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Hedging the Crack Spread during Periods of High Volatility in Oil Prices 

Traditional approach to hedging crude oil refining margin (crack spread) adopts a fixed 3:2:1 

ratio between the futures positions of crude oil, gasoline, and heating oil. However, hedging the 

latter in arbitrary proportions might be more effective under some conditions. The paper 

constructs optimal hedging strategies for both scenarios during the periods of relatively stable 

and volatile oil prices observed in recent years. Minimization of downside risk (LPM2) and 

variance are used as alternative hedging objectives. The joint distribution of spot and futures 

price shocks is modeled using a kernel copula method. The hedging performance of the 

constructed strategies is compared using hedging effectiveness, expected profit, and expected 

shortfall. Results show that allowing for arbitrary proportions in sizes of futures positions 

generally achieves better hedging performance. The advantage becomes particularly important 

during periods characterized by a high volatility of the cross-dependence between the prices of 

individual commodities. In addition, using 𝐿𝑃𝑀2 as a hedging criterion can help hedgers to 

better track downside risk as well as lead to higher expected profit and lower expected shortfall. 

Key words: crack spread, optimal hedge ratio, kernel copula, downside risk. 

 

Introduction 
Between 2014 and 2016, crude oil prices have exhibited unusual behavior, dropping from over 

$100 per barrel to below $40 per barrel in less than 2 years. During the same time period, prices 

of both gasoline and heating oil almost halved. Facing such drastic changes in both input and 

output prices, oil refineries are presented with challenging risk management decisions. 

A typical oil refinery’s profit margin is tied directly to the price difference between crude 

oil and refined products, commonly called the crack spread. The most popular crack spread, 

which approximates the real-world output ratio from the refining process, adopts a 3:2:1 ratio, 

namely, 3 barrels of crude oil can be cracked into 2 barrels of gasoline and 1 barrel of heating oil 

(EIA, 2002). Oil refineries can reduce their risk exposures to volatile market prices by hedging 

the crack spread in the futures market. In 1994, NYMEX launched the crack spread contract, 

which bundles the purchase of three crude oil futures contract with the sale of two unleaded 

gasoline futures contract and one heating oil futures contract2 (with delivery a month later) and 

makes them a single trade, thus lowering margin costs. A 3:2:1 crack spread futures position can 

also be created as a synthetic contract by directly trading futures on crude oil, gasolines and 

heating oil at a fixed 3:2:1 ratio. Even though the crack spread futures has a very low trading 

volume, data shows that the trading volume in the synthetic 3:2:1 crack spread is pretty high.  

However, given the somewhat erratic behavior of spot prices in recent years, the question 

arises whether hedging individual commodities at a ratio other than 3:2:1 might be more 

                                                        
2 The heating oil contract traded on the New York Mercantile Exchange has been renamed ultra-low-sulfur-
diesel (ULSD) futures after the 2013 April contract, but to keep the terminology and notation consistent, we 
will use the term heating oil (HO) when referring to both the heating oil contract before April 2013 and the 
ULSD contract after April 2013. 
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effective. Indeed, Kaminski (2014) explains (p.S4) that: “This [3:2:1 ratio] wasn't a perfect 

hedge by any definition … The decoupling of the WTI prices from the world prices reduced the 

efficiency of the 3:2:1 hedge and induced many hedgers to switch to Brent futures as the 

preferred hedging instrument…”. Yet, compared with hedging crude oil, hedging the crack 

spread has received much less attention in the literature (Mahringer and Prokopczuk, 2015). 

In this paper we address the above question by constructing optimal hedging strategies 

for both cases (fixed 3:2:1 ratio and arbitrary proportions) during periods of both relatively stable 

and volatile oil prices. The hedging performance of the constructed strategies is compared using 

several criteria. We find that allowing deviations from the fixed 3:2:1 ratio improves hedging 

performance regardless of the criterion used. Furthermore, it appears that the key factor affecting 

hedging effectiveness is the dependence structure between the spot and futures price shocks. 

The rest of the paper is organized as follows. The second section discusses the relevant 

literature. The third section outlines the modeling methodology including the hedging 

framework, our approach to modeling the joint distribution of spot and futures prices, as well as 

risk measures used to evaluate hedging performance. Data and implementation details are 

presented in the fourth section followed by the discussion of the results in the fifth section. The 

last section provides concluding remarks. 

 

Literature Review 
Commodity processing activities always involve multiple commodities and thus exposure to 

price risk on both the input and output side. Soybean crushers buy soybeans and sell soybean oil 

and soybean meal, ethanol manufacturing involves purchasing corn and selling ethanol and other 

output products, oil refineries crack crude oil into petroleum products, and so on. Therefore, 

commodity processors have to implement multi-commodity hedging strategies. 

The literature on hedging has traditionally focused on single-commodity hedging, which 

does not take into account price co-movements between the input and output commodities. 

However, Haigh and Holt (2002) point out that the assumption of price independence is 

unreasonable and often leads to optimal hedge ratios that are different from those suggested by 

the multi-commodity hedging models in which the covariation between the input and output 

prices is explicitly accounted for (see also Peterson and Leuthold, 1987). Several recent papers 

discuss hedging in a multi-commodity setting. Manfredo, Garcia and Leuthold (2000) study the 

hedging problem for a typical soybean crushing complex. They find that incorporating a time-

varying covariance matrix into the joint price modeling can improve hedging effectiveness. 

