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Determining the Effectiveness of Exchange Traded Funds as a Risk Management Tool for 

Southeastern Producers 

 

This research investigates the use of commodity exchange traded funds (ETFs) as a price risk 

management tool for agriculture producers. The effectiveness of using ETFs to hedge price risk 

will be determined by calculating optimal hedge ratios. This paper will investigate the 

southeastern producer’s ability to hedge their price risk for not only outputs, like corn and 

feeder cattle, but also for inputs, like diesel fuel and fertilizer. These ratios will be calculated 

using ordinary least squares (OLS), error correction model (ECM), and generalized 

autoregressive conditional heteroskedasticity (GARCH) regression models. A utility 

maximization framework will be used to determine how transaction costs and risk aversion effect 

the optimal hedge ratio.  Being able to use ETFs to hedge price risk would provide a significant 

tool to small and mid-sized producers who are unable to take advantage of current price risk 

management practices, such as the use of futures, because of the large size of the futures 

contracts. ETFs also present a potential tool to manage a producer’s input price risk. A majority 

of producers are unable to protect themselves from the rising costs of inputs due to producers’ 

small production size and unavailability of protection methods. 

 

Keywords:  ETFs, input price, output price, risk management, hedging 

 

 

Introduction  

 

Over the last few years producers have seen an increase in the volatility of commodity prices. 

This has caused agribusiness producers and the agricultural industry to face different types of 

price risk. While overall average commodity prices have also increased, it has also lead to an 

increase in volatility (Schweikhardt, 2009). Futures contracts and option contracts have existed 

for years as price risk management tools. Even though these instruments are available as a tool to 

help producers offset their price risk, previous research has shown that not many producers take 

advantage of them. One of the reasons for not using futures and options contracts is the size of 

the quantity requirements needed for futures and options contracts. These quantity requirements 

are usually too large for small and mid-sized producers and they are unable to take advantage of 

using futures or option contract to hedge their price risk.   

 

As an example, the Chicago Mercantile Exchange (CME) Group offers a feeder cattle future 

contract that has a quantity requirement of 50,000 lbs. Feeder cattle are weaned calves that have 

been raised to be 600-800 lbs. In order to hedge their price risk using futures contracts, a cattle 

producer would need at least 83 head of feeder cattle weighing 600 lbs. In 2012, 72 percent of 

Mississippi cattle producers had less than 50 head of cattle (NASS, 2012). As a result, the 

majority of cattle producers in Mississippi are exposed to fluctuations in cattle prices without any 

real means of protection.  

 

As another example, the CME offers a soybean futures contract with a quantity requirement of 

5,000 bushels. In 2012, 30 percent of farms that harvested soybeans had less than 100 acres 

(NASS, 2014). At the state’s average yield of 46 bushels for 2015 an acre that year, a 100 acre 
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farm in Mississippi would produce 4,600 bushels (NASS, 2014). This level of production does 

not allow for small scale soybean producers to hedge their price risk in the futures market. 

Similarly, the CME offers a corn futures contract with a quantity requirement of 5,000 bushels. 

Based on the state’s average yield of 175 bushels an acre in 2015, in order to hedge their price 

risk in the futures market, a producer in Mississippi would need to have at least 25 acres of corn 

in production (NASS, 2014).  In 2012, 23 percent of corn farms in Mississippi had less than 25 

acres.  

 

While there are futures contracts that have a quantity requirement of 1,000 bushels for both corn 

and soybeans, they face a liquidity problem that makes them unreliable for use by producers. 

These mini contracts trade on the CME but at a much lower volume than the regular contracts. 

For soybeans mini contracts their volume is almost 15 times lower than the volume of the regular 

contracts, and for corn mini contracts their volume is almost 20 times lower. For a producer to 

know they can effectively hedge their price risk, they need the futures contract to be highly 

liquid.  

 

Recent government policies, such as the Renewable Fuel Standard (RFS), have been shown to 

have created strong linkage between agricultural commodity prices and energy prices (Harri, 

Nalley, and Hudson, 2009). Buguk, Hudson, Hanson (2003) and Harri and Hudson (2009) also 

have found that there is evidence of volatility spillover from energy markets into agricultural 

markets. While some risk management tools exist for such inputs as feed for cattle producers, no 

risk management tools exist for input products like fuel, fertilizer, and propane.   

 

A crude oil futures contract is offered with a quantity requirement of 1,000 barrels (or 42,000 

gallons). This could be used by producers to hedge their input price risk of diesel fuel, but the 

quantity requirement is impractical for most producers. It takes 35 gallons of diesel fuel to grow 

one acre of irrigated soybeans in Mississippi (MSU, 2015). A producer would need to grow 1200 

acres of soybeans in order to use enough diesel fuel to be able to use one futures contract to 

hedge their price risk. In 2012, 89 percent of row crop operations had less than 1,000 acres.  

 

This research investigates a new risk management tool that can provide small producers with the 

ability to protect themselves from price risk of their outputs. It also investigates a new tool for all 

producers to be protected from fluctuations in input price risk. This new tool would be the 

Exchange Traded Funds (ETFs). An ETF is an instrument that resembles a mutual fund, but is 

priced throughout the trading day and mimics one or more futures contract. The ETFs we will 

use are created from a combination of various futures contracts for that commodity. The value of 

the ETF is determined by the underlying futures contracts’ values. The advantage of an ETF is 

that they can be traded at much smaller increments than a futures contract. Some ETFs exist that 

are comprised solely of commodity futures contracts. Since they are priced and traded 

throughout the trading day, they provide good liquidity and flexibility to the user. Small and 

mid-sized producers are also able to take advantage since there are no quantity requirements. 

