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Can Cattle Basis Forecasts Be Improved? 
A Bayesian Model Averaging Approach 

 
Basis forecasts aid producers and consumers of agricultural commodities in price risk 
management. A simple historical moving average of nearby basis on a specific date is the most 
common forecast approach; however, in previous evaluations of forecast methods, the best 
prediction of basis has often been inconsistent. The best forecast also differs with respect to 
commodity and forecast horizon. Given this inconsistency, a Bayesian approach which addresses 
model uncertainty by combining forecasts from different models is taken. Various regression 
models are considered for combination, and simple moving averages are evaluated for 
comparison. We find that model performance differs by location and forecast horizon, but the 
average model typically performs favorably compared to regression models. However, except for 
very short-horizon forecasts, the simple moving averages have a lower out of sample forecast 
error than the regression models. We also examine using a basis series created using a specific 
month’s futures contract as opposed to the nearby contract and find that basis forecasts 
calculated this way have lower forecast errors in the month of the contract examined. 

 
Keywords: basis, basis forecasts, Bayesian model averaging, feeder cattle, futures, Georgia. 
 
Introduction 

Basis, the difference between the spot and futures prices, localizes the futures price for a given 
location and time and is therefore a key component of price risk management (Tomek, 1997; 
Taylor, Dhuyvetter and Kastens, 2006). When compared to current basis levels, historical basis 
puts current price levels in perspective; so if current basis deviates significantly from historical 
levels, market participants can address why by inquiring into local market circumstances. Having 
accurate basis forecasts aids in hedging with futures contracts by providing an estimate of the 
prospective price they will receive or pay if they enter into a futures contract. Accurate forecast 
of basis is also important in timing sales and purchases of commodities, as it generates a forecast 
of expected future cash prices (Tonsor, Dhuyvetter, and Mintert, 2004). 

Given the importance of accurate basis information, we investigate in this paper if basis forecasts 
can be improved by combining different forecasting models in a Bayesian framework. 
Specifically, we estimate feeder cattle basis in three different Georgia locations using both 
nearby and September futures contracts. 

The earliest studies examining basis forecasts used structural models to forecast basis. For 
instance, storage and transportation costs, excess local supply, existing stocks, and seasonality 
are found to affect basis (Martin, Groenewegen, and Pidgeon, 1980; Garcia and Good, 1983). 
Moving historical averages, commonly referred to as naïve forecasts, have been the most typical 
approach to forecast basis (Hauser, Garcia, and Tumblin, 1990). When compared to structural 
models, the naïve models are generally found to predict basis more accurately. A regression on 
structural variables such as transportation costs and local supply information as regressors along 
with a naïve forecast is found to somewhat improve on the performance of the best naïve model 
(Jiang and Hayenga, 1997). 
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The number of years to include into a moving average has been a key issue in the literature. 
Looking at wheat, corn, milo, and soybeans, Dhuyvetter and Kastens (1998), for instance, find 
that longer moving averages work best, whereas Taylor, Dhuyvetter, and Kastens (2006), 
looking at the same commodities, find shorter moving averages perform better. Hatchett, 
Brorsen, and Anderson (2010) conclude that while using shorter moving averages yields better 
basis forecasts when a market has undergone a structural change, using longer moving averages 
performs better otherwise. 

Compared to naïve models, more complex time-series models such as ARIMA and VAR models 
modestly outperform naïve approaches, but only for short forecast horizons (Sanders and 
Manfredo, 2006; Sanders and Baker, 2012). Additionally, some studies indicate basis may be 
getting harder to predict over time (Irwin et al., 2009). This observation has led to recent 
investigations of regime switching models (Sanders and Baker, 2012); however these too only 
perform well over short forecast horizons. 

Our paper reexamines many variations of the models in previous work and gauges their 
effectiveness at forecasting basis. Given the ambiguity in the literature on the best forecasting 
model of basis and the importance of accurate forecasts of basis for market participants, we take 
a Bayesian Model Averaging (BMA) approach. By averaging over different competing 
forecasting models, BMA incorporates model uncertainty into inferences about parameters and 
has been shown to improve predictive performance in many instances (Hoeting et al., 1999; 
Koop, 2003). The main focus of this paper is on evaluating the potential of BMA as a method for 
producing a consistently performing forecasts and potentially providing an improvement over 
current methods of basis forecasts. For this purpose, we consider variations of previously 
examined models in our BMA framework. Specifically, autoregressive models and regressions 
on moving historical averages of varying lengths with and without additional fundamental 
variables such as current market information, transportation costs, and input costs are considered 
as explanatory variables. Each selected model’s forecasting performance are compared to that of 
naïve forecasts and an average forecast obtained with estimated Bayesian model probabilities.  

