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Corporate Hedging In Incomplete Markets: A Solution Under Price Transmission 

This paper provides dynamic minimum-variance hedges for firms in incomplete markets. Our 
hedges accounts for price transmission between the input and output prices, and thereby enable 
firms to minimize both input and output price fluctuations through tradable securities. 
Specifically, the model conditions on the direction and magnitude of price transaction between 
raw materials and products, as well as on the availability of futures contracts. A two-factor 
diffusion model is assumed for the underlying asset. The optimal hedges are the weighted 
average of the classic direct hedging and cross hedging ratios. We apply our results to the 
problem of a hypothetical jet fuel producer. Empirical results demonstrate the hedging 
effectiveness of this model.  

Keywords: Hedging, Price Transmission, Commodity Futures 

1. Introduction 

A firm has input and output price risk exposures, but it is not often that all these price risks could 
be eliminated through exchange traded futures contracts as in incomplete markets, futures 
contracts are only written on a limited number of assets. Though forward contracts are 
alternatives, they may be too expensive. If an appropriate related futures contract does not exist 
for the input/output side, the firm may remain unhedged to that side.  

However, vertical transmission of shocks among various levels of the market renders price 
transmission (PT, hereafter) along the supply chain, making one-side hedge more risky – profit 
volatility may actually be higher than remaining both sides exposed. For example, COFCO 
TUNHE (600737.SH), a Chinese company producing sugar from sugar beets, had a CN¥ 308 
million loss from hedging its sugar sales in 2010. This occurred because sugar prices in China 
climbs nearly 66 percent and sugar beet prices also rise. Therefore, the fluctuation of its net 
profit from selling sugar increased.  

In this paper, we attempt to provide a dynamic incomplete-market hedging strategy for firms to 
reduce both input and output risk. Toward that, we consider a firm that is concerned with 
eliminating the volatility of its profits. The market is incomplete in that the firm cannot take 
exact offsetting positions to both input and output payoffs, as appropriate futures contracts exist 
for only one side. The traditional minimum-variance criterion is employed since it is reasonable 
for a firm to aim to avoid costly financial distress resulted from volatile profits (Fok, Carroll, and 
Chiou 1997). By taking PT into account, we obtain the minimum-variance hedging policy for the 
firm, which retains the intuitive elements of classic minimum-variance hedges.  

Hedging has been an active topic in derivatives and risk management research for decades. In 
complete markets without frictions, the classic approach is to employ static minimum-variance 
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hedges (e.g., Duffie 1989, Stulz 2003, Cvitanic and Zapatero 2004, McDonald 2006, and Hull 
2008). Though useful for real-life risk management applications, these hedges are suboptimal 
when hedging in multiple periods (e.g., Brandt 2003, Choudhry 2003) and do not completely 
eliminate risks in dynamically complete settings (Basak and Chabakauri 2012). The alternative is 
to use dynamic minimum-variance strategies that take into account the time-varying joint 
distribution of underlies (e.g. Alizadeh and Nomikos 2008, Bertus, Godbey, and Hilliard 2009, 
Schwartz 1997) or “Greeks” hedges (e.g. Bakshi, Cao, and Chen 1997, He et al. 2006).  

However, when applied in incomplete markets, complete-market hedges are not necessarily 
optimal in the sense that they do not optimally consider market incompleteness (Basak and 
Chabakauri 2012). One standard solution is cross hedges, which use a related futures contract to 
offset price risk that cannot be hedged by dynamically trading in available securities. For 
example, Ederington (1979) suggests a minimum-variance static hedge when no futures contracts’ 
maturity matches the hedger’s time horizon. Wilson (1989) extends the approach of Ederington 
(1979) and uses soybeans or soybean oil futures to hedge sunflowers positions that do not have 
futures markets. Berths, Godbey, and Hilliard (2009) highlight the spread risk between the asset 
underlying the contract and the specific source of risk and provide a dynamic minimum-variance 
cross hedging strategy.  

In a general incomplete-market setting, Basak and Chabakauri (2012) analyze 
minimum-variance hedging by incorporating a new parameter for market incompleteness into the 
standard “Greeks” model. Despite the usefulness of this strategy in replication and hedging of 
financial derivatives, it may not be optimal for hedging commodity risk in the sense that 
commodities do not satisfy the standard no-arbitrage condition for traded assets (Schwartz 1997). 
Gibson and Schwartz (1990), Schwartz (1997) and Schwartz and Smith (2000), among others, 
suggest that models allowing for stochastic, mean-reverting convenience yields, are necessary to 
capture the dynamics of commodity prices. Adjusting for instantaneous convenience yield has 
been also shown to improve risk reduction when hedging commodity risk (e.g. Godbey and 
Hilliard 2007). In this paper, we derive the dynamically optimal hedging policy assuming a 
two-factor diffusion model for the underlying asset with a stochastic, mean-reverting 
convenience yield.  