ETFs are also offered for inputs such as fuel, fertilizer, propane, and feedstuffs potentially 

offering a useful tool to help offset input price risk for all producers. This research will look at 

the efficiency of ETFs as a viable instrument to hedge against price risk and the benefits an ETF 

hedge can provide to producers. 
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Literature Review 

The body of minimum variance hedging literature is quite extensive. Alexander and Barbosa 

(2007) look at the effectiveness of various minimum variance hedging techniques and provide an 

extensive review of the literature. One of the highlights of this overview is Johnson (1960), who 

was the first to use a minimum variance criterion to calculate a hedging ratio based on a specific 

cash price. Papers following Johnson investigated if the minimum variance criterion was 

appropriate. Howard and D’Antonio (1984) attempt to maximize the Sharpe ratio to derive the 

optimal hedge ratio. Cheung, Kwan, and Yip (1990) and Lien and Luo (1993) approach hedging 

effectiveness by minimizing the mean-Gini coefficient. Lien and Tse (1998, 2000) and Mattos, 

Garcia, and Nelson (2008) used the objective of minimizing the generalized semivariance.  

 

Cecchetti, Cumby, and Figlewski (1990) found the optimal hedge ratio of treasury bills by 

maximizing an expected utility function. An autoregressive conditional heteroscedasticity model 

is used to calculate the conditional variance and covariance matrix, and then the objective 

function is maximized with respect to the hedge ratio.   

 

Lapan and Moschini (1994) calculated optimal hedge ratios for Iowa soybeans taking in account 

price, basis, and production risk. The authors developed a hedging model where a producer faces 

these risks and assumed a constant absolute risk aversion (CARA) utility function. It was found 

that the optimal futures hedge decreases as the level of a producers risk aversion increases.   

 

Chen, Lee, and Shrestha (2003) did a comprehensive review of literature concerning hedge 

ratios. They compiled a review of articles that had developed both theoretical and empirical 

models for hedge ratios. This paper is a good reference to understand how the techniques of 

estimating hedge ratios have developed over time.  

 

Ederington (1979) empirically calculated minimum variance hedge ratios using OLS regression 

methods. The paper found hedge ratios for Government National Mortgage Association futures, 

wheat, corn, and T-bill futures using weekly data. It was found that as the length of the hedging 

period increases, the hedge ratio increase.  

 

Baillie and Myers (1991) derived the minimum variance hedge ratios for beef, coffee, corn, 

cotton, gold, and soybeans using a bivariate GARCH model. Their model allowed for time-

varying estimations of the conditional covariance matrix and thus time-varying hedge ratios to be 

derived. The authors found that the assumption of constant optimal hedge ratios is inappropriate. 

The authors also found that optimal hedge ratios contain a unit root and behave much like a 

random walk.  

 

Kroner and Sultan (1993) proposed using a bivariate GARCH error correction model to derive 

the minimum variance hedge ratio. The error correction term allowed for the long run 

relationship between the cash and futures price to be included in the model. The GARCH 

parameters allowed for new information over time to influence the hedge ratio and for time 

varying hedge ratios to be derived. Garbade and Silber (1983), Myers and Thompson (1989), and 

Ghosh (1993) take into account the existence cointergration between the cash and futures price 
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series also. Lien (2004) has shown though that the omission of an error correction term will not 

have that significant of an effect on hedging effectiveness.   

 

Moschini and Myers (2002) developed a modified BEKK parameterization for the bivariate 

GARCH. They found significant GARCH effects in both the corn cash and futures markets. 

They concluded that the optimal hedge ratios for the weekly storage hedging of corn to be time-

varying.  

 

In academic literature there are not many studies that have examined the ability of ETFs to track 

specific cash prices of the commodities in which they are designed to follow.  Murdoch and 

Richie (2008) looked at the ability of the United States Oil Fund (USOF) to be used as a hedging 

instrument. They looked at the relationship of the price of the USOF ETF and the price of the 

West Texas Intermediate (WTI) oil futures and spot price. To investigate the use of the USOF 

ETF as a hedging instrument, the authors performed a correlation analysis of the USOF with the 

spot and futures price. Based on the estimated correlations the USOF appears to be a useful 

hedging tool for investors. The authors further looked at the degree in which the USOF price 

deviates from the futures market it is supposed to replicate. They found that the futures-USOF 

basis is significantly more volatile than the futures-spot basis. This led the authors to conclude 

that “although the fund prices and price changes are reasonably correlated with oil markets, an 

investor faces more uncertainty with the USOF and may or may not be able to sustain an 

effective hedge against volatile oil prices” (Murdoch and Richie 2008, p. 341). They also found 

that the futures-USOF basis is greater during periods of contango, which can play an important 

role in the effectiveness of the hedge.  

 

Plamondon and Luft (2012) built upon the work of Murdoch and Richie (2008), and compared 

the returns of physical and derivative commodity ETFs to the returns of their underlying spot 

commodity returns. ETFs were split into two groups, those that held the physical commodity and 

those that used futures to derive the ETFs value. They regressed the returns of the spot price on 

the returns of the corresponding ETF to estimate a beta and R2 values. The authors found that for 

both ETF groups, there was no statistical difference between the ETF returns and the spot 

commodity returns. 

 

Conceptual Framework 

The most basic hedging strategy is a naïve hedge. With this strategy a producer with a long 

position in the cash market would take a short position of equal size in the futures market. The 

producer would then offset this position by selling in the cash market and going long in the 

futures market. The producer would then have been perfectly hedged if the basis, which is the 

difference between the cash and futures price, is zero at the time the hedge is lifted.  

 

Since the cash and futures prices do not always follow each other exactly, it might be necessary 

to under or over hedge the cash position. Ederington (1979) proposed the following regression  

 

(1) 1 1( )     t t t t tC C F F     
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where 
tC  is the cash price at time t, tF  is the futures price and the optimal hedging ratio is

* . 

The optimal hedge ratio shows the producer how much of their position needs to be hedged.  

This strategy is referred to as the conventional hedging strategy (Kroner and Sultan, 1993).  