Power and Vedenov (2010) and Power et al. (2013) analyze the multi-commodity hedging 

problem faced by a feedlot operator who buys feeder cattle, corn, and soybeans and sells fed 

cattle. The authors suggest that incorporating the dependence structure between commodity 

prices into the hedging model leads to hedging behavior that is more consistent with the one 

observed in the marketplace.  

The crack spread hedging problem for oil refineries has attracted interest in recent years, 

partly due to the highly volatile oil market. The North American oil production and refining 

market has undergone major changes in recent years. According to Kaminski (2014, p. S3) “[the] 

increase in production of crude in locations such as The Bakken and Eagle Ford, which were a 

few years ago of marginal importance to the US oil industry … collided with the existing 
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transportation and refining infrastructure. Several congestion points emerged in the 

transportation grid and this, in turn, resulted in the breakdown of historical price 

relationships …” 

Haigh and Holt (2002) show that accounting for time variation in the relationship 

between energy price series (crude oil, gasoline and heating oil) yields substantial rewards to 

hedgers in terms of risk reduction. Ji and Fan (2011) adopt a dynamic hedging approach for 

refineries and find that considering the interaction between different product markets as well as 

variation in price behavior over time can lead to a better multiproduct hedging strategy. 

Various multivariate modeling methods as well as risk measures have been used to 

determine optimal hedging strategies and to analyze their performance. Variance of the effective 

net price or revenue continues to be the most commonly used measure of risk in the hedging 

literature, with variance minimization being the hedging objective. For example, Awudu et al. 

(2016) compare different hedging strategies for an ethanol producer using a Mean-VaR 

framework. However, Lien and Tse (2002) argue that a one-sided risk measure is closer to 

commodity hedgers’ risk objective than the traditional variance measure in the sense that upside 

deviations and downside deviations are not equally undesirable in risk management. In that 

spirit, several recent papers use the second-order lower partial moment (LPM2) as an alternative 

to variance (for example, Demirer and Lien, 2003; Turvey and Nayak, 2003; Mattos et al., 2008; 

Power and Vedenov, 2010). 

Naturally, different risk measures lead to different hedging strategies. Mattos et al. (2008) 

find that when transaction costs and alternative investments are introduced, the adoption of a 

downside risk measure with low reference levels can lead to hedge ratios that differ substantially 

from the minimum-variance hedge ratios. Power and Vedenov (2010) find that minimizing the 

LPM2 measure results in smaller optimal hedge ratios compared to the minimum variance hedge. 

Furthermore, they suggest that the optimal hedge ratios implied by the downside risk criterion 

are more consistent with the behavior observed in the marketplace. In order to account for 

possibility of different hedging objectives, in this paper, we construct optimal hedging strategies 

using both variance minimization (MV) and LPM2 minimization as hedging criteria. 

Another important issue in the analysis of multi-commodity hedging is how to model the 

joint distribution of prices/returns. Multivariate normality or log-normality is often assumed for 

reasons of convenience. However, the distributions of spot and futures prices are known to 

deviate from normality (e.g. Ederington, 2011; Lai, 2015). Several methods have been suggested 

in the literature to circumvent this issue. For example, Manfredo et al. (2000) estimate a time-

varying covariance matrix and a MGARCH(1,1) model with a constant correlation matrix. Power 

and Vedenov (2010) use a kernel copula approach to model the joint distribution of spot and 

futures prices in a multi-commodity setting. The kernel copula methodology is nonparametric 

and imposes minimum assumptions about the underlying distribution. Tong et al. (2013) use 

thirteen parametric copula models with different underlying assumptions on the dependence 

structures to estimate the co-movement between crude oil and petroleum product prices. Power 

et al. (2013) propose a Nonparametric Copula-based Generalized Autoregressive Conditional 

Heteroskedastic (NPC-GARCH) dynamic hedging approach and find that it better captures lower 

tail risk than do other models such as GARCH-DCC or GARCH-BEKK. In this paper, we follow 

Power and Vedenov (2010) and use a kernel copula approach to model the joint distribution of 
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spot and futures price shocks. This allows us to move away from the multivariate normality 

assumption and better reproduce both the individual and joint behavior of price series. 

 

Methodology 

Hedging Framework 

We follow the conceptual framework suggested by Ji and Fan (2011) and assume a two-stage 

hedging cycle that covers three weeks (15 trading days) in total. The first stage is the planning 

stage that covers two weeks (𝑡 − 3 to 𝑡 − 1). On the first day of the planning stage, the hedger 