Most previous studies of basis forecasts do so with a nearby basis series: basis in a given month 
is computed with futures contracts that correspond to that month or the nearest months’ contract. 
This kind of forecast concerns itself primarily with what basis will be in the near future, 
specifically at the time the nearby contract expires. However, a producer may be also interested 
in what basis will be in the far distant future, when sale or purchase of products will occur. This 
type of forecast is most likely to be used by an agricultural producer who has a fixed timeline for 
making marketing decisions. Thus, We deviate from the convention of computing basis with the 
nearby futures price and examine the potential of using a series consisting entirely of futures 
contracts from a particular month to improve forecasts made for that month at any time of the 
year. We consider the September futures contract because most feeder cattle in Georgia are sold 
in August for September delivery to feedlots in the West.  

Results of nearby basis forecasts for individual models are similar to those of previous studies: 
autoregressive models perform well for short horizon forecasts, but for longer horizon forecasts a 
multiyear historical moving average performs better than regressions. The best performing 
individual regression model varies by location and forecast horizon, but at all locations and 
forecast horizons considered, the BMA forecasting model performs well comparably to the best 
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individual models considered for averaging. However, BMA never performs better than the best 
naïve forecast except for the shortest forecast horizon considered. 

For a one week ahead forecast of September basis, autoregressive models, a naïve forecast 
consisting of the last observed September basis, and the average model all perform best and quite 
similarly. As with the nearby series, a multiyear historical average of September basis becomes 
the front runner for the longer forecasts examined. Unlike with the nearby basis forecasts, the 
best regression models computed with the September series tend to perform noticeably better 
than the average model. 

Previous Work 

Dating back several decades, early empirical studies examining basis for agricultural 
commodities examine fundamental supply and demand factors believed to affect basis as set 
forth in the theory of storage by Working (1949). This theory states that carrying and delivery 
charges, existing stocks, and flows of commodities to or from outside markets determine the 
difference between the cash and futures prices. The earliest studies do not explicitly attempt to 
forecast basis, but they do identify important determinants of basis. The first studies to forecast 
basis focus on intuitive technical models, primarily variants of a moving/rolling historical 
average. These studies emphasized the optimal number of years to include in the forecast for a 
certain commodity. More recent research examines more complicated time series models’ ability 
to forecast basis. Most of the earlier studies focus on grains with a few exceptions examining 
livestock basis. In general, variants of the simple moving averages, commonly called the naïve 
approach, has been found to be the best forecast of basis. 

Martin, Groenewegen, and Pidgeon (1980) model nearby corn basis in Ontario and find that local 
supply and demand conditions explain a substantial amount of basis that is not explained by 
spatial costs such as loading, tariffs, and rail charges. Garcia and Good (1983) examine the 
combined impact of spatial and supply and demand factors on corn basis. They find the effect 
these fundamental factors are significant in explaining basis variation and that their impact on 
basis varies across seasons. 

Hauser, Garcia, and Tumblin (1990) forecast nearby soybean basis in Illinois using several 
different approaches. They consider various moving averages and a no change naïve approach 
where expected basis is the last observed basis at the time of forecast. They further consider a 
model which incorporates current market information measured as an implied basis based on 
price spreads between distant futures contracts. Finally, they examine a regression model based 
on the fundamental factors. In their study, the simple no change and three year historical average 
approaches provide the best forecasts before and during harvest while the futures spread 
approach provides the best forecast after harvest—the implication being that simpler forecasting 
methods provide better results than more complicated regressions on fundamental variables. 

Jiang and Hayenga (1997) examine corn and soybean basis at several locations and find that a 
three year average performs well compared to other models. They also introduce fundamental 
variables into simple moving averages. They find the fundamental model with a three year 
historical average plus additional information on supply and demand factors performs better than 
a naïve average. They also find that an ARIMA outperforms the simple three year average for 
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short horizon forecasts, but the improvement on the simpler models is not large. They also 
consider a state space model and artificial neural networks; however these perform no better than 
their simple historical moving averages models. Sanders and Manfredo (2006) also estimate 
autoregressive models. They look at VAR and ARMA models, and find that while for short 
forecast horizons these models show promise, the improvement is not substantial. 

Dhuyvetter and Kastens (1998) compare the forecast performance of the no change model and 
historical averages of up to seven years for milo, corn, and soybeans. They also incorporate 
current market information in the form of the futures price spread as well as a new method which 
is a three year average including an adjustment for how much current basis deviates from its 
historic average. They find the forecast performance differs by crop and varies within a year with 
forecasts generally being the worst during planting periods. They determine a four year average 
to be the best forecast for wheat basis. On the other hand, longer averages perform better for corn 
and milo. The forecasts which incorporate current market information outperform the simpler 
averages by a small amount, but only for short forecast horizons of less than 12 weeks. 

Tonsor, Dhuyvetter, and Mintert (2004) forecast livestock basis. They study one to five year 
historical averages for feeder cattle between 1979 and 2002 and for live cattle between 1982 and 
2002. For feeder cattle, they find a three year average performs best over the sample period, but 
that a four year average performs best for the most recent five years of their sample. Contrarily, 
for live cattle, they find a four year average for the entire sample period and a two year average 
for the most recent five years of the sample period as the best forecasts. They find a benefit to 
including current market information in the form of an adjustment for how much current basis 
deviates from its historic average for forecasts of less than 16 weeks. They conclude that for 
shorter forecasts, naïve basis forecasts should be adjusted for that current market information. 