Using the specific case of a hypothetical jet fuel producer that uses light sweet crude oil to 
produce jet fuel as motivation, we compare performance between the one-sided and two-sided 
hedging. Markets are incomplete in the sense that only light sweet crude oil futures contracts 
exist. Simulations and empirical results show that the two-side model outperforms the one-side 
strategy.   

The contribution of this paper consists of devising a dynamic hedging ratio for firms to jointly 
offset input and output risk in incomplete markets by incorporating PT mechanism into the 
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traditional complete-market minimizing hedging model. As PT is an important characteristic 
describing the overall operation of the market (Goodwin and Holt 1999), this strategy may be 
practical for firms in multiple industries.  

The article proceeds as follows: in section 2, we develop and discuss the optimal hedging policy 
in incomplete markets; section 3 compares hedging effectiveness of different hedging strategies 
and section 4 concludes.  

2. The Hedging Model  

2.1 Minimum-variance hedging in complete markets  

[Figure 1 is about here] 

Consider a firm that uses q units of input to produce the output under current technology utilized. 
In complete markets, the hedging strategy could be depicted as in Figure 1. At time 0, the firm 

buys hI  units of input futures contracts at price f0
I，and sells at price f1

I  at t =1. The final 

cost, HI , for producing 1 unit output is:  

 
HI = I1q − f1

I − f0
I( )hI , (1) 

where I1  is the spot input price at time 1. At the same time, the firm shorts hO  output futures 

contracts at price f0
O . The final income after selling output and its futures contracts at time 2, 

HO , is then: 

 HO =O2 − f1
O − f0

O( )hO ,  (2) 

where f2
O  and O2  are the futures and spot prices of output at time 2, respectively. The 

expected profit in the presence of transaction costs,Π , is then 

 Π = HO − HI −m hI + hO( ) , (3) 

where m hI + hO( )  is the proportional brokerage fee, which is assumed to be m for each 

position transacted. The variance-minimizing hedging ratio in complete market is  
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 hI ,hO( )′ = arg minVar Π( ){ } . (4) 

2. 2 Minimum-variance hedging in incomplete markets  

The market in this economy is incomplete in that futures contracts are limited in kinds, thereby 
making the common approach in complete market impossible. If futures contracts are not 
available for the asset to be hedged, the firm may remain unhedged and thus exposed to changes 
in the spot price of the asset. Alternatively, the firm may wish to eliminate this exposure through 
another hedging vehicle. In this article, we attempt to help the firm improve the quality of 
hedging in incomplete markets by accomplishing the price transmission (PT) 
mechanism between the producer and the consumer prices in the sector of the firm in the 
traditional variance-minimizing hedge.   

In different industries, the PT mechanism is expected to vary in directions and magnitude (e.g. 
Goodwin and Holt 1999, von Cramon-Taubadel 1998). According to the direction of PT and the 
availability of futures contracts, four subcases are considered: (CO) cost-driving PT in which 
supply forces lead to equilibrium between input and output prices with output futures contracts; 
(CI) cost-driving PT with input futures contracts; (DO) demand-driving PT with output futures 
contracts; (DI) demand-driving PT with input futures contracts. In all cases, the firm may either 
only hedge cash positions with futures contracts (one-sided hedge) or jointly hedge input and 
output price risks (two-sided hedge).  

Without input futures contract, a CO firm use only output futures to hedge input and output price 
exposures. The resulting cash flow is  

   
Π = O2 − f2

O − f0
O( )hO

c( )− I1q − m hO
c

. (5) 

where tO  (t = 0,1,2) and tI  ( t = 0,1 ) are spot output and input prices, respectively;  O
tf  (t = 

0,1,2) is output futures price, and hO
c  is transactions in output futures market. If hO

c  is positive 

(negative), the firm shorts (longs). Profits Π  equal to total income  
  
O2 − f2

O − f0
O( )hO

c( )  

minus expenses for inputs   I1q  and transaction costs 
 
m hO

c .  

In a widely-applied framework, the PT mechanism for a CO firm could be modeled linearly as 
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 O2 = θ0 + θiO2−i
i=1

p

∑ + bj I2− j
j=1

q

∑  , (6) 

where θi  and bj  are marginal effects of lagged output and input prices on O2 , respectively. 

This paper employs the traditional variance-minimizing criterion for the hedger whose problem 
in incomplete market is  

 min
h
Var Π( )  . (7) 

The effectiveness of two-sided hedge through PT, Efftwo , is calculated as 

Efftwo = − var Π two( )− var Π unhedged( )( )  and the effectiveness of traditional one-sided hedge is 

Effone = − var Π one( )− var Π unhedged( )( ) , where Π one , Π two , and Π unhedged  stands for profits when 

applying a traditional one-sided hedge, a two-sided PT hedge, and profits of unhedged positions, 
respectively. The quality-improvement of using the two-sided hedge policy is: 

 G = Efftwo − Effone   (8) 

The optimal hedge ratio for a CO firm, hO
c  is then 

 hO
c = θ1β1 − q − b1( )β2  , (9) 

where β1 =
cov O, f O( )
var f O( )  is the minimizing hedge ratio using output futures to hedge output 

exposures; and β2 =
cov I , f O( )
var f O( )  is the optimal hedge ratio when cross-hedging input price risk 

through output futures.  