 

Following the work of Kroner and Sultan (1993) the conventional hedging strategy can be 

derived as follows. The returns to a producer who has a hedged position are 

 

(2) R C b F      
 

where R is the returns, C  is the change in cash price, F is the change in futures prices, and b 

is the hedge position. It is then assumed that the producer faces a mean-variance expected utility 

function  

 

 

(3) ( ) (R) var(R)EU R E     

 

where   is the degree of risk aversion ( 0)  .  

 

Using the objective function for the variance of returns as proposed by Johnson (1960) the 

optimal hedge ratio is solved using  

 

 

(4)  2 2 2max ( ) max ( ) bE( F) 2C F C F
b b

EU R E C b b      
        

 

 

where 
2

C  is the variance of change in cash prices, 
2

F  is the variance of change in futures price, 

and C F  is the covariance between changes in cash and changes in futures price.   

 

The equation is solved for b , which gives the optimal hedging ratio as  
 

(5) 
*

2

( ) 2

2

C F

F

E F
b




 



 
  . 

 

Assuming the futures rate follows a martingale, the equation can be further reduced to  
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(6) 
*

2

C F

F

b



 



  . 

 

This hedge ratio assumes that the distribution of cash and futures prices are constant over time. 

Kroner and Sultan (1993) showed that the hedge ratio could be expressed as time-varying by 

specifying the returns equation as  

 

(7) '   t t t tR C b F  

 

where 't t . The producer now calculates the optimal hedging position by maximizing the 

expected utility function   

 

(8) 
2

1 1 1( ) ( ) ( )t t t t t tEU R E R R      

 

where risk is now measured by conditional variances, and it is shown that the expectation and 

variance operators are conditioned on information available at time t . The utility maximizing 

hedge ratio at time t  assuming that futures prices are a martingale is  

 

(9) 
* 1 1

2

1

( , F )

( F )

t t t
t

t t

C
b




 



 



 . 

 

The optimal hedge ratio is similar to the conventional hedge ratio, but the variance and 

covariance are now time-varying conditioned.    
 

Data  

 

The data for this study consist of weekly historical cash and futures prices of corn, soybeans, live 

cattle, and on the input side, diesel fuel. The weekly historical closing price of the relevant ETFs 

will be used for each commodity. Corn and soybean cash prices are the local prices from 

Greenville, Mississippi. Live cattle prices are an average for 1,000 to 1,300 pound cattle in Texas 

and Oklahoma. Diesel prices were obtained from the U.S. Energy Information Administration 

and cover the Gulf Coast region.  

 

The ETF used for corn will be the Teucrium Corn Fund (NYSE: CORN) created June 9, 2010. 

The time period for corn will therefore be June 2010 to July 2015. Since ETFs are built similar to 

a mutual fund, they are priced based on the fund’s Net Asset Value (NAV). The NAV is the net 
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assets of the fund divided by the outstanding shares. The value of the CORN ETF’s assets are 

made up of three CBOT futures contracts.  These futures contracts are the second to-expire-

contract from the current date with a weight of 35 percent, the third-to-expire contract from the 

current date with a weight of 30 percent and the contract expiring in the December following the 

third-to-expire contract with a weight of 35 percent.  

 

The ETF used for soybeans will be the Teucrium Soybean Fund (NYSE: SOYB) created 

September 16, 2011. The time period for soybeans will be September 2011 to July 2015. The 

SOYB ETF’s assets are made up of three CBOT soybean futures contracts. These three CBOT 

futures are the second to-expire-contract from the current date weighted 35 percent, the third-to-

expire contract from the current date weighted at 30 percent and the contract expiring in the 

November following the third-to-expire contract weighted 35 percent. The CBOT soybean 

contracts for August and September are not used in the fund due to the less liquid markets for 

these contracts.    

 

To hedge diesel fuel this study will be using a heating oil ETF, United States Diesel-Heating Oil 

Fund LP (NYSE: UHN). This fund was created April 9th, 2008. The time period of April 2008 to 

August 2015 will be used for diesel fuel. UHN is designed to mimic the daily changes of heating 

oil (No. 2 Fuel) for delivery at the New York harbor, as measured by the daily changes in the 

NYMEX heating oil (No. 2 Fuel) futures contract. The UHN uses the near month contract, and 

begins to roll them over when they are within two weeks of expiration. The fund also may invest 

in forward and swap contracts.    

 

For live cattle an Exchange Traded Note (ETN) will be used instead of an Exchange Traded 

Fund (ETF). The difference between the two is that ETNs fall under the governance of the 

Securities ACT of 1933, while ETFs falls under the governance of the Investment Company Act 

of 1940. ETNs may be managed like a fund and traded like ETFs, but they do not report the 

same way and are governed under slightly different rules (Ferri, 2009).  For live cattle the iPath 

Bloomberg Subindex Total Return ETN (NYSE: COW) will be used. This note was created on 

October 23, 2007. This study will therefore look at the price series from October 2007 to May 

2015 for live cattle. COW’s index is a combination of live cattle and lean hogs futures contracts. 

 

 

Methods  

Regression Methods  

This paper will use three different regression techniques to derive optimal ETF hedge ratios, as 

well as optimal futures hedge ratios for comparison purposes. The three regressions will be an 

ordinary least squares, error-correction model, and a bivariate generalized autoregressive 

heteroscedasticity model with an error correction term.  A Dickey Fuller Unit Root test is used to 

check the data for stationarity and the two-step Engle Granger approach is used to check for 

cointegration between price series.  

We will use the ordinary least squares (OLS) regression technique proposed by Ederington 

(1979) to find the optimal hedging ratio. Elam and Davis (1990) employed such a technique in 
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which they researched the optimal hedging ratios for feeder cattle. OLS regression sets the 

dependent variable as the change in cash price and regresses it against the change in futures 

price. In the following notation, Fut will be used to represent both futures and ETF prices.  