(refinery) opens a long position in crude oil futures at 𝐹𝑡−3
𝐶𝐿  and short positions in gasoline and 

heating oil futures at 𝐹𝑡−3
𝑅𝐵 and 𝐹𝑡−3

𝐻𝑂 , respectively3. The second stage is the operational stage which 

covers one week (𝑡 − 1 to 𝑡). On the first day of the operational stage, the hedger buys crude oil 

on the spot market at 𝑆𝑡−1
𝐶𝐿  to start the cracking process and concurrently closes the long position 

in crude oil at 𝐹𝑡−1
𝐶𝐿 . On the last day of the operational stage (after the cracking process is 

finished), gasoline and heating oil are sold on the spot market at 𝑆𝑡
𝑅𝐵 and 𝑆𝑡

𝐻𝑂, respectively, and 

the corresponding short positions are closed at 𝐹𝑡
𝑅𝐵 and 𝐹𝑡

𝐻𝑂, respectively. In order to simplify 

the notation, in the rest of the section the subscript 0 is used to denote prices on the day when the 

hedge is set and the subscript 1 is used to denote prices on the day when the hedge position is 

liquidated. Assuming a 3:2:1 production ratio, the hedged crack margin per barrel of crude oil 

can be then written as 

π(𝒉) = −𝑆1
𝐶𝐿 +

2

3
𝑆1

𝑅𝐵 +
1

3
𝑆1

𝐻𝑂 + ℎ𝐶𝐿(𝐹1
𝐶𝐿 − 𝐹0

𝐶𝐿) +
2

3
ℎ𝑅𝐵(𝐹0

𝑅𝐵 − 𝐹1
𝑅𝐵) +

1

3
ℎ𝐻𝑂(𝐹0

𝐻𝑂 − 𝐹1
𝐻𝑂) 

(1) 

where π(𝒉) is the hedged crack profit, 𝒉 = (ℎ𝐶𝐿 , ℎ𝑅𝐵, ℎ𝐻𝑂) is a vector of hedge ratios, { 𝐹0
𝐶𝐿, 

𝐹0
𝑅𝐵, 𝐹0

𝐻𝑂} are observable initial futures prices, {𝑆1
𝐶𝐿 , 𝐹1

𝐶𝐿} are spot and futures prices of crude 

oil 10 trading days ahead, and {𝑆1
𝑅𝐵, 𝑆1

𝐻𝑂 , 𝐹1
𝑅𝐵, 𝐹1

𝐻𝑂} are spot and futures prices of gasoline and 

heating oil 15 trading days ahead, respectively. 

Two scenarios are considered in the paper. In the first scenario, the refinery hedges the 

entire crack spread in the fixed 3:2:1 proportion implying ℎ𝐶𝐿 = ℎ𝑅𝐵 = ℎ𝐻𝑂 = ℎ (single hedge 

ratio). In the second scenario, the refinery can hedge each of the three commodities individually, 

thus allowing for separate and not necessarily equal hedge ratios {ℎ𝐶𝐿 , ℎ𝑅𝐵, ℎ𝐻𝑂} (vector hedge 

ratio). No hedging corresponds to ℎ𝐶𝐿 = ℎ𝑅𝐵 = ℎ𝐻𝑂 = 0. 

 

Hedging Objectives 

Generally, minimum variance (MV) is the most commonly used criterion to determine the 

optimal hedge ratio. The optimal hedge ratio calculated under the MV criterion is 

𝒉∗ = arg min
𝒉

Var(𝜋(𝒉)) (2) 

However, the fact that MV penalizes upside deviations and downside deviations equally 

is undesirable in risk management (e.g., Power and Vedenov, 2010). The LPM family is more 

suitable for the measurement of downside risk, which is of more interest for commodity hedgers. 

                                                        
3 The superscripts CL, RB and HO correspond to the futures contract symbols as listed by the CME Group. 
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In particular, the second order lower partial moment (LPM2) has been increasingly used in the 

recent literature (Mattos et al., 2008; Power and Vedenov, 2010). The LPM2 relative to a 

reference level 𝑋̅ is defined as 

𝐿𝑃𝑀2 = ∫ (𝑋̅ − 𝑋)2𝑑𝐹(𝑋)
𝑋̅

−∞

 
(3) 

where 𝑋 is a random variable of interest and 𝐹𝑋(𝑋) is its cumulative distribution function. 

For the hedging profit defined in (1), the reference level 𝜋̅ can be set as the expected 

profit without hedging, i.e. 𝜋̅ = 𝐸𝜋(0). The optimal hedge ratio under the LPM2 criterion can be 

then found as 

𝒉∗ = arg min
𝒉

𝐿𝑃𝑀2(𝒉) = arg min
𝒉

∫ [𝜋̅ − 𝜋(𝒉)]2𝑑𝐹(𝜋(𝒉))
𝜋̅

−∞

 
(4) 

  

 

The Joint Distribution of Spot and Futures Prices 

The optimization problem in (4) does not have a closed-form solution, and therefore 

needs to be solved numerically. Monte Carlo simulation can be used to calculate the value of 

LPM2 for any given vector of hedge ratios 𝒉, and numerical optimization methods can be used to 

find the optimal hedge ratio 𝒉∗. 

In order to implement the Monte Carlo integration in (4), joint realizations of spot and 

futures prices {𝑆1
𝐶𝐿 , 𝑆1

𝑅𝐵, 𝑆1
𝐻𝑂 , 𝐹1

𝐶𝐿 , 𝐹1
𝑅𝐵, 𝐹1

𝐻𝑂} in (1) need to be generated. The following approach 

is used to achieve this goal. First, historical spot and futures prices are log-differenced to 

calculate the multiplicative shocks {𝜀1, … , 𝜀6}, where 𝜀1 = ln(𝑆1
𝐶𝐿) − ln (𝑆0

𝐶𝐿), 𝜀2 = ln(𝑆1
𝑅𝐵) −

ln (𝑆0
𝑅𝐵), etc.4. The joint distribution of shocks is then modeled using the copula approach. The 

latter decomposes the joint distribution into a product of marginal distributions of individual 

variables and their dependence structure, or copula density (Cherubini, Luciano, and Vecciato, 

2004). 