The hedge policy given by (9) suggests that since output prices are driven by input price 
dynamics, the firm may eliminate more risk by a strategy adjusted to PT. The adjusted policy – 

θ1β1 − q − b1( )β2  – is the weighted average of direct hedge policy β1  and cross hedge policy 

β2 . Specifically, the firm sells θ1β1  for output exposures and buys q − b1( )β2  for input price 
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risks. For each output cash position, it is optimal to sell β1  output futures without considering 
for the input price risks. When jointly hedge input and output risks in a PT framework, the short 
position is adjusted to θ1β1  because product price at time 2 is affected by its price at time 1. θ1  
gauges the magnitude of this lagged-price effect. The greater is θ1 , the stronger is the 
autocorrelation in output price series, and the higher is the weight for β1  to hedge output price 
exposures.   

As for input price exposures, the firm uses − q − b1( )β2  (i.e. longs q − b1( )β2 ) output futures 

positions. More specifically, the optimal cross hedge for each input cash position is β2 . When 
not accounting for cost-driving PT, the firm could use −qβ2 output futures positions to cross 
hedge input price exposure since the firm has a constant input-output ratio of q. However, cost 
driving indicates that product prices are affected by lagged prices of raw materials, this 
mechanism therefore provides “natural hedge” to output price fluctuations, ending in a deduction 
of b1β2  in long positions. b1  is the magnitude of PT and measures the marginal output price 
effect of lagged input price. The greater is b1 , the less the firm has to short output futures 
positions.  

Similarly, for CI firms with cost-driving PT and input futures market, the problem is that 

 

min
hI
c

Var Π( ){ }

s.t.
O2 = θ0 + θiO2−i

i=1

p

∑ + bj I2− j
j=1

q

∑

Π =O2 − I1q − f1
I − f0

I( )hIc( )−m hI
c

,  (10) 

where  f1
I is input futures prices. hI

c  is input futures positions and positive (negative) hI
c

indicates buying (selling) input futures. Solving (10) yields  

 hI
c = −θ1β2 + (q − b1)β1  , (11) 

where β1 =
cov I , f I( )
var f I( )  is the minimizing β -ratio between futures and the underlying or the 

optimal one-side input hedge ratio; and β2 =
cov O, f I( )
var f I( )  is the optimal hedge ratio when 

cross-hedging output price risk through input futures. The minimum-variance hedge strategy 
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adjusted is again the weighted average of β1  and β2 .  

For demand-driving cases (DO) and (DI) in which major buyers play the price leadership roles, 
price transmission suggests that  

 I1 = χ0 + χ i I1−i
i=1

s

∑ + djO1− j
j=1

k

∑  , (12) 

where χ i  is the input price effect of its lags and dj  measures the impact of lagged output price 

on input prices.  

Due to the absence of available input futures contracts, a DO firm’s problem using output futures 
contract is  

 

min
hO
d

Var Π( ){ }

s.t.
I1 = χ0 + χ i I1−i

i=1

s

∑ + djO1− j
j=1

k

∑

Π = O2 − f2
O − f0

O( )hOd( )− I1q −m hO
d

  (13) 

The optimal ratio is then  

 hO
d = β1   (14) 

which is positive when selling output futures. hO
d  is the same as the one-side hedge solution. 

The reason is that under demand-driving price links, input price at time 1 is associated with the 
time-0 price of output and its own. It follows that the only exposure a DO-firm facing is output 
price at time 2.   

For a DI company with input futures available, its problem is  

 

min
hI
d

Var Π( ){ }

s.t.
I1 = χ0 + χ i I1−i

i=1

s

∑ + djO1− j
j=1

k

∑

Π =O2 − I1q − f1
I − f0

I( )hId( )−m hI
d

 , (15) 
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and the solution is  

 hI
d = −β2  , (16) 

where hI
d  is the optimal input futures positions to buy and a positive hI

d  suggests to long input 

futures. With the presence of price transmissions, the adjusted minimizing-variance strategy for 
the DI firm is to cross hedge output price risks through shorting β2  input futures. This is 
because dynamics of input prices at time 1 are driven by output prices at time 0, making output 
exposure to be the problem to handle with.  

2.3 Economic Setup and dynamic hedging policy  

In this economy, the two-factor model of Gibson and Schwartz (1990), Schwartz (1997) and 

others is employed to describe price dynamics. The spot price St  and convenience yield  δ t  are 

assumed to follow the joint diffusion processes 

 
 

dSt = µ −δ t( )Stdt +σ sStdZS

dδ t =κδ αδ −δ t( )dt +σδdZδ

 , (17) 

where the stochastic mean, µ , convenience yield,  δ t , and volatilityσ S , are deterministic 

parameters of St . κδ is the speed adjustment parameter, αδ  is the average long run 

convenience yield, σδ is the instantaneous volatility of the convenience yield processes. dZS  

and dZδ  are standard Wiener processes, and 
  
dZδ = ρs,δdZs , where ρS,δ  is the correlation 

coefficient between the two processes.  