The resulting regression equation is: 

(10) t t tCash Fut e         

 

where   is the difference operator, 1t t tCash Cash Cash    , which is the change in the cash 

price during the hedging period, and similarly 1t t tFut Fut Fut    , which is the change in the 

futures price during the hedging period. The parameter   is a slope coefficient and represents 

the optimal hedge ratio.  

Sometimes the cash and futures price might be cointegrated. A no arbitrage condition means that 

between futures and cash markets in the long run, the two price series cannot drift far apart. In 

the short run though, there might be some effects that causes the local cash price to change that is 

not accounted for by the futures market price. This can cause the OLS regression to be biased 

because of an omitted variable problem.  

To address the problem of cointergration an error correction model was developed by Engle and 

Granger (1987). This model is: 

 

(11) 1

1 1

p q

t t t i t i j t j t

i j

Cash u Fut Cash Fut v     

 

            

   

where  1 1 1 1t t tu Cash Fut       is the error correction term. This term accounts for the long 

term effects and the other variables in the model account for the short term influences.   is 

again the optimal hedging ratio. Depending on a test for cointergration, either the OLS or the 

ECM will be used. 

Along with OLS and ECM hedging ratios, we will obtain time varying hedge ratios. This will be 

done by estimating hedge ratios that are conditional on past information, 1tI  .  

 

(12) 
 

 
1

1

1

cov , Cash

var

t t t

t

t t

Fut I

Fut I










  


 
 . 

 

Since 1t  is conditional on 1tI  , the optimal hedging ratio is time varying. To estimate the time 

varying hedging ratios, a bivariate generalized autoregressive conditional heteroskedasticity 
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(BGARCH) with an error correction term model will be used. The conditional mean will be 

specified as 

 

(13) 1

1

p

t t i t i t

i

R A u R  



         

 

where t

t

t

Cash
R

Fut

 
  

 
 and 1tu   is again the error correction term. The conditional variance will 

be specified as 

 

(14) 
2

, 1 , 1ii i i ii t i i th h          

 

for 1( )i Cash , 2( )Fut .  

The BGARCH model will be estimated using the constant conditional correlation (CCC) 

specification for the covariance matrix of t . The conditional time-varying optimal hedge ratios 

can be obtained using  

(15) 
12, ,

1

22, ,

ˆ ˆ
ˆ

ˆ ˆ
t Cash Fut t

t

t Fut t

h h
B

h h



    . 

 

 This will give us the optimal hedging ratio to use at the time the hedge is placed.   

Simulation Methods 

The optimal hedge ratio can also be effected by the risk preference of the producer. An expected 

utility framework will be used to obtain the certainty equivalents for both hedged and unhedged 

positions and compare them to determine the effectiveness of ETFs.  A similar approach has 

been used by Collins (1997), Arias, Brorsen, and Harri (2000), Harri, Riley, Anderson, and 

Coble (2009). 

 

The producer is assumed to maximize their expected utility according to a von Neumann-

Morgenstern utility function. This function is defined over end period wealth (WL) and is strictly 

increasing, concave, and twice continuously differentiable.  

Ending wealth will be designated for both short and long hedges. For a short hedge of an output, 

ending wealth will be specified as  

 

(16) 0 0 1( )L L T FW W P Q C Q f f tc       
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 where LW  is the end of period wealth, 0W  is producer’s initial wealth , LP is the price received 

for the commodity being hedged, TQ  is the total quantity of the commodity, C represents the 

production cost, FQ  is the quantity of commodity being hedged, 0f  and 1f  are the initial futures 

price and the price of the futures contract at the time the hedge is lifted, and tc is the transaction 

cost of placing the hedge. This formula will be used when hedging outputs of a farm.  

 

For a long hedge of an input, ending wealth will be specified as 

 

(17) 0 1 0( )L L F FW W R C P Q Q f f tc        

  

where R is revenue of the farm, FQ   is now the quantity of input being hedged, and LP  is the 

price of the input. The rest of the equations remains the same.  

 

A utility maximizing producer has the choice on how much of his commodity to hedge and the 

objective function becomes:  

 

(18)  
0 0 1( )L T t

h
MaxEU W P Q C hQ f f tc        

  

where h is the hedge ratio, and thus hQt is the optimal quantity of commodity to hedge.  Both 

futures and ETF hedges are estimated for comparison using simulations for corn, soybeans, and 

diesel fuel.. In order to have a long enough series of ETF prices and more observations, past ETF 

prices are generated using known historical futures prices. Simulated random variables consist of 

futures price changes, ETF price changes and ending basis.  A total of 50,000 futures price 

changes, ETF price changes and ending bases are simulated. They are simulated from a 

multivariate normal distribution using a Cholesky decomposition of the covariance matrix for the 

futures price changes, ETF price changes, and ending basis. Historical futures, ETF and cash 

prices are used to estimate the vector of the means and the covariance matrix used in simulations. 

The simulated futures price changes, ETF price changes, and ending basis are used to create 

50,000 futures, ETF, and cash prices by assuming starting futures and ETF prices for each 

commodity. 

 

Ending wealth will be calculated using either equations (16) or (17), depending on if a short or 

long hedge is being implemented. For each commodity the parameters of equations will be 

specified depending on the producers we wish to model. Once ending wealth is simulated it will 

be converted to utility values using a constant relative risk aversion (CRRA) utility function, 

which will be specified as 

 

(19) 

1

1

1
( ) , 1

1

rn
i

r

i

W
E U r

n r





  


    

or 
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(20) 
1

1
( ) ln( ), 1

n

r i

i

E U W r
n

    

  

where Wi is the ending wealth for period i, r is a risk aversion coefficient, and n is the total 

number of observations.   