Taylor, Dhuyvetter, and Kastens (2006) build on previous work examining the inclusion of 
current market information. For wheat, soybeans, corn, and milo, they compare simple historical 
averages of varying lengths to the same length averages supplemented with current market 
information in the form of current basis’ deviation from its historical average. The authors find 
that shorter averages perform best. Specifically, for pre-harvest forecasting, they find the basis 
lagged by one year to be the best predictor for corn, milo, and soy and a four year average to be 
the best for wheat. For post-harvest forecasts, they find a one year lagged basis supplemented 
with current market information performs best. They also report higher prediction errors than 
previous studies suggesting basis might be becoming harder to predict. Irwin, et al. (2009) echo 
the sentiment that grain basis is becoming harder to predict. 

Hatchett, Brorsen, and Anderson (2010) acknowledge differences in the length of historical 
moving average found to be optimal in the literature, and they examine hard and soft wheat, 
corn, and soybeans over a large timespan to determine the optimal length of a moving average. 
They find a shorter average to be optimal, particularly in the face of a structural change, and like 
the previous research, they find current market information on basis to improve post-harvest 
forecasts. They recommend using shorter averages in the presence of structural change and 
longer averages otherwise. They also conclude that the differences in the forecast accuracy of 
varying lengths of historical averages are typically quite small for all crops examined. 
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In this paper, we combine these various forecasting models in a Bayesian framework to 
investigate the potential improvement over existing models. We also examine the potential of a 
basis series consisting of a specific month’s futures contract to improve forecasts for that month. 

Models 

Models which consist of simple moving averages of basis on a specific date and various 
regression models are considered. These models are then weighted and combined using BMA 
method which is described below. The models that are included the BMA process are variations 
of regression models previously examined in the literature. 

Because the no change and moving average forecasts do not have parameters, these models are 
not incorporated into the BMA framework as it is currently formulated. However, the 
performances of these models are evaluated so that models which are looked at and the average 
model can be benchmarked against them.  

Two naïve models are considered: The model in equation (1) is a no change model where 
predicted basis is the last observed basis at the time of forecast. The model in equation (2) is a 
historical moving average; where i refers to the number of years included in the average, ranging 
from between one and five years. In all models, basis is defined as the cash price minus the 
futures price; k refers to location, j refers to week, t refers to year, and h refers to the forecast 
horizon. 

ݏଓݏܽܤ     ,,௧ ൌ  ,ି,௧            (1)ݏ݅ݏܽܤ

ݏଓݏܽܤ     ,,௧ ൌ
ଵ


∑ ,,ݏ݅ݏܽܤ
௧ିଵ
ୀ௧ି            (2) 

    ݅ ൌ 1,… ,5; ݄ ൌ 1, 	4, 	8 

We consider several regression models which we use to form an average model. Models are 
calculated with and without fundamental variables added as regressors in order to see how the 
addition of these regressors affects forecast performance. 

The first set of regression models considered are regressions on the historical moving averages 
from (2), so they will be referred to as historical moving average regressions, HMA(i) or the 
HMA(i)+, where the “+” indicates the addition of fundamental variables, F. The HMA(i) and the 
HMA(i)+  are shown in equations (3) and (4) respectively. 

ݏଓݏܽܤ     ,,௧ ൌ ߙ  ߚ ቀଵ

∑ ,,ݏ݅ݏܽܤ
௧ିଵ
ୀ௧ି ቁ 	          (3) 

ݏଓݏܽܤ     ,,௧ ൌ ߙ  ߚ ቀଵ

∑ ,,ݏ݅ݏܽܤ
௧ିଵ
ୀ௧ି ቁ            (4)	ି,௧ܨߛ

     ݅ ൌ 1,… ,5; 	݄ ൌ 1, 	4, 	8 

The models in equations (5) and (6) include yearly lagged values of basis as separate 
independent variables. Thus, in these models, instead of every lag having the same weight in the 
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average, the estimation procedure determines the weights. These models will be referred to as the 
yearly autoregressive model, YAR(i), or the YAR(i)+ if it includes fundamental explanatory 
variables. 

ݏଓݏܽܤ     ,,௧ ൌ ߙ  ൫∑ ,,ݏ݅ݏܽܤߚ
௧ିଵ
ୀ௧ି ൯          (5) 

ݏଓݏܽܤ     ,,௧ ൌ ߙ  ൫∑ ,,ݏ݅ݏܽܤߚ
௧ିଵ
ୀ௧ି ൯   ି,௧         (6)ܨߛ

     ݅ ൌ 1,… ,5; 	݄ ൌ 1, 	4, 	8 

The models in (7) and (8) are typical autoregressive models. As the data are weekly, the lagged 
values now refer to basis in previous weeks. This model will be referred to as an AR(i) and an 
AR(i)+ when explanatory variables are included. 

