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Forecasting Crop Prices using Leading Economic Indicators 
and Bayesian Model Selection 

 

Corn, wheat and soybeans are very important to the US agricultural sector as the main 
sources of many farmers’ income. Thus, forecasting the prices of these three crops is 
important. When considering model specification of crop price forecasting models, this 
paper focuses on potential benefits from including leading economic indicators variables, 
both those clearly related to agriculture such as the crude oil price and interest rate and 
those not clearly related such as the purchasing managers index or the S&P500 stock 
price index. To do this, our paper tests whether leading economic indicators can be used 
to improve the forecasts of corn, wheat, and soybean future prices. We take a Bayesian 
approach to estimate the probability that a set of leading indicators belong in the 
forecasting model where specification uncertainty is explicitly modeled by assuming a 
prior distribution over a very large set of models. Model specifications considered vary 
by different lag lengths for leading indicators and crop prices as well as which variables 
are included at all. We apply this method to corn, soybean and wheat monthly spot price 
data from 1985 to 2016. The results show that several leading economic indicators 
appear to be useful for forecasting crop prices. 
 
Key words: crop prices, forecasting, leading economic indicators, model specification 
uncertainty. 
 

Introduction 

Corn, wheat and soybeans constitute a major share of the American agricultural 
economy. The changes in prices of these three crops can affect farmers’ production 
decisions across much of the United States. Corn and wheat with barley are the largest 
source of feed grains used in the livestock industry (Westcott and Hoffman, 1999). In 
addition, United States became the largest exporter of corn and soybeans in 1996 and has 
maintained a position at or near the top ever since. Thus, forecasting the prices of these 
major crops is important both for farmers to make optimal planting decisions and for 
many other participants in commodity markets who utilize price forecasts in daily 
business decisions and risk management actions. Given the importance of forecasting the 



prices of these crops, we propose that perhaps forecasters should cast a wider net when 
considering the variables that belong in their forecasting models.  
 
While in the past, such models have been confined to variables closely related to 
agricultural production or commodity demand, the recent positive correlation of 
agricultural commodity prices with a general set of financial asset prices suggests that 
more general variables measuring economic conditions might be worth including. Based 
on this motivation, we here explore the potential value of adding several leading 
economic indicators to agricultural price forecasting models. 
   
In this paper we apply a Bayesian approach that formally recognizes model specification 
uncertainty to estimate the probability of the inclusion of five different leading economic 
indicators and to assess the number of lagged values that are best to include in a crop 
price forecasting model. We consider 4,096 potential model specifications and estimate 
the posterior distribution of belonging in the model for each leading indicator at three 
lags. We also assess how much inclusion of such variables improves our forecasting 
performance as measured by mean squared error. 
  
We apply this approach to spot price data on corn, soybeans and wheat. We find non-
trivial marginal probabilities (> 0.2) for the inclusion of all five leading economic 
indicators considered and fairly strong evidence (probabilities of > 0.4) for the inclusion 
of some number of lagged values for the money supply, the purchasing managers index, 
and the interest rate. 
  
Methodology 
 
There is a long history of testing model specification for the purposes of both modeling 
and forecasting major crop prices and acres planted. For example, time series models, 
both ARIMA and VAR models, were used to test different lag lengths of indicators 
which can affect corn price in Allen (1994). Westcott and Hoffman (1999) apply linear 
log regression to test how market factors and government programs affect price for corn 
and wheat in U.S. Westcott and Hoffman find that corn total stocks-to-use and loan-rate 
affect corn prices, while wheat competitor stocks-to-use, wheat feed use and loan-rate 
affect wheat prices. Both regressions can predict the prices for corn and wheat with high 



accuracy. Baba and Narain (2011) propose a data-based algorithm to select a subset of 
leading indicators from a large set. They develop a simple linear relationship between the 
forecasted price and leading indicators. Baba and Narain (2011) evaluate the accuracy of 
their forecasting model based on both the Quadratic Probability Score (QPS) and the Log 
Probability Score (LPS). They also apply the Clements and Harvey Test to pick the best 
model and test whether the best model encompasses other models. Baba and Narain’s 
(2011) algorithm chooses the Ratio of Index of Help-Wanted Advertising to Number of 
Persons (LHELX), Month’s Supply at Current Sales Ratio (HNR) and Housing Starts, 
Private Including Farm (HUSTS1) as the best variables to predict the price in the short 
run. In long run, the algorithm chooses four totally different variables as the best 
predictors of prices. Chiaie, Ferrara, and Giannone (2017) forecast commodity prices 
using a dynamic factor models. The authors decompose the price series into a global 
component, blocks of commodities and an idiosyncratic component. Chiaie, Ferrara, and 
Giannone (2017) develop a modified version of information criterion (IC) to select the 
best factors to model commodity prices. The authors find that non-fuel and food and 
beverage factors are the most important factors to forecast changes in commodity prices. 
Clearly, the literature has not reached consensus on the correct model specification for 
crop price forecasting. 
 