For hedging horizon 0, T⎡
⎣

⎤
⎦ , the dynamics for the futures price, F , is modeled as1

                                                
1 See, e.g., Bjerksund (1991), Brennan and Crew (1995), Jamshidian and Fein (1990) and Schwartz (1997).  
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Ft = F St ,δ t , ,t( ) = St A T − t( )er T−t( )−Hδ T−t( )δt  , (18) 

where r is the short-term risk-free rate,  

 

  

A T( )=exp
Hδ T( )−T( ) κδ

2αδ −κδλδσδ −
1
2
σδ

2 + ρs,δσ sσδκδ
⎛
⎝⎜

⎞
⎠⎟

κδ
2 −

σδ
2Hδ

2 T( )
4κδ

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , (19) 

λδ is the market price of risk for the convenience yield2, and 
  
Hδ T( ) =

1− e−κδT( )
κδ

.   

The hedger chooses a direct minimum-variance hedging policy, β1 , as 

 

  

β1=
Cov St , Ft( )

Var Ft( )

    =
Cov St , St A T − t( )er T−t( )−Hδ T−t( )δt⎛

⎝⎜
⎞
⎠⎟

A T − t( )er T−t( )( )2

Var Ste
−Hδ T−t( )δt( )

 . (20) 

Substituting (18) into (20) yields 

 

  

β1 =
e

-r T -t( )+δ0e−κδ t+αδ 1−e−κδ t( ) Cov eln wt ,elnut( )
A T - t( )Var elnut( )

        =
e

-r T -t( )+δ0e−κδ t+αδ 1−e−κδ t( )eµw−µu+
1
2
σ w

2 −σ u
2( ) eσwu −1( )

A T - t( ) eσu
2
−1( )

,
 (21) 

where  ut = Ste
−Hδ T−t( )δt

 and   wt = Ste
σδ e−κδ t eκδ v

0
t∫ dZδ

* v( )

. µu is the expectation of lnut , σ u
2  is the 

volatility of lnut . µw and  σ w
2  are the expectation and volatility of lnwt , respectively. σ wu

represents covariance between lnwt  and lnut . The direct hedge, β1 , is comprised of the 

                                                
2 See Gibson and Schwartz (1990) and Schwartz (1997).  
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diffusion parameters of spot price St , convenience yield δ t , and futures price Ft  (see 
Appendix A).  

 Following Bertus, Godbey and Hilliard (2009), we postulate the relationship between spot 
prices of asset with and without futures contracts (denoted by St andPt , respectively) to be 

  Pt = Ste
ct  . (22) 

where ct  is the log spread. The spread is assumed to follow the dynamics  

 
 
dct =κ c α c − ct( )dt +σ cdZc  , (23) 

where cκ is the speed adjustment parameter, cα is the average long run spread, cσ is the 

instantaneous volatility, 
  
dZc = ρs,cdZs is the increment of a standard Winer process, and 

  
dZδ = ρc,δdZc .  

The cross-hedging ratio according to variance-minimizing criterion, 2β , is then  

 

  

β2=
Cov Pt , Ft( )

Var Ft( )

    =
Cov Ste

ct , St A T − t( )er T−t( )−Hδ T−t( )δt⎛
⎝⎜

⎞
⎠⎟

A T − t( )er T−t( )( )2

Var Ste
−Hδ T−t( )δt( )

 . (24) 

Equivalently, 

 

  

β2=
e
−r T−t( )+c0e−κct+αc 1−e−κct( )Cov yt ,xt( )

A T − t( )Var xt( )

    =
e

-r T -t( )+c0e−κct+αc 1−e−κct( )eµy−µx+
1
2 σ y

2−σ x
2( ) eσ xy −1( )

A T - t( ) eσ x
2
−1( )

 . (25) 
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where  xt = Ste
−Hδ T−t( )δt

 and   yt = Ste
σ ce−κct e−κcv dZc0

t∫
.  µx  is the expectation of ln xt , σ x

2 is the 

volatility of ln xt . µy  and σ y
2  are the expectation and volatility of ln yt , respectively. σ xy  

stands for covariance between ln yt  and ln xt . The cross hedging ratio, β2 , is comprised of 
parameters in the dynamics of spot price St , convenience yield δ t , futures price Ft  and of the 
spread ct  (see Appendix B).  

3. Comparisons of Hedging Models 

This section aims to compare performance between the one-sided and two-sided hedges in 
incomplete markets. More specific, we consider a hypothetical firm that uses light sweet crude 
oil to produce jet fuel. The firm intends to reduce price exposures with a futures contract on light 
sweet crude oil (the input).  

3.1 Data  

The data used to test the models consist of weekly observations in the period from April 4, 1990 
to August 16, 2015. Two futures contracts for light sweet crude oil for delivery to Cushing, OK, 
spot prices for New York Harbor jet fuel, and spot price for light sweet crude oil are obtained 
from the Energy Information Administration. The price data used are described in Table 1. F1 is 
the contract closest to maturity and F3 is the third contract closest to maturity. Since the 
contracts have a fixed maturity date, the time to maturity changes as time grows. 