Marginal probability density functions 𝑓1
𝜀(⋅), … , 𝑓6

𝜀(⋅) are estimated using the kernel 

density method (Wand and Jones, 1995). The copula density 𝑐(𝑢1, … , 𝑢6) implied by the 

historical realizations of the shocks is estimated using the mirror image kernel approach 

(Charpentier, Fermanian, and Scaillet, 2007). 

Next, 𝑁 Monte Carlo draws {𝑢1
𝑖 , … , 𝑢6

𝑖 }
𝑖=1

𝑁
 from the copula density are generated 

following the conditional sampling approach outlined in Cherubini, Luciano, and Vecciato 

( 2004). The generated draws are then transformed to draws from the joint distributions of shocks 

using the inverse marginal cumulative distribution functions. More specifically, for a given draw 

                                                        
4 Note that the lags used for log-differencing correspond to the duration of the appropriate stages of the 
hedging cycle as described in Section Hedging Framework For example, 𝜀1 is obtained by log-differencing spot 
prices of crude oil two weeks apart, 𝜀2 is obtained by log-differencing spot prices of gasoline three weeks 
apart, and so on. 
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𝑢𝑗
𝑖, 𝑖 = 1, … , 𝑁, 𝑗 = 1, … ,6, from the copula density, the corresponding shock 𝜀𝑗

𝑖 is found from 

the condition 

𝑢𝑗
𝑖 = ∫ 𝑓𝑗

𝜀(𝜖)𝑑𝜖

𝜀𝑗
𝑖

−∞

, 

(5) 

which can be solved numerically using standard numerical integration and root-finding methods 

(e.g. Miranda and Fackler, 2002). 

Lastly, the generated shocks are used to construct realizations of final spot and futures 

prices by applying them to (known) initial observations of the same, e.g. {𝑆1
𝐶𝐿}𝑖 = 𝑆0

𝐶𝐿 ⋅
exp 𝜀1

𝑖 , 𝑖 = 1, … , 𝑁, and so on. The constructed spot and futures prices can be used to calculate 

realizations {𝜋𝑖(𝒉)}
𝑖=1

𝑁
 of net profit from hedging in (1) for any given vector of hedge ratios 𝒉, 

and therefore determine the values of the hedging criteria in (2) and (4). 

 

Measures of Hedging Performance  

In addition to the risk criteria used to determine the optimal hedge ratios (variance and 

LPM2), we calculate three measures, namely hedging effectiveness, expected profit, and 

expected shortfall, which are commonly used in the literature to evaluate hedging performance. 

Following Ederington (1979), hedging effectiveness is defined as the percentage 

reduction in risk criterion with hedging vs. without hedging. Specifically, the hedging 

effectiveness for minimum variance is determined as 

𝐻𝐸𝑀𝑉 = 1 −
Var(𝜋(𝒉∗))

Var(𝜋(0))
. 

(6) 

Similarly, for LPM2, hedging effectiveness can be determined as  

𝐻𝐸𝑀𝑉 = 1 −
𝐿𝑃𝑀2(𝜋(𝒉∗))

𝐿𝑃𝑀2(𝜋(0))
. 

(7) 

Expected profit is calculated by averaging calculated realizations of net profit from 

hedging {𝜋𝑖(𝒉)}
𝑖=1

𝑁
 over the Monte Carlo draws, i.e. 

𝐸𝜋 =
1

𝑁
∑ 𝜋𝑖(𝒉)

𝑁

𝑖=1

 

(8) 

Expected shortfall (ES) at 𝛼 = 𝐴% level measures the expected profit or loss in the worst 

𝐴% of the cases. Expected shortfall belongs to the class of “coherent” risk measures (Acerbi and 

Tasche, 2002) and has been gaining popularity in financial risk management in recent years. For 

a continuous distribution with the probability density function 𝑓(⋅), the expected shortfall at the 

level 𝛼 can be determined as 

𝐸𝑆 = −
1

𝛼
∫ 𝑋𝑓(𝑋)𝑑𝑋

𝑥𝛼

−∞

,     where     𝛼 = ∫ 𝑓(𝑋)𝑑𝑋

𝑥𝛼

−∞

. 

(9) 
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Data and Implementation 
In order to implement the methodology described in the previous section, we use the moving 

window approach. Specifically, for a given day in the data set, we treat the previous 250 

observations relative to that day as “historical” data and treat the spot and futures prices on that 

day as the “initial” spot and futures prices observed by a hedger. We then calculate the 

realizations of price shocks based on the “historical” data, use those to generate 10,000 Monte 

Carlo draws of shocks as outlined in Section 3.3, and apply the shocks to the “initial” spot and 

futures prices. Finally, the optimal hedge ratios in (2) and (4) are determined using numerical 

optimization methods. 