ݏଓݏܽܤ     ,,௧ ൌ ߙ  ቀ∑ ,,௧ݏ݅ݏܽܤߚ
ି
ୀିିሺିଵሻ ቁ          (7) 

ݏଓݏܽܤ     ,,௧ ൌ ߙ  ቀ∑ ,,௧ݏ݅ݏܽܤߚ
ି
ୀିିሺିଵሻ ቁ   ି,௧        (8)ܨߛ

     ݅ ൌ 1,2,3; 	݄ ൌ 1, 	4, 	8 

The models in (9) and (10) are a combination of historical moving average and current market 
information in the form of the difference between basis at the time of forecast and its historical 
average. This model is an attempt to put the current market information model of Taylor, 
Dhuyvetter, and Kastens (2006) in a regression format. Without fundamental variables model 
will be referred to as CMI(i) and with them it will be called CMI(i)+. 

ݏଓݏܽܤ ,,௧ ൌ ߙ  ߚ ቀଵ

∑ ,,ݏ݅ݏܽܤ
௧ିଵ
ୀ௧ି ቁ  ߜ ቀݏ݅ݏܽܤ,ି,௧ െ

ଵ


∑ ,ି,ݏ݅ݏܽܤ
௧ିଵ
ୀ௧ି ቁ                  (9) 

        

ݏଓݏܽܤ ,,௧ ൌ ߙ  ߚ ቀ
ଵ


∑ ,,ݏ݅ݏܽܤ
௧ିଵ
ୀ௧ି ቁ  ߜ ቀݏ݅ݏܽܤ,ି,௧ െ

ଵ


∑ ,ି,ݏ݅ݏܽܤ
௧ିଵ
ୀ௧ି ቁ   ି,௧            (10)ܨߛ

      

݅ ൌ 1,… ,5; 	݄ ൌ 1, 	4, 	8 

We use a Bayesian approach to estimate all the linear models presented in (3)-(10) and Bayesian 
model averaging to handle model uncertainty. First, each model is estimated using Bayesian 
estimation. Then the support of each model, in the form of posterior model probabilities, is 
computed, and the predictions of each model are weighted by these posterior model probabilities. 
For the estimation of each model, consider a general regression equation in matrix form for 
model m: 

ݕ     ൌ ܺߠ  ݉    ,ߝ ൌ 1,…  (11)        ܯ,

where y is the dependent variable which is the same for all models at a given forecast horizon, 
and ܺ is the matrix of independent variables for each model, ߠ is the vector of regression 
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parameters to be estimated,   ߝ is the vector of random error terms, and M is the total number of 
models evaluated. 

Prior distributions on the regression parameters are specified to be normally distributed while 
that of the error variance, ߪଶ , is specified to be an inverse gamma distribution:  

,ߠሻ~ܰሺߠሺ ଶߪ ܸሻ,                      (12) 

ݏሺܩ~ିଶሻߪሺ    
ିଶ , ݀ሻ,           (13) 

where N and G denote the multivariate normal distribution and gamma distribution, respectively. 

,ߠ|ݕሺܮ ଶߪ , ܺሻ ൌ ሺ2ߪߨଶ ሻି/ଶ݁ݔሼെ0.5ሺݕ െ ܺߠሻᇱߪିଶሺݕ െ ܺߠሻሽ,݉ ൌ 1,…  (14)  .ܯ,

With these priors and the likelihood function, the joint posterior distribution of the parameters 
and the error variance can be derived with Bayes Theorem, and can be shown to follow a normal 
gamma distribution as:  

,ߠሺ   ଶߪ ,ݕ| ܺሻ~ܰܩ൫ߠ, 	 ܸ, ଶݏ	 , ݀൯, 	݉ ൌ 1,…  (15)          ,ܯ,

where 

     ܸ ൌ ሺ ܸ
ିଵ  ܺᇱ ܺሻିଵ,         (16)  

ߠ     ൌ ܸ൫ ܸ
ିଵߠ  ሺܺᇱ ܺሻߠ൯,         (17) 

     ݀ ൌ ݀  ݊,          (18) 

ଶݏ ൌ ݀ିଵ ቂ݀ݏ
ଶ  ሺ݊ െ ݇ሻݏଶ  ൫ߠ െ ൯ߠ

ᇱ
ሺ ܸ  ሺܺᇱ ܺሻିଵሻିଵ൫ߠ െ  ൯ቃ    (19)ߠ

In the above equations, NG represents the normal gamma distribution, ߠis the posterior mean 
of the coefficients, ݏଶ ܸ is the posterior mean of the variance, ݀ is the posterior degrees of 
freedom, ߠ and ݏଶ  are standard OLS quantities, ݊ and ݇ are the number of rows and 
columns of ܺ, respectively. After all models are estimated, uncertainty about which model is 
best supported by the data is addressed by weighting models by their posterior model 
probabilities. 

