35
SD % 7.77 7.76 7.76 7.00 7.66 7.70
Sharpe 0.29 0.29 0.29 0.40 0.28 0.31
p-value 0.62 0.73 0.21 0.72 0.73

Note: Benchmark portfolio consists of U.S. equities, U.S. bonds, global equities, and global bonds, and
is expanded by adding one commodity at a time. Mean and SD are based on the annualized portfolio
excess returns. Sharpe ratio (Sharpe) is defined as the ratio between Mean and SD. The p-values are
computed based on Ledoit and Wolf (2008) with the null hypothesis that the Sharpe ratio obtained from
benchmark portfolio is equal to that derived from expanded portfolios. The out-of-sample optimization
is based on a 60-month estimation window (K = 60) and monthly rebalancing. The shrinkage factor δ is
assumed to be 0.2 when shrinkage estimates are used.

Table 6: Portfolio performance comparison: Alternate commodity indices, 1991-2012

Sample estimates Shrinkage estimates
Benchmark DJUBS MLCI CYDLS Benchmark DJUBS MLCI CYDLS

Mean % 2.13 1.54 2.34 3.01 2.24 2.24 2.27 1.92
SD % 6.78 6.52 6.98 5.19 7.76 7.76 7.76 7.00
Sharpe 0.31 0.24 0.34 0.58 0.29 0.29 0.29 0.27
p-value 0.38 0.92 0.17 0.79 0.57 0.76

Note: Benchmark portfolio consists of U.S. equities, U.S. bonds, global equities, and global bonds,
and is expanded by including a different set of commodity indices - Dow Jones UBS Commodity index
(DJUBS), Merrill Lynch Commodity index (MLCI), and CYD Long-Short Commodity index (CYDLS).
Mean and SD are based on the annualized portfolio excess returns. Sharpe ratio (Sharpe) is defined
as the ratio between Mean and SD. The p-values are computed based on Ledoit and Wolf (2008) with
the null hypothesis that the Sharpe ratio obtained from benchmark portfolio is equal to that derived
from expanded portfolios. The out-of-sample optimization is based on a 60-month estimation window
(K = 60) and monthly rebalancing. The shrinkage factor δ is assumed to be 0.2 when shrinkage estimates
are used.
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Table 7: Portfolio performance comparison: Multiple commodities, 1991-2012

Sample estimates Shrinkage estimates
Benchmark Expanded Benchmark Expanded

Panel A: Portfolio performance
Mean % 2.13 1.27 2.24 1.90
SD % 6.78 6.33 7.76 7.50
Sharpe 0.31 0.20 0.29 0.25
p-value 0.50 0.54

Panel B: Optimal weights %
U.S. equities 0.19 0.11 0.27 0.24
U.S. bonds 0.55 0.47 0.34 0.28
Global equities 0.05 0.03 0.17 0.15
Global bonds 0.21 0.17 0.23 0.25
Commodities (total) 0.21 0.09

Cocoa 0.04 0.02
Coffee 0.01 0.01
Cotton 0.00 0.00
Sugar 0.02 0.01
Feeder cattle 0.05 0.02
Hogs 0.00 0.01
Live cattle 0.05 0.01
Corn 0.00 0.00
Soybeans 0.02 0.00
Soy oil 0.01 0.01
Wheat CBOT 0.00 0.00
Wheat KBOT 0.01 0.00

Note: Benchmark portfolio consists of U.S. equities, U.S. bonds, global equities, and global bonds, and
is expanded by including all twelve individual commodities. Mean and SD are based on the annualized
portfolio excess returns. Sharpe ratio (Sharpe) is defined as the ratio between Mean and SD. The
p-values are computed based on Ledoit and Wolf (2008) with the null hypothesis that the Sharpe ratio
obtained from benchmark portfolio is equal to that derived from expanded portfolios. The out-of-sample
optimization is based on a 60-month estimation window (K = 60) and monthly rebalancing. Optimal
weights are averaged across periods. The shrinkage factor δ is assumed to be 0.2 when shrinkage estimates
are used.
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Table 8: Sharpe ratio performance: Subsamples

Benchmark
portfolio

Expanded portfolio
SPGSCI DBOYCI MSLSCI Feeder cattle Live cattle

Panel A: Mean-variance optimization with sample estimates

1991-2003 0.54 0.53 0.54 1.10 0.56 0.60
2004-2007 0.20 0.28 1.05 0.47 0.33 0.39
2008-2012 0.01 -0.13 -0.19 0.07 0.08 0.16

Panel B: Mean-variance optimization with shrinkage estimates

1991-2003 0.30 0.30 0.31 0.61 0.31 0.33
2004-2007 0.88 0.86 0.88 0.93 0.86 0.91
2008-2012 0.12 0.12 0.11 0.05 0.11 0.13

Note: Benchmark portfolio consists of U.S. equities, U.S. bonds, global equities, and global bonds, and is
expanded by one commodity at a time.The out-of-sample optimization is based on a 60-month estimation
window (K = 60) and monthly rebalancing. The shrinkage factor δ is assumed to be 0.2 when shrinkage
estimates are used.
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