Note that 250 trading days are approximately equal to one calendar year. Therefore, 

conceptually, we model a situation where on any given day a hedger uses one year’s worth of 

historical data to estimate the distribution of the spot and futures prices at hedge liquidation and 

to determine the optimal hedge ratios that should be used to set up hedges on that day. The same 

steps are then repeated for all days for which data are available5. 

For the purposes of analysis, daily spot and futures prices for crude oil, gasoline, and 

heating oil were obtained from DataStream for the period between January 2011 and December 

2015. Futures prices were obtained for all contracts traded on any given day. Continuous futures 

prices series were then constructed by collating prices of nearby contracts and switching to the 

next delivery month at contract expiration. Allowing for the 250-day length of the moving 

window, the optimal hedge ratios were calculated for each trading day between 1/2/2012 and 

12/31/2015. 

Spot and futures prices during this period are plotted in Figure 1 and Figure 2, 

respectively. The plots suggest that prices of all three commodities were relatively stable during 

2012-2013 and the first half of 2014, sharply declined in the second half of 2014, and stabilized 

at a lower level during 2015. 

[Figure 1 about here] 

[Figure 2 about here] 

The descriptive statistics of spot and futures prices of all three commodities are reported 

in Table 1 (separately for each year). The means of all series are similar in 2012-2013, then 

decrease somewhat in 2014 and drop dramatically in 2015. Variability is at its highest during 

2014, followed by 2015. Futures and spot prices are highly correlated during the entire period. 

Crude oil and gasoline prices are skewed to the right except for 2014, when they are left-skewed. 

Prices of heating oil show negative skewness for the years 2012, 2013 and 2015, but are slightly 

skewed to the right during 2014. Kurtosis measures the degree of peakedness of a distribution 

relative to a normal distribution. From Table 1, the kurtosis of prices of all three commodities in 

2012, 2013 and 2015 is less than 3, indicating fewer and less extreme outliers, while in 2014 the 

price series tend to have heavy tails, with kurtosis values larger than 3. 

[Table 1 about here] 

                                                        
5 Since the first 250 observations are treated as “historical” data, the process effectively starts with the 251st 
observation in the sample. 
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Shocks were calculated for each day in the dataset by log-differencing spot and futures 

prices with appropriate lags (two weeks for crude oil and three weeks for gasoline and heating 

oil, respectively, as explained in Section 3.1). The shocks for futures prices were first calculated 

separately for each contract and then a continuous series of shocks was constructed by collating 

series of shocks from nearby contracts and switching to the next contract month at expiration. 

This was done in order to avoid potential discontinuities due to differencing futures prices for 

different contracts.  

Augmented Dickey-Fuller tests were conducted for each series of shocks to test for unit 

roots. The results show that all six series of shocks are stationary and the null hypothesis of a 

unit root is always rejected.  In addition, a discrete Fourier transform was used to assess the 

existence of seasonality in shocks. There is insufficient evidence to support cyclical behavior in 

the series of shocks. 

 

Results 

Variance-minimizing and LPM2-minimizing hedge ratios were calculated for each trading day 

between January 1, 2012, and December 31, 2015, under two scenarios — a single hedge ratio 

used for all three commodities and separate hedge ratios (a vector hedge ratio) used for each 

individual commodity. The optimal hedge ratios implied by LPM2 and MV criteria are plotted in 

Figure 3 and Figure 4, respectively. 

[Figure 3 about here] 

[Figure 4 about here] 

The single hedge ratio (hedging the crack spread in the fixed 3:2:1 proportion) is 

relatively stable during the period considered, regardless of the criterion used. However, the 

vector hedge ratios (hedging individual commodities separately) show a lot variation over time. 

Furthermore, hedge ratios for individual commodities often diverge from each other and deviate 

from the single hedge ratio, with the most pronounced deviations observed during 2013 and then 

again during 2015 (more specifically, between October of 2012 and December of 2013 and 

between November of 2014 and December of 2015). The deviations are particularly dramatic for 

crude oil and heating oil, while the hedge ratio for gasoline tends to be more stable and closer to 

the single hedge ratio. 

The results suggest that allowing for the separate hedging of individual commodities may 

lead to optimal hedges in proportions that are different from the conventional 3:2:1 crack spread. 

Furthermore, since the unconstrained minimum cannot be greater than the constrained one, it 

appears that hedging individual commodities separately may lead to a better hedging 

performance. In order to confirm this, we calculate three measures of hedging performance, as 

discussed in Section 3.4, viz. hedging effectiveness, expected profit, and expected shortfall at 

5%. 
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Reported in Table 2 through Table 4 are percent differences in each measure between the 

baseline case of using a single hedge ratio for all commodities, and the case where each 

commodity can be hedged separately6. 

Hedging individual commodities always yields a higher hedging effectiveness compared 

to hedging the crack spread in the fixed 3:2:1 proportion, regardless of the criteria used (Table 

2). The improvement in hedging effectiveness is the greatest during 2013 and especially 2015. 

The periods during which the vector hedge ratios perform substantially better than the single 

hedge ratios are the same as when the vector hedge ratios deviate the most from single hedge 

ratios. 