To address model uncertainty, we first define prior weights for each model to be uninformative 
so that each model is treated equally: 

ሻܯሺ    ≡ ߤ ൌ ଵ

ெ
,∑ ߤ ൌ 1,			ெ

ୀଵ ∀	݉ ൌ 1,… ,  (20)        ܯ	

Using the above posterior distribution from equation (15), the marginal likelihood for each 
model can be derived by integrating out the parameter uncertainty resulting in: 

ሻܯ|ݕሺ    ൌ ܿൣห ܸห/| ܸ|൧
ଵ/ଶ
൫݀ݏଶ ൯

ିௗ/ଶ.          (21) 
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where 

    ܿ ൌ
௰൫ௗ/ଶ൯൫ௗబ௦బ

మ ൯
బ/మ

ሺௗబ/ଶሻగ/మ
.            (22) 

Combining (21) and (22) by the Bayes Theorem, the posterior probability of each model can be 
shown as: 

ሻݕ|ܯሺ   ∝ ߤ ቂ
หห

|బ|
ቃ

భ
మ
൫݀ݏଶ ൯

ି

మ ൌ ,ሻܯ|ݕሺߤ ݉ ൌ 1,… ,  (23)      ܯ	

Finally, the posterior probabilities are normalized to sum to one by dividing each value in 
equation (23) by the sum of the unnormalized posterior probabilities across all models. The 
normalized posterior model probabilities are given as: 

     ߱ ൌ ఓሺ௬|ெሻ

∑ ఓሺ௬|ெሻಾ
సభ

, ݉ ൌ 1,… ,  (24)       .ܯ	

   

These normalized posterior model probabilities indicate how well a model is supported by the 
data with a higher value indicating a better model fit.  

After each model is estimated and its normalized posterior probability is computed for the in-
sample period, we create out-of-sample forecasts using those estimated parameters and weight 
these forecasts by their model probabilities. We evaluate the models based on their out-of-sample 
mean absolute error (MAE) and root mean squared error (RMSE). For the one step ahead 
forecasts, a total of 34 models are considered. Because some of these models use yearly lags as 
their sole explanatory variables, the HMA and YAR models do not produce unique forecasts for 
multiple step ahead forecasts. Therefore, they are not included among the models for the four 
and eight step ahead forecasts, resulting in a total of 25 models for these forecasts horizons. 

Data 

Cash price data on feeder cattle auctions held weekly are obtained from the USDA Agricultural 
Marketing Service for the period of January 1, 2004 to December 31, 2013 for three high volume 
Georgia auctions: Ashford, Calhoun, and Carnesville. The data are for steers with grade and 
weight descriptions matching the futures contracts. Specifications of cattle in the series are a mix 
of medium and large, number one and two cattle weighing between 650 and 700 pounds. 
Auctions at the chosen locations take place on either Tuesdays or Thursdays. 

Daily feeder cattle futures settlement price data are obtained from Livestock Marketing 
Information Service. Because auctions occur on Tuesdays or Thursdays, feeder futures on 
Wednesdays are chosen as the weekly futures price in computing basis. A nearby contract series 
is created with the nearby contract being that closest to expiration. The contract rolls over at the 
end of the month the current nearby contract expires. For example, the March contract would be 
nearby in February since there is no February futures contract for feeder cattle, and this contract 
would be nearby until March 31, at which point the nearby contract would rollover to the next 
contract, April. A series consisting only of September futures contracts is also created. This 
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series rolls over to the next year’s September contract at the end of September in the current 
year. 

Daily December corn futures settlement prices are chosen as a proxy for winter feed cost and 
obtained from CRB Trader. Wednesday’s closing price is chosen as the representative weekly 
price to match that of the cattle futures. Weekly U.S. No 2 diesel retail prices are chosen as a 
proxy for transportation cost and these data are obtained from the U.S. Energy Information 
Administration. 

All series are tested for stationarity using a single mean augmented Dickey-Fuller test with two 
augmenting lags (see Table 1). Both December corn futures and diesel price series show 
evidence of non-stationarity, so first-differenced, log price series, which are stationary, are used.  

Given the great deal of upheaval in financial markets during the sample period, the basis series 
are examined for structural breaks. First, to test the most recent recession caused a structural 
break, the second week of September, 2008, the week Lehman Brothers filed for bankruptcy, is 
chosen as a break point. No break is implied visually in the plot of either basis series and no 
statistical evidence is found with Chow tests conducted at this break point. Second, a point in the 
spring of 2012 is chosen based on a disturbance in the plot of nearby basis. For nearby basis, this 
point tested positive for a break using Chow tests at all three locations. We believe this is due to 
the severe drought around this time. For consistency and to avoid complications of potential 
structural breaks, both the nearby and September basis series are cut off at the end of 2011. The 
years 2004-2010 are used as in-sample period to create the yearly moving averages and estimate 
model parameters. The year 2011 is reserved for out-of-sample forecast evaluation, so both 
nearby and September basis forecasts errors are examined over the whole year of 2011.   

Figure 1 shows a plot of the nearby futures contract and cash price series at all locations 
separately. Prices begin to rise around 2010 and appear to stabilize at a higher level towards the 
end of the sample period. Figure 2 shows the nearby basis series at all locations. This series 
looks much more stable than the cash series, but around the beginning of 2012, basis does appear 
to have a lower mean value than in preceding years. Figure 3 shows plots of the September basis 
series.  