[Table 1 is about here] 

3.2 Parameter Estimation for the two-factor model  

Following the general procedure of Schwartz (1997), we use the Kalman filtering methodology 
to obtain the parameter estimation for the two-factor diffusion model. The estimation uses 
contracts F1 and F3. The time to maturity of nearby futures contract is denoted by T1 . 
Subsequent contracts are represented in a similar manner. Pt  is the price for jet fuel. By writing 
the joint diffusion of the two-factor model in state space form, we have the measurement 
equation to be (Bertus, Godbey and Hilliard 2009):   

  yt = Ztα t + dt +ηt ,t = 1,…,T   (26) 

where 
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yt = ln ln F1t( ), ln F3t( ),Pt⎡⎣ ⎤⎦
′

Zt =
1 −H T1( ) 0

1 −H T 3( ) 0
1 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

dt = ln A T1( )( ) + rT1 ln A T3( )( ) + rT3 0⎡
⎣⎢

⎤
⎦⎥
′

α t = ln St( ) δ t ct⎡
⎣⎢

⎤
⎦⎥
′

 . 

    

ηt  is a 3×1 vector of serially uncorrelated disturbances with E ηt( ) = 0  and  var ηt( ) = Ht . 

Parameter estimations are given in Table 2. 

[Table 2 is about here]  

3.3 Estimation of PT Parameters  

Estimation based on a vector autoregression (VAR) model is used to describe the PT mechanism 
for this jet fuel producer since VAR model is designed for analyzing multivariate time series and 
has the structure that each variable is a linear function of past lags of itself and past lags of the 
other variables. Specifically, we use the following VAR model to estimate the direction and 
magnitude of PT: 

 It = χ0 + χ1It−1 + d1Ot−1 + ε1t   (27)  

 Ot = θ0 + b1It−1 +θ1Ot−1 + ε2t   (28) 

where It  is the log spot price of input, or the log spot price of the light sweet crude oil; and Ot  
stands for the log spot price of output, i.e., the price of jet fuel. ε1t  and ε2t  are error terms. All 
price time series pass the integration test.  

[Table 3 is about here] 

Estimation results for the VAR model is reported in Table 3. As is shown, PT parameter 
estimates in both equations are statistically significant, suggesting that the evolution of output 
(input) price statistically depends on its own lags and the lags of the input (output) price. These 
results capture the linear interdependencies among input and output price series and therefore 
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indicate the existence of price transmission.  

The identification of the direction of PT mechanism is based on the sign of b1 ( d1 ), which 
estimates the impact of current output (input) price on the future input (output) price. The 
positive effect of lagged input price on output price (b1 ) suggests that the change in output price 
is driven by the fluctuation of lagged input price, since increases in current input price could 
result in increase in the next-period output price. The estimate of d1 , however, is negative, 
indicating that when current output price increases, future input price tends to decrease. Thus, the 
direction of PT for this jet fuel producer is cost driving in the sense that current output price is 
positively affected by lagged input price. Since the available futures contracts are only written on 
the input (futures for light sweet crude oil), we categorize the hedging problem of the jet fuel 
produce as CI case, i.e., cost-driving PT with input futures contracts.  

3.4 Comparisons of hedging policy and hedging effectiveness  

Based on the parameter values reported in Table 2 and Table 3, we compute the direct and cross 

hedging ratio β1  and β2 . The optimal two-sided hedge policy for the CI firm , hI
c , is then 

calculated via equation (11). Since the CI firm only has available futures contracts for inputs, its 
one-sided hedge policy is  

 hI ,one−sided
c = qβ1  , (29) 

and positive hI ,one−sided
c  corresponds to long positions. The effectiveness of the two-sided model, 

Efftwo , is calculated as Efftwo = − var Π two( )− var Π unhedged( )( )  and the effectiveness of the 

one-sided model is Effone = − var Π one( )− var Π unhedged( )( ) , where Π one , Π two , and Π unhedged  

stand for profits under one-sided model, two-sided model and unhedged positions, respectively.  

[Table 4 is about here] 

 Table 4 gives the results for the comparison. We report hedging policy and hedging 
effectiveness for each model under four horizons from 4 weeks up to two years. The hedges are 
not adjusted during the horizon. Panel A depicts results from matching horizons. Since the last 
trading day for crude oil futures is the third business day prior to the 25th calendar day of the 
month preceding the delivery month, it almost impossible for the maturity of the futures contract 
for crude oil to match the jet fuel hedging horizon t ≠ T . We follow Bertus, Godbey and 
Hilliard (2009) and assume that the hedge expires two weeks before the maturity of futures 
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contracts. We report the results for the unmatched case in Panel B. 