[Table 2 about here] 

In terms of expected profit (Table 3), the LPM2-minimizing vector hedge ratio 

outperforms the corresponding single hedge ratio most of the time (992 out of overall 1044 

windows, or 95.0%). The improvement is less pronounced under the minimum variance criterion 

(600 out of overall 1044 windows, or 57.5%). A possible explanation is that the minimum 

variance criterion equally penalizes upside and downside deviations from the mean, thus 

reducing expected profit. Regardless of the criteria, the advantage of the vector hedge ratio is 

once again at its most pronounced during 2013 and 2015. 

[Table 3 about here] 

Lastly, we compare the performance of both hedging strategies from the perspective of 

tail risk. Percent differences in expected shortfall at 5% are reported in Table 4. Note that lower 

values of expected shortfall reflect lower tail risk, and therefore negative differences imply an 

improvement relative to the baseline. Once again, regardless of the criteria used, vector hedge 

ratios result in a better hedging performance most of the time (870 out of 1044 windows, or 

83.3%, under LPM2 and 748 out of 1044 windows, or 71.6% under MV), with the differences 

being most pronounced during 2013 and especially 2015. The improvement in hedging 

performance due to using vector hedge ratios are generally higher under the LPM2 criterion, 

which by definition minimizes downside risk. 

[Table 4 about here] 

A cursory comparison of Figure 1 through Figure 4 suggests that the performance of 

vector hedge ratio relative to a single hedge ratio does not seem to be clearly related to the 

dynamics of the spot and futures prices. Indeed, the most substantial improvements in hedging 

performance are observed in 2013 and late 2014-2015. However, the first of these two periods is 

characterized by relatively stable levels of spot and futures prices, while the second is 

characterized by a stabilization on the tail end of a steep decline of price series. On the other 

hand, during 2014, vector hedge ratios moved together and were close to the single hedge ratios 

despite a sharp decline in spot and futures prices. 

In the single-commodity hedging case, the correlation between spot and futures prices is 

the key determinant of the optimal hedge ratio, at least in case of variance minimization (e.g. 

Hull, 2008). However, during the period considered, the spot and futures prices of individual 

                                                        
6 For presentation purposes, the tables report the results summarized by calendar year. Specific results for 
each day in the sample are available upon request. 
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commodities moved closely together and the respective spot-futures price correlations remained 

fairly stable (see Table 1). 

Therefore, we conjectured that, in the multi-commodity setting, cross-dependence 

between the prices of different commodities could matter. In order to verify this conjecture, 

Kendall’s 𝜏 and Pearson correlation were used to measure the degree of dependence between the 

futures prices of different commodities. Kendall’s 𝜏 measures rank dependence and is better at 

capturing tail dependence. Therefore, it appears to be a more appropriate measure to explain the 

behavior of LPM2 hedge ratios. Pearson’s correlation measures linear dependence, which is 

consistent with the underlying assumptions of the minimum variance method. Therefore, this 

measure seems appropriate to explain the behavior of the hedge ratios implied by the MV 

criterion. Both dependence measures were calculated for three pairs of futures price series using 

the same moving window approach as was used in calculating the optimal hedge ratios. The 

dynamics of Kendall’s τ and Pearson’s correlation coefficients between 2012 and 2015 are 

shown in Figure 5 and Figure 6, respectively. 

[Figure 5 about here] 

[Figure 6 about here] 

All three Kendall’s taus were relatively stable during 2012, declined during 2013, sharply 

rebounded by January of 2015 and then gradually decreased during 2015. The evolution of 

Pearson’s correlation coefficients follows a similar pattern, except that the variation is larger 

during 2014. Note also that for a short period of time in the third quarter of 2014, the correlation 

between the gasoline and heating oil futures became negative, suggesting substantial changes in 

the pricing structure of the entire energy complex. 

Thus the dynamics of the dependence measures is indeed more consistent with the 

behavior of the optimal hedge ratios than the dynamics of price levels. In particular, the periods 

of substantial deviations between vector hedge ratio and single hedge ratio seem to roughly 

coincide with the periods of decline in the dependence measures. In order to verify this result 

more formally, we ran a regression analysis of calculated optimal hedge ratios on the 

corresponding dependence measures (Kendall’s 𝜏 for LMP2 hedge ratios and Pearson’s 

correlation for MV hedge ratios). The results of the regression are summarized in Table 5 for 

LPM2 and in Table 6 for MV. Although the specific effect of any given dependence measure on 

a particular hedge ratio is somewhat hard to interpret, most of the dependence measures are 

significant in explaining the optimal hedge ratios. This seems to confirm our conjecture that the 

behavior of vector hedge ratios in the multi-commodity settings is driven by the cross-

dependence between spot and futures prices of different commodities. 

 

Conclusions 
The objective of this study is to investigate the effectiveness of crack spread hedging strategies 

during a period of high volatility and changing patterns of dependence in the prices of crude oil 

and petroleum products. To that end, a moving window approach was used to calculate the 

optimal hedge ratios implied by the LPM2 and minimum variance criteria for each trading day 

between January 1, 2012, and December 31, 2105. Two cases were considered — hedging all 

three commodities (crude oil, gasoline, and heating oil) in a fixed 3:2:1 proportion (single hedge 
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ratio) and allowing for separate hedge ratios for each commodity (vector hedge ratio). Hedging 

effectiveness, expected profit and expected shortfall at 5% were used to measure the hedging 

performance of the constructed hedging strategies. 