 

For each level of utility and the given risk coefficient, it is possible to solve Equation (19) and 

(20) for Wi and obtain a certainty equivalent (CE). The CE represents the highest sure payment a 

producer would be willing to pay in order to avoid a risky behavior. The equations for 

calculating the CE for the CRRA utility functions are: 

 

(21)  
1

1
01 ,r

rCE U r W r
 
 
       

   

or  

(22) 0 ,U

rCE e W r     

  

where U  is the utility calculated in Equations (19) and (20).  

 

A higher certainty equivalent is preferred to a lower one. When given two alternative certainty 

equivalents iCE  and jCE , if i jCE CE then i  is preferred to j .     The optimal hedge ratio for 

each commodity will then be the hedge ratio that returns the highest certainty equivalent.  

     

Diesel  

The hedging period simulated for diesel is March 31st to July 31st. The United State Heating Oil 

Fund ETF’s value is determined by the nearby futures contract. At March 31st, the nearby futures 

contract is the April contract. The April futures price for the last five days of March were taken 

and averaged to determine the ETF price. An average of the last five days is used because the 

corresponding cash prices are weekly. The same process is used to determine the ETF price for 

July 31st. The August contract is the nearby, and the August futures price for the last five days of 

July was taken and averaged to determine the ETF price for July 31st. This is done for each year 

from 2000 to 2015.   

  

Diesel is an input into production, so a producer will place a long hedge and ending wealth will 

be determined using Equation (17). The base farm for this simulation is a 100 acre irrigated 

soybean farm, with expected production of 60 bushels an acre, and expected cash price of $9.00 

a bushel. Initial wealth is set at $10,000 and fixed costs of $475 an acre. According to 

Mississippi State Extension Budgets, this size farm would use about 35 gallons of diesel fuel an 

acre. In Equation (17), FQ  is set at 3,500 gallons. Futures trading cost is $0.03 a contract. The 

trading cost for ETFs is $0.015. The risk aversion coefficient is set at 2, which represents 

moderately risk averse.  
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Placing an ETF hedge comes with additional costs not present when placing a futures hedge. 

Since an ETF is a built similar to a mutual fund, a management fee will be charged to the holder 

of the ETFs, which is the expense ratio. The United States Diesel-Heating Oil Fund has an 

expense ratio of 0.60 percent. If an individual held ETFs in this fund worth a $1,000, they would 

owe $60 for fund management each year. Since our producer will hold the ETFs for 3 months, he 

will face an expense ratio of 0.15 percent.  

   

Another added expense of an ETF hedge is an interest rate on borrowing money. When 

purchasing ETFs, a buyer must pay 50 percent of the ETFs value. This can present a cash flow 

issue to the producers, which will result in the need to borrow money in order to place the hedge. 

The interest rate on borrowing is assumed to be 6 percent. Therefore the trading cost for an ETF 

is   

 

(23) 0(0.5 I E)ETFtc c f       

 

where c is the cost of the trading, 0f  is the ETF price, I is the interest rate, and E is the expense 

ratio. 

Corn 

The hedging period for corn is set at April 31st to October 31st. Since corn is an output, the 

producer will be placing a short hedge and thus ending wealth will be simulated using Equation 

(16). ETF prices are generated following the combination of futures contracts used by the 

Teucrium Corn Fund. The ETF price that a producer would face when placing a hedge on April 

31st is generated by taking the average of the last five days of April futures prices for the July, 

September, and December contracts. The July price is then weighted 35 percent, the September 

price weighted 30 percent, and the December price is weighted 35 percent. These weighted 

prices are added together to obtain the ETF start price. The ETF price for October 31st, when the 

producer will lift the hedge, is generated with the same process using the March, May, and 

December of the next year futures contracts.  

Farm size is set at 25 acres and corn production of 175 bushels an acre.  In Mississippi 23 

percent of farms that harvested corn have 25 or less acres and the Mississippi average for corn 

production in 2015 was 175 bushels an acre. Total cost of corn production is set at $500 per acre 

and initial wealth at $10,000.  The beginning futures price for the simulation was set at $3.87 and 

the beginning ETF price was set at $3.96. The trading cost for futures is set at $0.03 a contract. 

The trading cost for ETFs is half of futures at $0.015. The expenses ratio for the Teucrium Corn 

fund is 2.92 percent and the interest rate is set at 6 percent. The risk aversion coefficient is set at 

1, which represents a slightly risk averse producer.  

Soybeans 

The hedging period for soybeans is set for April 31st to October 31st.  The ETF prices are 

generated following the combination of futures contracts that the Teucrium Soybean Fund uses 

to determine its value. The process to generate these prices was the same as generating the corn 

ETF prices. Unlike the corn ETF that uses all futures months, the soybean ETF does not use the 
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futures contracts for August and September due to low trading volume. The risk aversion 

coefficient is set at 1, which represents a slightly risk averse producer. 

The simulation of ending wealth using Equation (16) assumes a 100 acre soybean farm 

producing 60 bushels an acre. Qf is therefore 6000 bushels. Initial wealth is set at $10,000 and 

fixed costs are set according to Mississippi State Extension budgets at $475 an acre. The trading 

cost of futures is $0.03 a contract and the trading cost of an ETF is $0.015. The expenses ratio 

for the Teucrium Soybean Fund is 3.49 percent and the interest rate on a loan is set at 6 percent. 

 

 

Results 

Summary statistics for the levels and log-levels of the cash, futures, and ETF prices for each 

commodity can be found in tables 1-4. A normally distributed variable will have a skewness and 

kurtosis value of three. The kurtosis measures reported in tables 1-4 actually measure excess 

kurtosis, the difference between the observed kurtosis and the kurtosis value for the normal 

distribution, three.  For corn, the distributions of the cash, futures, and ETF prices levels and logs 

have a low negative skewness. The kurtosis value is negative for these price distributions and 

indicates the presence of thinner tails of the distribution as compared to the normal distribution. 