Given this uncertainty of model choice, Dorfman and Sanders (2004) present a Bayesian 
approach to a generalized hedge ratio estimation under model uncertainty. We follow a 
similar approach, but for the forecasting of corn, soybean, and wheat prices. We consider 
a range of exogenous variable types to augment standard lagged prices and more 
commonly used variables within our set of models.  
 
Bayesian Model Construction 
We define the set of potential models as 𝑀𝑀 = {𝐽𝐽𝑖𝑖 , 𝑖𝑖 = 1, … 𝐽𝐽}. For each possible model 
specification, we develop the general model form as: 
 
𝑦𝑦 = 𝑋𝑋𝑖𝑖𝛽𝛽𝑖𝑖 + 𝜀𝜀𝑖𝑖, for 𝑖𝑖 = 1,2, … 𝐽𝐽.                                       (1) 
 
In equation (1), 𝑖𝑖 is the model index, denoting the 𝑖𝑖th model, 𝑦𝑦 is the vector of 
dependent variables which does not vary when the model specification changes, 𝑋𝑋𝑖𝑖 is 
the matrix containing the independent variables (including different lags of some 



variables) and lagged dependent variables, and 𝜀𝜀𝑖𝑖 is the error term vector in the 𝑖𝑖th 
model. The number of independent variables and the lengths of their lags differ over 
models, but the dependent variable (in both form and number of observations) stays the 
same.  
 
To perform Bayesian estimation of these models, we need prior distributions for all the 
parameters. Following Dorfman and Sanders (2004), the prior distribution of 𝛽𝛽𝑖𝑖 is 
defined as: 
 
𝑝𝑝(𝛽𝛽𝑖𝑖)~𝑁𝑁(𝜇𝜇0𝑖𝑖,𝜎𝜎𝑖𝑖2Σ0𝑖𝑖), i=1,2,…J                                       (2)     
where N denotes the multivariate normal distribution, 𝜇𝜇0𝑖𝑖 is the prior mean of 𝛽𝛽𝑖𝑖 and 
𝜎𝜎𝑖𝑖2Σ0𝑖𝑖 is the prior variance matrix of 𝛽𝛽𝑖𝑖 in 𝑖𝑖th model. Using a standard Bayesian 
framework, the inverse of 𝜎𝜎𝑖𝑖2 has a prior distribution of: 
 
𝑝𝑝(σ𝑖𝑖−2)~G(𝛾𝛾0𝑖𝑖−2,𝐷𝐷0𝑖𝑖), 𝑖𝑖=1,2,….J                                       (3) 
 
where G denotes the gamma distribution, 𝛾𝛾0𝑖𝑖−2 is the prior mean for σ𝑖𝑖−2, and 𝐷𝐷0𝑖𝑖 is the 
prior degrees of freedom for the inverse error variance. A higher value of 𝐷𝐷0𝑖𝑖 indicates 
that the prior distribution is more informative. 
 
Given the distributions above and assuming the error term is normally distributed, the 
likelihood function of each model follows a standard form. For model i, the likelihood 
function can be written as: 
 

𝐿𝐿𝑖𝑖(𝑦𝑦�𝛽𝛽𝑖𝑖,𝜎𝜎𝑖𝑖2,𝑋𝑋𝑖𝑖) = (2𝜋𝜋𝜎𝜎𝑖𝑖2)−𝑛𝑛 2⁄ exp {− (𝑦𝑦−𝑋𝑋𝑖𝑖𝛽𝛽𝑖𝑖)′(𝑦𝑦−𝑋𝑋𝑖𝑖𝛽𝛽𝑖𝑖))
2𝜎𝜎𝑖𝑖

2 }, i=1, 2,…J            (4) 

 
Combining the likelihood function above with the prior distributions in equations (2) and 
(3), we derive the joint posterior distribution as: 
 