The commonly used way of hedging the crack spread at the fixed 3:2:1 proportion is 

found to be generally less effective in reducing price risk than a strategy allowing for hedging 

individual commodities separately. This result is robust across several hedging criteria and 

measures of hedging performance used. Differences in hedge ratios and hedging performance are 

most pronounced during 2013 and 2015. 

The deviations between the single and vector hedge ratios (and the corresponding 

improvements in hedging performance) seem to be unrelated to changes in the levels of spot and 

futures prices, nor are they related to pairwise correlations between the spot and futures prices of 

individual commodities. However, the cross-dependence structure between the futures prices of 

different commodities seems to explain the behavior of the optimal hedge ratios fairly well. 

When the measures of cross-dependence (Kendall’s 𝜏 and Pearson’s correlations) are relatively 

stable, the differences between the single and vector hedge ratios are relatively small, and so are 

the improvements in hedging performance. However, during periods of high variability in the 

cross-dependence structure between prices of different commodities, the strategy of hedging 

individual commodities separately substantially outperforms that of hedging the crack spread in a 

fixed proportion. 

From a practical standpoint, these results suggest that refineries can generally achieve a 

better risk-reduction performance by hedging individual commodities than by hedging the crack 

spread in a fixed 3:2:1 proportion. The advantage of hedging commodities individually becomes 

particularly important during periods characterized by high volatility of the cross-dependence 

between the prices of individual commodities. Finally, using LPM2 as a hedging criterion may 

not only help hedgers to better track downside risk, but also appears to lead to higher expected 

profit and a lower expected shortfall. 
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Table 1: Descriptive statistics of spot and futures prices for crude oil, gasoline, and heating 
oil between 01/01/2012 and 12/31/2015, in $/bbl 

 Crude Oil (CL) Gasoline (RB) Heating Oil (HO) 

 Spot Futures Spot Futures Spot Futures 

 2012 

Mean 93.776 93.8681 123.035 122.274 130.517 126.839 

SD 7.685 7.6336 9.451 9.406 7.374 7.548 

Skewness 0.159 0.1685 0.313 0.541 –0.906 –0.937 

Kurtosis 1.944 2.518 3.059 1.964 2.388 3.208 

Minimum 77.720 77.6900 102.451 107.104 110.830 106.063 

Maximum 109.390 109.7700 153.909 143.497 141.595 139.268 

Pearson's Correlation 0.9996 0.8350 0.9744 

Kendall's Tau 0.9847 0.6939 0.8257 

 2013 

Mean 97.835 97.873 118.019 119.330 126.527 125.656 

SD 5.434 5.404 5.645 6.932 4.726 4.215 

Skewness 0.568 0.553 0.554 0.227 0.304 0.132 

Kurtosis 2.258 2.497 2.979 2.265 2.088 2.609 

Minimum 86.650 86.680 107.520 105.130 114.715 114.853 

Maximum 110.620 110.530 133.270 134.547 139.075 136.013 

Pearson's Correlation 0.9993 0.8535 0.9471 

Kendall's Tau 0.9762 0.6621 0.8361 

 2014 

Mean 91.840 91.721 108.349 108.413 116.929 115.725 

SD 13.519 13.456 15.185 18.127 13.852 12.993 

Skewness –1.499 –1.500 –1.609 –1.170 –0.894 –1.385 

Kurtosis 4.3735 4.7476 3.7697 4.3832 3.4400 4.1627 

Minimum 53.450 53.27 63.680 60.2826 77.755 77.557 

Maximum 107.300 107.26 126.945 131.3634 149.995 137.735 

Pearson's Correlation 0.9992 0.9754 0.9766 

Kendall's Tau 0.9700 0.8150 0.9373 

 2015 

Mean 48.201 48.325 66.911 67.472 68.671 68.922 

SD 6.822 6.779 10.282 12.460 11.146 10.155 

Skewness 0.156 0.171 0.253 0.166 –0.281 –0.353 

Kurtosis 2.2791 1.7911 2.7778 2.2966 1.4941 2.8102 

Minimum 34.550 34.730 50.026 49.344 43.105 45.322 

Maximum 61.360 61.430 88.095 90.149 97.705 96.554 

Pearson's Correlation 0.9987 0.9770 0.9882 

Kendall's Tau 0.9785 0.8974 0.9519 
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Table 2: Percent differences in hedging effectiveness using single hedge ratio (baseline) 
and vector hedge ratio under different criteria (higher values are better). 

Year 2012 2013 2014 2015 

 LPM2 

Min 0.07% 0.96% 0.00% 4.35% 

Max 11.52% 14.36% 26.98% 38.14% 

Mean 1.18% 6.05% 0.96% 15.56% 

% positive 100 100 100 100 

 MV 

Min 0.37% 0.66% 0.03% 2.29% 

Max 3.39% 2.88% 3.84% 10.25% 

Mean 1.19% 1.60% 0.40% 5.38% 

% positive 100 100 100 100 

 



17 
 

Table 3: Percent differences in expected profit using single hedge ratio (baseline) and 
vector hedge ratio under different criteria (higher values are better). 