When horizons are matched as in Panel A, the two-sided hedging policy ranges from 0.1599 
(two years) to 86.4184 (4 weeks), and is greater than policy of the one-sided model in each case. 
The effectiveness of the two-sided model ranges from 0.0013 (two years) to 15.5523 (4 weeks); 
while the one-sided effectiveness ranges from 0.0011 (two years) to 12.3592 (4 weeks). For 
every horizon, the two-sided model outperforms the traditional one-sided model.  

Comparison results changes little when futures expiration is two weeks longer than the hedging 
horizon. The effectiveness of two-sided model in Panel B rangers from 0.0012 to 9.3698, 
compared to 0.0001 to 7.4074 matching horizons in Panel A. Similar to Panel A, the two-sided 
model has greater effectiveness than the one-sided hedging technique for all horizons in Panel B.  

 

4. Conclusions  

Firms are looking for improved methods to more efficiently hedge risks that are uncorrelated 
with fundamental cash flows. By directly accounting for price transmission between the input 
and the output, this paper develops an incomplete-market hedging strategy through which a firm 
may minimize both input and output price fluctuations through usable input/output futures. This 
strategy is conditional on the direction and magnitude of price transactions between raw 
materials and products, as well as on the availability of futures market. The optimal hedge ratio 
is the weighted average of the classic minimizing strategy of direct hedging ratio, and the cross 
hedging policy.  

Using data for crude oil futures and jet fuel spot prices, we compare hedging ratios and 
performance between a traditional one-sided hedge and a two-sided strategy. These dynamic 
hedging strategies include stochastic convenience yields and a mean-reverting spread. We find 
that the two-sided model results in a more effective hedge. These findings thus suggest that jet 
fuel producers may reduce more profit fluctuations by using a hedging model that directly 
accounts for movements of both the input and output prices. Meanwhile, since price transmission 
is evidenced over many supply chains, the two-sided hedging policy we proposed could be 
employed by many firms in multiple industries in their incomplete-market risk management 
applications.  
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Appendix A -- Solution of hedging policy hO
c  

The problem a CI firm with cost-driving PT and input futures market is 

 

min
hO
c

Var Π( ){ }

s.t.
O2 = θ0 + θiO2−i

i=1

p

∑ + bj I2− j
j=1

q

∑

Π = O2 − f2
O − f0

O( )hOc( )− I1q −m hO
c

 . (A1) 

The variance of profits Π  thus is  

 
Var Π( ) = θ12Var O( ) + hOc

2

Var f O( ) + b1 − q( )2Var I1( )
+θ1hO

cCov O, f O( ) +θ1 b1 − q( )Cov O, I( ) + hOc b1 − q( )Cov f O , I( )
 . (A2) 

Solving (A1) yield  

 hO
c = θ1

cov O, f O( )
var f O( ) − q − b1( ) cov I , f O( )

var f O( )   (A3) 

Defining β1 =
cov O, f O( )
var f O( )  and β2 =

cov I , f O( )
var f O( ) , we have (9). Solutions to hI

c , hO
d , and hI

d  

can be derived via similar procedures.  

 

Appendix B -- Solution to β1  

The hedger chooses a direct minimum-variance hedging policy, β1 , as 

 

  

β1=
Cov St , Ft( )

Var Ft( )

    =
Cov St , St A T − t( )er T−t( )−Hδ T−t( )δt⎛

⎝⎜
⎞
⎠⎟

A T − t( )er T−t( )( )2

Var Ste
−Hδ T−t( )δt( )

 , (A4) 
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or 

 

  

β1 =
e

-r T -t( )+δ0e−κδ t+αδ 1−e−κδ t( ) Cov eln wt ,elnut( )
A T - t( )Var elnut( )

        =
e

-r T -t( )+δ0e−κδ t+αδ 1−e−κδ t( )eµw−µu+
1
2
σ w

2 −σ u
2( ) eσwu −1( )

A T - t( ) eσu
2
−1( )

,
 (A5) 

where  ut = Ste
−Hδ T−t( )δt  and   wt = Ste

σδ e−κδ t eκδ v
0
t∫ dZδ

* v( )
. Gibson and Schwartz (1990) and Schwartz 

(1997), among others, have shown that the expectation of lnut , µu  is 

 

  

µu ≡ E lnut⎡⎣ ⎤⎦ = E lnSt⎡⎣ ⎤⎦ − δ0e
−κδ t +αδ 1− e−κδ t( )( )0

t

∫ dt + Hδ T − t( )E δ t( )
    = lnS0 + µ − 1

2
σ s

2⎛
⎝⎜

⎞
⎠⎟

t − Hδ t( ) αδ −δ0( )δ −αδ t

        − Hδ T − t( ) δ0e
−κδ t + Hδ t( )αδκδ( )

 , (A6) 

and the volatility of lnut , σ u
2  is  

 

  

σ u
2 ≡ Var lnut⎡⎣ ⎤⎦

    = Var lnSt⎡⎣ ⎤⎦+ Hδ
2 T − t( ) σδ

2

2κδ
1− e−2κδ t( )⎛

⎝
⎜

⎞

⎠
⎟

       − 2Hδ T − t( ) ρs,δσδσ sHδ t( )− 1
2
σδ

2Hδ
2 t( )⎛

⎝⎜
⎞
⎠⎟

 , (A7) 

where 

 
  