Results 

Results for nearby basis forecasts are presented in Tables 2-4. Each table presents the five best 
performing regression models based on out-of-sample mean absolute error (MAE) and root mean 
squared error (RMSE) along with their estimated posterior model probabilities. In all locations 
the top five models are the same whether chosen based on the lowest MAE or RMSE, and the 
ranking of the remaining models generally does not change either. The tables also present the 
performance of the average model denoted as BMA, the best naïve model, and the model with 
the highest posterior model probability. 

For one step ahead forecasts (Table 2), a weekly autoregressive model performs better than other 
regression models considered at all locations. The inclusion of fundamental variables improves 
these models’ forecast performance inconsistently across locations, but where it does improve 
performance, the improvement is typically very small compared to a model without fundamental 
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variables. The average model does not outperform the best regression model or the best naïve, 
but the MAE and RMSE are in the same ballpark as the regression models and the naïve models. 
At all locations the best naïve model is the no change model for this short horizon forecast, and 
at two of the three locations considered (Calhoun and Carnesville), the best regression model and 
the average model do better than the naïve. The models with the highest posterior probabilities 
are AR(2)+ or AR(3)+ models. 

For the four week ahead forecasts (Table 3), the best performing regression models vary across 
locations. There are also many different types of models within a location; however, an AR(2) 
does appear in the top five at all locations. The average model still produces forecast errors in the 
ballpark of the top five regression models, but, as can be seen by looking at Table 3, at four steps 
ahead, a naïve model is now outperforming the best regression models by around roughly 
$1/ctw. The best naïve is still a no change model at two locations (Ashford and Calhoun) while a 
four year average performs best at the third location (Carnesville). Although not presented in the 
table, the difference between a no change and a three or four year average is quite small for this 
forecast horizon. It is interesting that at this forecast horizon, the model with the highest 
posterior model probability does not appear in the top five even though the average model 
performs comparably with these models. The model with the highest posterior model probability 
is different at each location, but they do all contain the additional fundamental variables. 

For eight weeks ahead forecasts (Table 4), the best performing naïve model outperforms the best 
regression and the average model at all locations. At this forecast horizon, a three or four year 
moving average performs best of the naïve models considered while the  no change model now 
performs dismally. The best performing regression models are mostly HMA(i)+ or YAR(i)+ 
models. Majority of the best regression models contain the fundamental explanatory variables at 
this horizon. Models with the highest posterior probability appear in the top five regression 
models once again. 

The results of the one step ahead September basis forecasts are presented in Table 5. For this 
forecast horizon, the autoregressive models and the average model perform better than the naïve 
forecast in one location (Carnesville). Weekly autoregressive models perform in the top five at 
all locations at this forecast horizon; although the specific model differs by location. 

For four step ahead September basis forecasts (Table 6), regression models and the average 
model, in fact, perform worse than the naïve forecast. The average model also performs 
noticeably worse than the top five regression models. This appears to be because the model with 
the highest model probability at this forecast horizon performs relatively poorly compared to the 
best regression models. At this forecast horizon, the same model uncertainty observed in the four 
step ahead nearby basis forecast appear as many different types of models appear in the top five 
for the three locations considered. 

For the eight step ahead September basis forecasts (Table 7), the variation in the best regression 
models vary considerably as well. At this forecast horizon the best naïve forecast performs better 
than the best regression model and the average model. At this forecast horizon, the average 
model also performs slightly worse than the best regression models; though not as starkly as with 
the four step ahead forecasts. 
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Conclusions 

This paper examines feeder cattle basis forecasts at three Georgia locations. Both nearby basis 
and basis forecasts for a specific contract are examined. This second type of forecast would be 
useful in making decisions on distant future marketing plans. Forecasts are created using a naïve 
moving average and many regression based models. The regression models are used to form a 
combined, average model using Bayesian model averaging. Models are evaluated based on their 
out-of-sample forecast performance. 

For both the forecast made with the nearby basis series and the September basis series, the best 
performing regression models at a given forecast horizon vary  across locations, and, as in 
previous studies, the best model differs by forecast horizon. Autoregressive models do well for 
the shortest horizon while models with yearly lags do better for longer forecasts. The addition of 
fundamental variables does not consistently improve the performance of one and four week 
forecasts. However, all the best regression models for the eight step forecast contain the 
fundamental variables. At all locations and all forecast horizons, the model with the highest 
posterior model probability contains the fundamental variables. This shows that these 
fundamental variables are important factors in forecasting basis. 

For both the naïve and September basis forecasts, the average model and the regression models 
perform comparably to the best naïve model for the one step ahead forecast, but for longer 
horizon forecasts, the best naïve model produces a substantially lower forecast error, generally 
around $1/ctw. For the shortest forecast horizon, a no change naïve model performs best. For the 
longest forecast horizon a three or four year moving average performs best among the naïve 
models considered. For the four step ahead forecast, a no change model and a three or four year 
moving average perform quite similarly. The naïve models’ performance generally fell in line 
with previous studies’ findings with no change models doing well for the shortest forecasts and 
three or four year moving average doing best for longer forecasts.  