The same is true for the shape of the distribution for soybeans cash, futures, and ETF level and 

log prices. The live cattle ETF level price exhibits positive skewness and positive excess 

kurtosis, implying thicker tails than the normal distribution. The distribution of the log live cattle 

ETF price does not exhibit the excess positive kurtosis but positive skewness is still present. The 

diesel ETF also has a positive skewness and positive excess kurtosis, but the log price does not.  

 

The optimal hedge ratios estimated using the different regression methods for each commodity 

can be found in Table 5 along with the R-squared values of the models. Cointegration was not 

found to be present between the ETF and cash price series for live cattle. Therefore an ECM 

model was not used to find an optimal ETF hedge ratio for live cattle. The reported GARCH 

ratio is the average of the time-varying ratios found using the GARCH model. The time-varying 

ratios can be found in Figures 1- 8, along with the OLS and ECM estimates. These figures show 

the results of all three regression models used along with the mean of the GARCH hedge ratios. 

Futures hedge ratios and ETF hedge ratios were calculated over the same period of time for each 

commodity. The main takeaway from these figures is to see how the optimal hedge ratio will 

vary over time when using the GARCH model, and the OLS and ECM models are constant.  

 

It was found that hedge ratios for futures and ETFs do not vary greatly across the different types 

of models. For corn futures, the GARCH model returns a higher optimal hedge ratio, but for a 

corn ETF hedge the OLS, ECM, and GARCH ratios are almost identical. The ECM and GARCH 

models for soybeans futures and ETFs result in higher hedge ratios than the OLS model. For live 

cattle, the GARCH model provides slightly greater hedge ratios than the OLS and ECM hedge 

ratios. The hedge ratios for diesel fuel are nearly identical across all three models for futures. The 

GARCH model returns a slightly high hedge ratio for ETFs than the OLS or ECM.  

 

It was also found that an ETF hedge performs just as well as a futures hedge. For corn and 

soybeans the ETF hedge ratio is higher that the futures hedge ratio for each model. A t-test of 
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OLS hedges also shows that the futures and ETF hedge ratios for corn and soybeans are 

statistically different. The hedge ratios for corn and soybeans also show that futures and ETFs do 

a good job covering a producer’s price risk with hedge ratios near one. The Corn ETF hedge 

shows that a producer would want to hedge his total quantity. 

  

The ETF hedge ratio for live cattle and diesel are nearly identical to the futures hedge ratio for 

each model.  Further, OLS hedges are not statistically different from each other. The futures and 

ETF optimal hedge ratios for live cattle range from 0.45 to 0.50. The diesel futures and ETF 

hedge ratios show that hedging using heating oil futures and ETFs perform rather poorly in 

protecting a producer against price risk.  

 

The reported R-square values can be used to judge how well each model predicts. The ETF OLS 

model for corn has a higher R-squared value than the futures, but the ECM futures model has a 

slightly higher R-squared than the ETF model. The soybeans futures OLS model R-squared is 

higher than the ETF OLS model, while the ECM futures model is significantly higher than the 

ETF ECM model. The live cattle futures model R-square is higher than then ETF, and the diesel 

R-squared values are similar for both futures and ETFs. 

 

The optimal hedging ratio for a risk adverse corn producer can be seen in figure 9. The 

maximum certainty equivalent corresponds with a hedge ratio of 0.95 for futures and 0.85 for 

ETFs. The optimal hedging ratio for futures from simulations is higher compared to the optimal 

hedging ratios found using the regression techniques. The optimal ETF hedge ratio from 

simulations is lower than the optimal ETF hedge ratio found using regression techniques. This 

shows that in the presence of risk aversion the ETF hedge loses some effectiveness.  

 

The optimal hedging ratio for futures from simulations is higher compared to the optimal 

hedging ratios from regression techniques for soybeans.  The optimal soybean hedge ratios for a 

risk averse producer can be found in figure 10. It can be seen in this figure that the corresponding 

optimal hedge ratio for the maximum certainty equivalent for a futures hedge is 0.975 and the 

ETF hedge is 0.825. While the futures optimal hedge ratio is higher than the optimal hedge ratios 

from the regression techniques, the ETF hedge ratio is again lower. This shows that an ETF 

hedge of soybeans loses some effectiveness in the presence of risk aversion.  

 

Figure 11 shows the optimal diesel hedge ratios for a moderately risk averse producer. It was 

found that a slightly risk averse producer, or risk coefficient of 1, would not hedge diesel fuel 

using futures or ETFs. Therefore the risk coefficient was increased to 2. Both an ETF and futures 

hedge have near the same optimal hedge ratio at the maximum certainty equivalent. The optimal 

diesel futures hedge ratio for a risk averse producer is slightly higher at 0.2 than the optimal ETF 

hedge ratio at 0.175. The simulation optimal hedge ratios are both slightly higher than the 

optimal hedge ratios found using the regression techniques.  
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Conclusion 

 

This study has investigated the effectiveness of Exchange Traded Funds as a hedging tool. OLS, 

ECM, and GARCH regression models were used to find optimal hedge ratios for corn, soybeans, 

live cattle, and diesel fuel. Simulations were used to find the optimal hedge ratios for corn, 

soybeans, and diesel fuel for a risk averse producer.   

 

Based on regression results, an ETF hedge of corn and soybeans outperforms a futures hedge. A 

reason for this outperformance can be that the corn and soybean ETFs incorporate more 

information that is available in the futures market by being composed of multiple futures 

contracts. On the other hand, hedging with futures only uses the information from a single 

futures contract.  The diesel ETF incorporates information from a single futures contract as it is 

composed of only the nearby futures contract. This could account for the similar futures and ETF 

hedging ratios in the case of diesel fuel.   

 

Simulations show the opposite outcome though. Across all three commodities, the futures hedge 

outperforms the ETF hedge. This highlights the effects of higher trading costs of ETFs as 

compared to futures in the presence of risk aversion. These higher trading costs offset the 

effectiveness gains of the ETF hedge.   