𝑝𝑝(𝛽𝛽𝑖𝑖,𝜎𝜎𝑖𝑖2�𝑦𝑦,𝑋𝑋𝑖𝑖)~𝑁𝑁𝑁𝑁𝑁𝑁(𝜇𝜇𝑝𝑝𝑖𝑖, Σ𝑝𝑝𝑖𝑖,𝐷𝐷𝑝𝑝𝑖𝑖, 𝛾𝛾𝑝𝑝𝑖𝑖2 ), 𝑖𝑖=1,2,…J                         (5) 

 
In equation (5), NIG stands for joint normal inverse-gamma distribution. The parameters 
of this posterior distribution are: 



 

𝜇𝜇𝑝𝑝𝑖𝑖 = Σ𝑝𝑝𝑖𝑖(Σ0𝑖𝑖−1𝜇𝜇0𝑖𝑖 + (𝑋𝑋𝑖𝑖′𝑋𝑋𝑖𝑖)�̂�𝛽𝑖𝑖),                                      (6) 

Σ𝑝𝑝𝑖𝑖 = (Σ0𝑖𝑖−1 + 𝑋𝑋𝑖𝑖′𝑋𝑋𝑖𝑖)−1,                                             (7) 

𝐷𝐷𝑝𝑝𝑖𝑖 = 𝐷𝐷0𝑖𝑖 + 𝑛𝑛𝑖𝑖,                                                     (8) 

𝛾𝛾𝑝𝑝𝑖𝑖2 = 𝐷𝐷𝑝𝑝𝑖𝑖−1[(𝑛𝑛𝑖𝑖 − 𝑘𝑘𝑖𝑖)𝛾𝛾𝑖𝑖2 + ��̂�𝛽𝑖𝑖 − 𝜇𝜇0𝑖𝑖�
′
Σ𝑝𝑝𝑖𝑖��̂�𝛽𝑖𝑖 − 𝜇𝜇0𝑖𝑖� + 𝐷𝐷0𝑖𝑖𝛾𝛾0𝑖𝑖2 ].              (9) 

 
In the above equations, �̂�𝛽 is the coefficients from equation (1) if estimated by OLS, 𝛾𝛾𝑖𝑖2 
is the sum of squared errors from the same regression estimates of equation (1), and 𝑛𝑛𝑖𝑖 
and 𝑘𝑘𝑖𝑖 are the number of rows and columns in 𝑖𝑖th independent matrix, 𝑋𝑋𝑖𝑖.  
 
Our research interest is to see if new, seemingly-unrelated economic variables can help 
forecast crop prices, so we will focus not on the coefficient estimates in these different 
models, but in the probability of model inclusion for the different independent variables 
and the best number of lags to include. To do this, we focus on the posterior probabilities 
of variable inclusion, not of individual models. These probabilities are based on sums of 
posterior model probabilities across all models that include a given variable. 
 
Computation of posterior model probabilities goes as follows. Begin with prior model 
probabilities,  
 

𝑝𝑝(𝑀𝑀𝑖𝑖) = 𝑚𝑚𝑖𝑖 and ∑ 𝑚𝑚𝑖𝑖
𝐽𝐽
𝑖𝑖=1 = 1                                       (10)  

 
Given the large number of models estimated here (4,096) and our lack of insight on the 
likely inclusion of many of the variables, it is natural to use an uninformative prior over 

the models, that is, 𝑚𝑚𝑖𝑖 = 1
𝐽𝐽
, ∀𝑖𝑖. By integrating out the parameters, we can derive the 

marginal likelihood function for each model, 
 

𝑝𝑝(𝑦𝑦𝑖𝑖|𝑀𝑀𝑖𝑖) = 𝜃𝜃𝑖𝑖[Σ𝑝𝑝𝑖𝑖 Σ0𝑖𝑖⁄ ]1 2⁄ (𝐷𝐷𝑝𝑝𝑖𝑖𝛾𝛾𝑝𝑝𝑖𝑖2 )−𝐷𝐷𝑝𝑝𝑖𝑖 2⁄                               (11) 

 



where 𝜃𝜃𝑖𝑖 = Γ(𝐷𝐷𝑝𝑝𝑖𝑖 2⁄ )(𝐷𝐷𝑝𝑝0 2⁄ 𝛾𝛾0𝑖𝑖
2 )− 𝐷𝐷𝑝𝑝𝑖𝑖 2⁄⁄

Γ(𝐷𝐷𝑝𝑝𝑖𝑖 2⁄ )𝜋𝜋𝑛𝑛 2⁄ . In 𝜃𝜃𝑖𝑖, Γ(.) is the gamma function. Based on the 

marginal likelihood function, we can derive the marginal posterior probability for each 
model: 
 