Year 2012 2013 2014 2015 

 LPM2 

Min –0.08% 0.02% –0.02% 0.16% 

Max 0.57% 0.83% 0.80% 1.54% 

Mean 0.12% 0.35% 0.10% 0.69% 

% positive 85.8 100 94.3% 100% 

 MV 

Min –0.24% –0.08% –0.10% 0.13% 

Max 0.15% 0.26% 0.24% 0.63% 

Mean –0.07% 0.05% –0.01% 0.38% 

% positive 18.0% 78.2% 33.7% 100 
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Table 4: Percent differences in expected shortfall at 5% using single hedge ratio (baseline) 
and vector hedge ratio under different criteria (lower values are better). 

Year 2012 2013 2014 2015 

 LPM2 

Min –0.50% –0.57% –1.49% –1.94% 

Max 0.11% –0.05% 0.03% 0.11% 

Mean –0.04% –0.26% –0.12% –0.66% 

% negative 61.7% 100.0% 81.2% 93.4% 

 MV 

Min –0.53% –0.40% –0.76% –1.19% 

Max 0.31% 0.02% 0.21% 0.03% 

Mean –0.05% –0.21% 0.00% –0.58% 

% negative 60.5% 98.5% 29.5% 98.1% 
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Table 5: Regression analysis of LPM2 optimal hedge ratios on measures of dependence 
(Kendall’s 𝜏) between spot and futures prices. 

 Hedge Ratio 

 Crude oil (CL) Gasoline (RB) Heating Oil(HO) 

Intercept 13.499*** 10.087*** –10.588*** 

Tau_CL.S_vs_RB.S –0.620 –3.174 –30.642*** 

Tau_CL.S_vs_HO.S –17.833* –51.557*** 53.948*** 

Tau_CL.S_vs_CL.F –11.801*** –13.021*** 8.807*** 

Tau_CL.S_vs_RB.F 2.992 –8.601* 49.321*** 

Tau_CL.S_vs_HO.F 26.055** 50.397*** –72.751*** 

Tau_RB.S_vs_HO.S –6.692*** –4.241*** 0.156 

Tau_RB.S_vs_CL.F –1.961 1.575 29.563*** 

Tau_RB.S_vs_RB.F 1.231*** 1.815*** –1.265*** 

Tau_RB.S_vs_HO.F 6.912*** 5.081*** 1.040 

Tau_HO.S_vs_CL.F 18.406* 49.721*** –58.231*** 

Tau_HO.S_vs_RB.F 6.755*** 3.314*** 1.397 

Tau_HO.S_vs_HO.F –2.473*** 1.851*** 3.541*** 

Tau_CL.F_vs_RB.F –1.163 9.767** –48.623*** 

Tau_CL.F_vs_HO.F –25.398** –47.536*** 76.520*** 

Tau_RB.F_vs_HO.F –8.335*** –5.152*** –1.131 

Note: *** = significant at 0.001 level, ** = significant at 0.01 level, * = significant at 0.05 level 
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Table 6: Regression analysis of MV optimal hedge ratios on measures of dependence 
(Pearson correlations) between spot and futures prices. 

 Hedge Ratios 

 Crude oil (CL) Gasoline (RB) Heating Oil(HO) 

Intercept 4.597*** –0.548 –2.927** 

Corr_CL.S_vs_RB.S 0.755 3.665* 7.837** 

Corr_CL.S_vs_HO.S 14.505*** 15.730*** 44.129*** 

Corr_CL.S_vs_CL.F –2.045*** 1.974*** 0.995 

Corr_CL.S_vs_RB.F 2.678 –2.442 3.110 

Corr_CL.S_vs_HO.F –16.121*** –18.879*** –48.107*** 

Corr_RB.S_vs_HO.S –1.589*** 1.060*** –0.390 

Corr_RB.S_vs_CL.F –1.165 –4.498** –6.377* 

Corr_RB.S_vs_RB.F 0.393*** 1.197*** –0.264* 

Corr_RB.S_vs_HO.F 1.110*** –1.310*** 1.061** 

Corr_HO.S_vs_CL.F –12.726** –14.463*** –47.161*** 

Corr_HO.S_vs_RB.F 1.670*** –0.741*** 0.955* 

Corr_HO.S_vs_HO.F –2.270*** –1.551*** 2.924*** 

Corr_CL.F_vs_RB.F –2.544 3.049. –4.011 

Corr_CL.F_vs_HO.F 14.382*** 17.840*** 50.009*** 

Corr_RB.F_vs_HO.F –1.561*** 0.390* –0.801* 

Note: *** = significant at 0.001 level, ** = significant at 0.01 level, * = significant at 0.05 level 
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Figure 1: Spot prices of crude oil (CL), regular gasoline (RB), and heating oil (HO) between 01/01/2012 and 12/31/2015. 
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Figure 2: Futures prices of crude oil (CL), regular gasoline (RB), and heating oil (HO) between 01/01/2012 and 12/31/2015 
(continuous series). 
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Figure 3: Optimal hedge ratios under the LPM2 criterion 
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Figure 4: Optimal hedge ratios under the MV criterion 
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Figure 5: Pairwise Kendall's 𝜏 for crude oil, gasoline, and heating oil futures prices, 250-day moving window 
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Figure 6: Pairwise correlations for crude oil, gasoline, and heating oil futures prices, 250-day moving window 