Var lnSt⎡⎣ ⎤⎦ = − Hδ t( )− t( )σδ

2

κδ
2 −

σδ
2

2κδ
Hδ

2 t( )⎛

⎝
⎜

⎞

⎠
⎟ +σ s

2t + 2
ρs,δσ sσδ

κδ
Hδ t( )− t( )   (A8) 

  

The expectation of lnwt , µw , is  
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µw ≡ E ln wt⎡⎣ ⎤⎦

    = lnS0 + µ − 1
2
σ s

2⎛
⎝⎜

⎞
⎠⎟

t + Hδ t( ) αδ −δ0( )−αδ t
 , (A9) 

and its variance σ w
2  , is  

 

  

σ w
2 ≡ Var ln wt⎡⎣ ⎤⎦

    = Var lnSt⎡⎣ ⎤⎦ +σδ
2 1− e−2κδ t

2κδ

⎛

⎝⎜
⎞

⎠⎟

−σδ
2Hδ

2 t( ) + 2ρs,δσ sσδ Hδ t( )

 . (A10) 

Covariance between ut  and wt , σ uw  , is 

 

  

σ uw ≡ Cov lnut ,ln wt( )
    = Var lnSt⎡⎣ ⎤⎦ −

1
2
σδ

2Hδ
2 t( )

− Hδ T − t( ) ρs,δσ sσδ Hδ t( )− 1
2
σδ

2Hδ
2 t( )⎛

⎝⎜
⎞
⎠⎟

+ ρs,δσ sσδ Hδ t( )

−Hδ T − t( )σδ
2 1− e−2κδ t

2κδ

⎛

⎝⎜
⎞

⎠⎟

 .  (A11) 

Plugging (A6)-(A11) into (21) yields β1 . 

 

Appendix B -- Solution to β2  

The cross-hedging ratio according to variance-minimizing criterion, 2β , is  

 

  

β2=
Cov Pt , Ft( )

Var Ft( )

    =
Cov Ste

ct , St A T − t( )er T−t( )−Hδ T−t( )δt⎛
⎝⎜

⎞
⎠⎟

A T − t( )er T−t( )( )2

Var Ste
−Hδ T−t( )δt( )

 , (A12) 
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or,  

 

  

β2=
e
−r T−t( )+c0e−κct+αc 1−e−κct( )Cov yt ,xt( )

A T − t( )Var xt( )

    =
e

-r T -t( )+c0e−κct+αc 1−e−κct( )eµy−µx+
1
2 σ y

2−σ x
2( ) eσ xy −1( )

A T - t( ) eσ x
2
−1( )

 . (A13) 

where  xt = Ste
−Hδ T−t( )δt

 and   yt = Ste
σ ce−κct e−κcv dZc0

t∫
 . Bertus, Godbey and Hilliard (2009) show that 

the expectation and volatility of ln xt  and ln yt  are 

 

  

µx ≡ E ln xt⎡⎣ ⎤⎦ = lnS0 + µ − 1
2
σ s

2⎛
⎝⎜

⎞
⎠⎟

t − Hδ t( ) αδ −δ0( )δ −αδ t

                         − Hδ T − t( ) δ0e
−κδ t + Hδ t( )αδκδ( )

σ x
2 ≡ Var ln xt⎡⎣ ⎤⎦

    = Var ln St⎡⎣ ⎤⎦ + Hc
2 T − t( ) σδ

2

2κδ

1− e−2κδ t( )⎛

⎝⎜
⎞

⎠⎟

       − 2Hc T − t( ) ρs,δσδσ sHδ t( )− 1
2
σδ

2Hδ
2 t( )⎛

⎝⎜
⎞
⎠⎟

µy ≡ E ln yt⎡⎣ ⎤⎦=lnS0 + µ − 1
2
σ s

2⎛
⎝⎜

⎞
⎠⎟

t + Hδ t( ) αδ −δ0( )−αδ t

σ y
2 ≡ Var ln yt⎡⎣ ⎤⎦ = Var lnSt⎡⎣ ⎤⎦+σ c

2 1− e−2κ ct

2κ c

⎛

⎝
⎜

⎞

⎠
⎟

                           + 2 σ sσ cρδc

κδ +κ c
Hδ t( )e−κ ct − Hc t( )( )+ ρscσ sσ cHc t( )⎛

⎝⎜
⎞

⎠⎟

 , (A14) 

where 
  
Hc t( ) = 1− eκδ t( ) κ c  . Covariance between ln xt  and ln yt  is
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σ x,y ≡ Cov ln xt ,ln yt⎡⎣ ⎤⎦ = Var lnSt⎡⎣ ⎤⎦

                                          +
ρc,δσ cσδ

κ c +κδ
Hδ t( )e−κ ct − Hc t( )( )