The regression models and the average model as currently formulated either did not perform 
much better or performed worse than the benchmark naïve models at all forecast horizons 
considered. In no case did averaging regression models produce lower forecast error than the 
best individual regression model. However, the set of regression models and explanatory 
variables included in the averaging process can be extended for further investigation of potential 
improvements in basis forecasting.  

The disparity in the best performing regression model across locations and over different forecast 
horizons highlights the presence of model uncertainty in using regression models to forecast 
basis. Though performance of regression models varied substantially, the average model always 
performed comparably regardless of location or forecast horizon. While it may not be possible to 
generalize without further analysis of more locations and commodities, these results suggest that 
basis forecasts which use regressions should account for model uncertainty. Bayesian model 
averaging as it is implemented in this paper does so at the locations and for the commodities 
considered and it produces forecast errors in line with the best regression models. 
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Figure 1. Spot and nearby futures prices at three Georgia locations from 2004 to 2012 

 

 

Figure 2. Nearby feeder cattle basis at three Georgia locations from 2004 to 2012 
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Figure 3. September feeder cattle basis at three Georgia locations from 2004 to 2012 
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Table 1. Augmented Dickey-Fuller Test Results 
Series Test statistic P-value
Ashford Nearby Basis -5.25 0.00
Calhoun Nearby Basis -4.62 0.00
Carnesville Nearby Basis -5.35 0.00
December Corn Futures Price -1.87 0.34
Diesel Price -2.01 0.28
Differenced, Log December Corn Futures Price -11.39 0.00
Differenced, Log Diesel Price -8.71 0.00
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Table 2. One Step Ahead Nearby Basis Forecast Results 

Ashford Calhoun Carnesville 

Model 
Post 
Prob. 

MAE RMSE Model 
Post 
Prob. 

MAE RMSE Model 
Post 
Prob. 

MAE RMSE

AR(2) 0.77% 3.85 4.78 AR(3)+ 55.32% 3.74 4.62 AR(3) 1.72% 2.65 3.41
AR(3) 0.67% 3.86 4.78 AR(3) 3.86% 3.79 4.65 AR(2) 1.62% 2.65 3.41
AR(3)+ 36.23% 3.87 4.79 AR(2)+ 27.03% 3.84 4.75 AR(3)+ 50.03% 2.68 3.4
AR(2)+ 41.80% 3.87 4.79 AR(2) 2.03% 3.87 4.77 AR(2)+ 46.20% 2.69 4.42
AR(1) 0.24% 3.97 4.93 AR(1)+ 0.09% 4.47 5.33 AR(1) 0.01% 3.04 3.76

BMA 3.89 4.82 BMA 3.87 4.87 BMA 2.68 3.4
Best Naïve: 
Last Observed 

3.72 4.71
Best Naïve: 
Last Observed 

4.08 4.79
Best Naïve: 
Last Observed 

2.68 3.53

Highest Prob: 
AR(2)+ 

41.80% 3.87 4.78
Highest Prob: 
AR(3)+ 

55.32% 3.74 4.62
Highest Prob: 
AR(3)+ 

50.03% 2.68 3.41

M=34 
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Table 3. Four Step Ahead Nearby Basis Forecast Results 
Ashford Calhoun Carnesville 

Model 
Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE 

HMA(4)+ 0.12% 5.19 6.89 AR(2) 0.12% 5.42 6.43 AR(2) 0.04% 3.64 4.61 
HMA(5)+ 0.02% 5.23 6.9 HMA(4)+ 0.02% 5.42 6.43 AR(3) 0.04% 3.66 463 
AR(2) 0.00% 5.42 7.22 HMA(2)+ 0.00% 5.66 6.73 AR(2)+ 37.94% 3.86 4.99 
AR(3) 0.00% 5.46 7.24 CMI(2) 0.00% 5.66 6.50 AR(3)+ 44.61% 3.88 5.01 
AR(1) 0.00% 5.54 7.24 YAR(1)+ 0.00% 5.69 6.77 AR(1) 0.00% 4.09 4.99 

BMA 5.97 7.67 BMA 5.66 6.51 BMA 4.01 5.05 
Best Naïve: 
Last Observed 4.76 5.68

Best Naïve: 
Last Observed 4.71 5.93

Best Naïve: 
4 Year Avg 3.72 4.68 

Highest Prob: 
YAR(4)+ 96.34% 5.97 7.67

Highest Prob: 
CMI(2)+ 91.00% 5.66 6.50

Highest Prob: 
AR(3)+ 44.61% 3.88 5.01 

M=25            
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Table 4. Eight Step Ahead Nearby Basis Forecast Results 
Ashford Calhoun Carnesville 

Model 
Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE

HMA(5)+ 0.51% 5.25 6.71 YAR(4)+ 89.68% 5.72 6.55 HMA(5)+ 0.02% 4.97 5.85
HMA(4)+ 0.06% 5.26 6.90 YAR(3)+ 8.50% 5.80 6.66 HMA(4)+ 99.95% 5.00 6.11
HMA(3)+ 0.03% 5.75 7.42 HMA(5)+ 0.76% 5.87 6.75 HMA(3)+ 0.03% 5.07 5.92
YAR(4)+ 96.70% 5.79 7.46 YAR(2)+ 0.80% 5.93 6.90 AR(3) 0.00% 5.16 5.93
YAR(5)+ 2.25% 5.79 7.52 HMA(4)+ 0.17% 6.04 6.99 AR(2) 0.00% 5.17 5.93