 

An extension of this research would be to look at various locations. Mississippi is not a large 

corn growing state, and it would be interesting to see if these results hold in the Corn Belt states 

like Iowa and Illinois. There also exist ETFs for other commodities such as wheat, cotton and 

sugar cane. On the input side, ETFs could possibly be used to hedge a producer’s fertilizer price 

risk. Other ETFs exist that are stock based instead of futures based. These ETFs exist for various 

commodities, and it would be interesting to see if they can be used to hedge as effectively as a 

futures based ETF. A further extension of the simulation approach can be to see how varying 

degrees of risk aversion effect the optimal hedge ratio.  

 

This study has shown that ETFs have the potential to be used as an effective price risk 

management tool just as futures contracts. The effectiveness of ETFs will provide small 

producers a tool to manage their price risk in areas where they currently have no price risk 

management tools. 

 

 

 

 

 

 

 

 



16 

References 

Alexander, C., and A. Barbosa. 2007. “Effectiveness of Minimum-Variance Hedging.” The 

Journal of Portfolio Management 33(2): 46-59.  

Arias, J. B., W. Brorsen, and A. Harri. “Optimal Hedging Under Nonlinear Borrowing Cost, 

Progressive Tax Rates, and Liquidity Constraints.” Journal of Futures Markets 20(4): 

375-396 

Baillie, R., and R. Myers. 1991 "Bivariate Garch Estimation of the Optimal Commodity Futures 

Hedge." J. Appl. Econ. 6.2: 109-124. 

Buguk, C., D. Hudson, and T. Hanson.  2003. “Price Volatility Spillover in Agricultural Markets: 

An Examination of U.S. Catfish Markets.” Journal of Agricultural and Resource 

Economics 28(1): 86-99. 

Cecchetti, S. G., R. E. Cumby, and S. Figlewski. 1988. “Estimation of the Optimal Futures 

Hedge.” Review of Economics and Statistics 70: 623-630. 

Cheung,C.S., Kwan, C. C. Y., and Yip, P.C.Y. (1990). “The hedging Effectinvess of Options and 

Futures: A mean-Gini Approach. Journal of Futures Markets 10: 61-74. 

Chen, S., L. Cheng-few, and K. Shrestha. 2003. “Futures Hedge Ratios: A Review.” The 

Quarterly Review of Economics and Finance 43(3): 433-465.  

Collins, R. A. (1997). “Toward a Positive Economic Theory of Hedging.” American Journal of 

Agricultural Economics 76(2): 488-499. 

"Corn, Grain Sorghum & Wheat 2016 Planning Budgets." Budget Report No. 2015-03, 

Department of Agricultural Economics, Mississippi State University, December 2015. 

Ederington, L. 1979 "The Hedging Performance of the New Futures Markets." The Journal of 

Finance 34(1): 157-170. 

Elam, E. and J. Davis. 1990. “Hedging Risk For Feeder Cattle With a Traditional Hedge 

Compared to a Ratio Hedge.”  Southern Journal of Agricultural Economics 22:209-216. 

Garbade, K. D., and W. L. Silber. 1983. “Price Movement and Price Discovery in Futures and 

Cash Markets.” Review of Economics and Statistics 65: 289-297.  

Ghosh. A. 1993. “Cointegration and Error Correction Models: Intertemporal Causality Between 

Index and Futures Prices.” Journal of Futures Markets 13: 193-198. 

Howard, C. T., and D’Antonio, L.J. (1984). “A risk-return measure of hedging effectiveness.” 

Journal of Finacial and Quantitative Analysis 19: 101-112. 

 



17 

Harri, A. and D. Hudson. 2009. “Mean and Variance Dynamics between Agricultural 

Commodity Prices and Crude Oil Prices and Implications for Hedging.”  Presented at the 

conference “Economics of Alternative Energy Sources & Globalization: The Road 

Ahead”, Orlando, Florida, November 15-17.   

Harri, A., L. Nalley, and D. Hudson.  2009.  “The Relationship Between Oil, Exchange Rates, 

and Commodity Prices.”  Journal of Agricultural and Applied Economics 41(2):1-10. 

Johnson, L. 1960. “The Theory of Hedging and Speculation in Commodity Futures.” The Review 

of Economic Studies 139-151.  

Kroner, K., and J. Sultan. 1993 "Time-varying distributions and dynamic hedging with foreign 

currency futures." Journal of Financial and Quantitative Analysis 28(04): 535-551. 

Lapan, H. and Moschini, G. 1994. “Futures Hedging Under Price, Basis, and Production Risk.” 

American Journal of Agricultural Economics 76(3): 465-477. 

Lien, D. 2004. “Cointegration and the Optimal Hedge Ratio: The General Case.” Quarterly 

Review of Economics and Finnance 44: 654-658.  

Lien, D., and Y. K. Tse. (1998). “Hedging Time-varying Downside Risk.” Journal of Futures 

Markets 18: 705-722. 

Lien, D., and Y. K. Tse. (2000). “Hedging Downside Risk with Futures Contracts.” Applied 

Financial Economics 10: 163-170. 

Mattos, F., P Garcia, and C. Nelson. 2008. “Relaxing Standard Hedging Assumptions in the 

Presence of Downside Risk.” The Quarterly Review of Economics and Finance 48: 78-93.  

Moschini, G. and R. Myers. 2002 “Testing for Constant Hedge Ratios in Commodity Markets: A 

Multivariate Approach.” Journal of Empirical Finance 9: 589-603. 

Murdock, M., and N. Richie. 2008 "The United States Oil Fund as a Hedging 

Instrument." Journal of Asset Management 9(5): 333-346. 

Myers, R., and S. Thompson. 1989. “Generalized Optimal Hedge Ratio Estimation.” American 

Journal of Agricultural Economics 71: 858-868. 

Plamondon, J., and C. Luft. 2012 "Commodity Exchange-Traded Funds: Observations on Risk 

Exposure and Performance." Available at SSRN 2139711. 