                                      − Hc T − t( ) ρsδσδσ S Hδ t( )− 1
2
σδ

2Hδ
2 t( )⎡

⎣
⎢

⎤

⎦
⎥

                                      + ρs,cσ sσ c
1− e−κ ct

κ c

                                           − Hc T − t( ) ρcδσδσ c
1− e−t κδ +κ c( )

κδ +κ c

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (A15) 

Plugging (A14)-(A15) into (25) yields β2 .  
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Table 1 Futures and Spot Price Data 

 Mean Price 

(Standard Error) 

Mean Maturity 

(Standard Error) 

Futures Contract: F1 47.15 (0.868)    0.042 (0.245) years 

Futures Contract: F3 47.33 (0.876)         0.209 (0.248) 

Jet fuel   1.37 (0.027)  

Light Sweet Crude Oil 47.15 (0.868)  

Note.  This table presents data description. The data consist of weekly observations in the period from April 4, 
1990 to August 16, 2015, including two futures contracts for light sweet crude oil for delivery to Cushing, OK (F1 

and F3, where F1 is the contract closest to maturity and F3 is the third contract closest to maturity.), spot prices for 

New York Harbor jet fuel, and spot price for light sweet crude oil. All data are obtained from the Energy 

Information Administration. 
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Table 2 Parameter Estimates For The Two-Factor Diffusion Model 

Parameter Estimates 
δα  0.5031 

δκ  1.0427 

δσ  0.2681 

sσ  0.5040 

 ρSδ  0.1500 

δλ  0.4893 

cα  0.4997 

cκ  4.0238 

cσ  0.4825 

 ρSc  0.5322 

 ρcδ  0.3987 

 
Note. This table presents the Kalman filter parameter estimates for the two-factor diffusion model. Parameters 

are estimated using weekly data from April 4, 1990 to August 16, 2015. Futures prices for light sweet crude oil for 

delivery to Cushing, OK, and spot prices for New York Harbor jet fuel are obtained from the Energy Information 

Administration. 
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Table 3 Estimation Results for the PT Mechanism 

Parameter Estimate (Std. Error) 

Equation: It = χ 0 + χ1It−1 + d1Ot−1 + ε1t   
χ1  1.2778*** (0.2468) 
d

1
  -1.3185*** (0.2346) 

χ 0  -0.9171 (0.8797) 

Adjusted R-squared 0.03195 
Equation: Ot = θ0 + b1It−1 +θ1Ot−1 + ε 2 t   
b1  1.2443***(0.2609) 
θ1   -1.2565***(0.2480) 
θ0  -4.3598***(0.9300) 

Adjusted R-squared 0.02201 

Num. of Observations 1306 
 

 Note. This table presents the parameter estimation for the PT mechanism. We use the vector autoregression 

(VAR) model to describe interdependencies between input and output price time series. The VAR model has the 

following structure:  

 
It = χ 0 + χ1It−1 + d1Ot−1 + ε1t
Ot = θ0 + b1It−1 +θ1Ot−1 + ε 2 t

 .  

where It  is the log spot price of input, or the log spot price of the light sweet crude oil; and Ot  stands for the log 

spot price of output, i.e., the price of jet fuel. ε1t  and ε 2 t  are error terms. All price time series pass the integration 

test. Significance codes: <0.0001 ‘***’, 0.01 ‘**’, 0.1’*’.  
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Table 4 Comparions of Hedging Models 

Horizon Hedging Policy Effectiveness 

Panel A: Futures expiration matches hedging horizon 

 Two-sided One-sided Two-sided One-sided 

4 weeks 86.4184 47.2607 15.5523 12.3592 

13 weeks 20.9923 11.3716 2.8846 2.2787 

26 weeks 7.1514 3.8739 0.6653 0.5256 

One year 1.0408 1.6443 0.8907 0.0701 

Two years 0.1599 0.0866 0.0013 0.0011 

Panel B: Futures expiration is two weeks longer than hedging horizon 

 Two-sided One-sided Two-sided One-sided 

4 weeks 55.2736 29.9775 9.3698 7.4074 

13 weeks 17.1626 9.2970 2.2210 1.7545 

26 weeks 6.2567 3.3893 0.5482 0.4331 

One year 1.4914 0.8079 0.0599 0.0473 

Two years 0.1478 0.0800 0.0012 0.0001 

Note.  This table presents the hedging performance for the one-sided and two-sided model. We report hedging 

policy and hedging effectiveness for each model under four horizons from 4 weeks up to two years. The hedges are 

not adjusted during the horizon. The optimal two-sided hedge policy for the CI firm is hI
c = q − b1( )β1 −θ1β2  and 

the one-sided hedge policy is hI ,one−sided
c = qβ1 . Effectiveness of the two-sided and one-sided model are 

Efftwo = − var Π two( ) − var Π unhedged( )( )  and Effone = − var Π one( ) − var Π unhedged( )( ) , respectively. Π one , Π two , and 

Π unhedged  stand for profits under one-sided model, two-sided model and unhedged positions, respectively.  
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