BMA 5.78 7.67 BMA 5.73 6.65 BMA 5.00 6.11
Best Naïve: 
3 Year Avg 4.76 6.52

Best Naïve: 
4 Year Avg 4.71 6.03

Best Naïve: 
4 Year Avg 3.72 4.68

Highest Prob: 
YAR(4)+ 96.70% 5.79 7.46

Highest Prob: 
YAR(4)+ 89.68% 5.72 5.72

Highest Prob: 
HMA(4)+ 99.95% 5.00 6.11

M=25            
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Table 5. One Step Ahead September Basis Forecast Results 
Ashford Calhoun Carnesville 

Model 
Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE

AR(3)+ 42.47% 3.96 4.98 AR(2) 2.30% 3.98 5.02 AR(2) 0.98% 2.91 3.79
AR(1)+ 25.00% 4.02 5.08 AR(2)+ 51.44% 3.99 5.03 AR(3) 2.32% 2.93 3.83
AR(3) 0.25% 4.03 4.98 AR(3)+ 43.41% 3.99 5.03 AR(2)+ 28.27% 3.03 3.93
AR(2)+ 31.89% 4.04 5.02 AR(3) 1.91% 3.99 5.03 AR(3)+ 68.00% 3.05 3.97
AR(1) 0.17% 4.05 5.07 AR(1) 0.04% 4.28 5.36 AR(1) 0.01% 3.26 4.23

BMA 3.99 5.00 BMA 3.99 5.03 BMA 3.02 3.95
Best Naïve: 
Last Observed 3.84 5.06 

Best Naïve: 
Last Observed 3.78 4.84 

Best Naïve: 
Last Observed 3.14 4.32 

Highest Prob: 
AR(3)+ 42.47% 3.96 4.98

Highest Prob: 
AR(2)+ 51.44% 3.99 5.03

Highest Prob: 
AR(3)+ 68.00% 3.05 3.97

M=34            
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Table 6. Four Step Ahead September Basis Forecast Results 
Ashford Calhoun Carnesville 

Model 
Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE

HMA(5)+ 0.02% 5.35 7.06 AR(2) 0.05% 5.60 7.09 AR(2)+ 33.94% 4.16 5.59
HMA(4)+ 0.00% 5.74 7.36 AR(3) 0.04% 5.66 7.16 AR(2) 0.02% 4.18 5.28
AR(3) 0.00% 5.74 7.40 AR(1) 0.01% 5.77 7.38 AR(3)+ 42.23% 4.19 5.59
AR(2) 0.00% 5.88 7.53 AR(2)+ 1.54% 5.78 7.28 AR(1)+ 23.77% 4.21 5.69
AR(3)+ 0.00% 5.92 7.45 AR(3)+ 1.39% 5.81 7.32 AR(3) 0.03% 4.21 5.28

BMA 6.86 8.34 BMA 7.17 9.12 BMA 4.17 5.61
Best Naïve: 
4 Year Avg 5.52 7.12

Best Naïve: 
Last Observed 5.07 6.45

Best Naïve: 
4 Year Avg 4.32 5.42

Highest Prob: 
YAR(5)+ 96.40% 6.86 8.33

Highest Prob: 
YAR(5)+ 95.16% 7.23 9.19

Highest Prob: 
AR(3)+ 42.23% 4.19 5.59

M=25            
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Table 7. Eight Step Ahead September Basis Forecast Results 
Ashford Calhoun Carnesville 

Model 
Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE Model 

Post 
Prob. MAE RMSE

HMA(5)+ 0.14% 5.31 7.07 HMA(5)+ 0.06% 6.42 8.10 HMA(5)+ 1.34% 5.00 6.36
HMA(4)+ 0.01% 5.66 7.37 AR(2) 0.00% 6.46 8.27 HMA(4)+ 0.48% 5.12 6.42
CMI(1)+ 0.00% 6.46 7.81 AR(1) 0.00% 6.49 8.31 CMI(1) 0.00% 5.73 7.08
YAR(5)+ 97.21% 6.47 7.97 AR(3) 0.00% 6.52 8.34 AR(1) 0.00% 5.75 7.14
CMI(1) 0.00% 6.53 7.93 AR(2)+ 0.00% 6.58 8.43 AR(2) 0.00% 5.80 7.20

BMA 6.47 7.98 BMA 7.00 8.91 BMA 5.89 7.13
Best Naïve: 
4 Year Avg 5.52 7.12

Best Naïve: 
Last Observed 5.85 7.33

Best Naïve: 
4 Year Avg 4.32 5.42

Highest Prob: 
YAR(5)+ 97.21% 6.47 7.97

Highest Prob: 
YAR(5)+ 98.58% 7.00 8.91

Highest Prob: 
YAR(5)+ 86.58% 5.88 7.11

M=25            
 

 