Schweikhardt, D. 2009.  “Agriculture in a Turbulent Economy – A New Era of Instability?” 

Choices 24(1): 4-5. 



18 

"Soybeans 2016 Planning Budgets." Budget Report No. 2015-02, Department of Agricultural 

Economics, Mississippi State University, October 2015. 

United States Department of Agriculture, 2014.  “2012 Census of Agriculture: Mississippi State 

and County Data.” AC-12-A-24.    



19 

Table 1. Summary Statistics of Corn Cash, Futures, and ETF prices (Levels and Log-Prices) 

Variable Sample Mean (s.d.) Min Max 

# of 

obs Skewness Kurtosis 

Cash Price 5.61(1.35) 3.06 7.83 263 -0.099 -1.412 

Futures Price 5.58(1.45) 3.21 8.30 263 -0.026 -1.442 

ETF Price 36.41(8.01) 22.63 52.50 263 -0.056 -1.148 

       

Log Cash Price 1.69(0.25) 1.12 2.06 263 -0.326 -1.263 

Log Futures Price 1.68(0.27) 1.17 2.12 263 -0.245 -1.414 

Log ETF Price 3.57(0.23) 3.12 3.96 263 -0.333 -1.109 

         

Notes: Cash Price - Greenville, Mississippi,  ETF- Teucrium Corn Fund   

 

 

 

Table 3. Summary Statistics of Live Cattle Cash, Futures, and ETF prices (Levels and Log-Prices) 

Variable Sample Mean (s.d.) Min Max 

# of 

obs Skewness Kurtosis 

Cash Price 113.86(24.16) 79.97 172.00 371 0.559 -0.600 

Futures Price 113.74(2.12) 80.15 170.90 371 0.436 -0.677 

ETF Price 31.35(2.16) 25.66 49.48 371 1.836 2.382 

       

Log Cash Price 4.71(0.21) 4.38 5.15 371 0.244 -0.969 

Log Futures Price 4.71(0.20) 4.38 5.14 371 0.131 -1.027 

Log ETF Price 3.43(0.16) 3.24 3.90 371 1.591 1.641 

         

Notes: Cash Price - Texas and Oklahoma,  ETF- iPath Bloomberg Livestock Subindex Total 

Return ETN   

 

 

 

 

 

 

Table 2. Summary Statistics of Soybeans Cash, Futures, and ETF prices (Levels and Log-Prices) 

Variable Sample Mean (s.d.) Min Max 

# of 

obs Skewness Kurtosis 

Cash Price 13.24(2.09) 9.13 17.53 197 -0.209 -0.984 

Futures Price 13.05(2.12) 9.17 17.63 197 -0.195 -0.832 

ETF Price 23.01(2.16) 18.51 28.53 197 -0.004 -0.436 

       

Log Cash Price 2.57(0.16) 2.21 2.86 197 -0.429 -0.971 

Log Futures Price 2.55(0.17) 2.21 2.87 197 -0.450 -0.865 

Log ETF Price 3.13(0.09) 2.92 3.35 197 -0.213 -0.523 

         

Notes: Cash Price - Greenville, Mississippi,  ETF- Teucrium Soybean Fund   
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Table 4. Summary Statistics of Diesel Cash, Futures, and ETF prices (Levels and Log-Prices) 

Variable Sample Mean (s.d.) Min Max n Skewness Kurtosis 

Cash Price 3.41(0.62) 1.97 4.74 348 -0.419 -0.840 

Futures Price 2.56(0.61) 1.16 4.10 348 -0.306 -0.7651 

ETF Price 31.23(8.19) 17.80 65.68 348 1.783 4.7995 

       

Log Cash Price 1.01(0.20) 0.68 1.56 348 -0.700 -0.522 

Log Futures Price 0.91(0.26) 0.15 1.41 348 -0.730 -0.336 

Log ETF Price 3.41(0.24) 2.88 4.18 348 0.635 1.454 

         

Notes: Cash Price - Greenville, Mississippi,  ETF- Teucrium Soybean Fund 

  

 

 

 

 

Table 5. Regression Estimates of Futures and ETF Hedge Ratios for Corn, Soybeans, 

Live Cattle, and Diesel  

Hedge Ratios (R-Squared) 

  OLS ECM GARCH 

Corn    

Futures 
0.78* 

(0.5878) 

0.77* 

(0.6355) 

0.82 

ETF 
1.02* 

(0.6101) 

1.02* 

(0.6274) 

1.03 

Soybeans    

Futures 
0.83* 

(0.5756) 

0.87* 

(0.6889) 

0.87 

ETF 
0.96* 

(0.5126) 

0.99* 

(0.5319) 

1.03 

Live Cattle    

Futures 
0.47 

(0.3141) 

0.48 

(0.5250) 

0.50 

ETF 
0.45 

(0.2606) 

n/a 0.49 

Diesel    

Futures 
0.15 

(0.1806) 

0.15 

(0.7213) 

0.16 

ETF 
0.15 

(0.1746) 

0.14 

(0.6795) 

0.17 

Note: R-Squared values in parenthesis  
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Figure 1. Optimal Corn-Futures Hedging Ratios. 
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Figure 2. Optimal Corn-ETF Hedging Ratios. 
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Figure 3. Optimal Soybeans-Futures Hedging Ratios. 
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Figure 4. Optimal Soybean-ETF Hedging Ratios. 
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Figure 5. Optimal Live Cattle-Futures Hedging Ratios. 
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Figure 6. Optimal Live Cattle-ETF Hedging Ratios. 
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Figure 7. Optimal Diesel-Futures Hedging Ratios. 
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Figure 8. Optimal Diesel-ETF Hedging Ratios. 
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Figure 9. Corn Simulation Hedge Ratios 
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Figure 10. Simulation Optimal Soybean Hedge Ratio 
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Figure 11. Diesel Simulation Optimal Hedge Ratios 
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