𝑝𝑝(𝑀𝑀𝑖𝑖|𝑦𝑦𝑖𝑖) ∝ 𝑚𝑚𝑖𝑖��Σ𝑝𝑝𝑖𝑖� |Σ0𝑖𝑖|⁄ �
1 2⁄

�𝐷𝐷𝑝𝑝𝑖𝑖𝛾𝛾0𝑖𝑖2 �
−𝐷𝐷𝑝𝑝𝑖𝑖 2⁄ = 𝑚𝑚𝑖𝑖  𝑝𝑝(𝑦𝑦𝑖𝑖|𝑀𝑀𝑖𝑖), i=1,2,… J       (12) 

 
To ensure the sum of all the marginal posterior probabilities for each model is equal to 
one, we need to normalize these posterior probabilities. The simplest way to normalize 
them is to divide every probability by the sum of them all. Thus, we arrive at posterior 
model probabilities given by 
 

𝜌𝜌𝑖𝑖 = 𝑚𝑚𝑖𝑖 𝑝𝑝�𝑦𝑦𝑖𝑖�𝑀𝑀𝑖𝑖�
∑ 𝑚𝑚𝑖𝑖 𝑝𝑝�𝑦𝑦𝑖𝑖�𝑀𝑀𝑖𝑖�
𝐽𝐽
𝑖𝑖=1

, i=1,2,…J                                       (13) 

 
Summing subsets of these posterior model probabilities for all models that contain a 
particular variable or a specific number of lags of a variable provides us with the 
marginal posterior probability of that variable’s inclusion in the model, or inclusion with 
a specific number of lags, respectively. These marginal posterior probabilities are the 
main empirical results of our paper. 
 
Data  
For the dependent variables, we use U.S. spot prices for corn, soybeans, and wheat, with 
the values collected from the USDA’s website. We consider five U.S. leading economic 
indicators as independent variables: the money supply (M2), the purchasing managers’ 
index (PMI), the interest rate (IR), crude oil prices (CL) and the S&P 500 index (SP 500). 
The independent and dependent variables are monthly data from January 1985 to 
December 2016, resulting in 384 observations. The lags of independent and dependent 
variables are included in the data matrix 𝑋𝑋. Given the data are monthly, we set the 
maximum number of lagged values considered for model inclusion to 3. Thus, there are 
four possible specifications for each independent variables and for the dependent 
variables: no lags in models, one lag, two lags, or three lagged values included in the 
model. When two or three lags are included, the shorter lags are also included (e.g., if 
𝑋𝑋𝑡𝑡−2 is in the model, so is 𝑋𝑋𝑡𝑡−1). This ensures that there is no “hole” in lag structure in 
the model. 



 
Empirical Results 
Models and priors 
For each of the three crop prices to be forecast, we construct models with all possible 
combinations of lagged dependent variables and the five considered leading economic 
indicators. We also include dummy variables for months and years to allow for trends 
and seasonality. Considering that there are 4 possible specifications in lag structure for 
each variable and there are 6 variables including dependent variable in models 
constructed for one commodity, there are 46 = 4096 potential model specifications for 
each of the three commodity prices. Since the dummy variables are always included, the 
smallest model contains 48 regressors and the largest model contains 66 regressors (48 
plus 3 lags of the commodity prices, 3 lags of M2, 3 lags of PMI, 3 lags of IR, 3 lags of 

CL, and 3 lags of SP500). Thus, the prior weight for each model is 𝑚𝑚𝑖𝑖 = 1
4096

,∀𝑖𝑖.  

 
Through equations (2) to (9), we already build up Bayesian theoretical framework for 
deriving posterior distributions for the parameters, while equations (10) through (13) 
show how to derive posterior probabilities for each model and for variable inclusion. We 
should note that the marginal prior distribution of parameters is fixed when the model 
specification changes. This means that the prior for one regressor will not change if 
another regressor is or is not included in matrix 𝑋𝑋. 
 
Based on Dorfman and Sanders’ work, we choose a prior variance large enough so that 
the effect of the prior means on the posterior distribution is minimal. As the only 
difference in our three crop model sets is the own commodity price lags, we use the same 
vector of prior means and prior variance for the corn, soybean and wheat models. The 
prior means are set to: 
 
𝜇𝜇0 = [0,0,0,0,0,0.9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, … 1]′                 (14) 
 
Since we are not sure whether these leading indicators are included in the model, we 
assume their prior means at all lags are zero. We expect the once lagged own crop price 
to have a positive coefficient and since there is likely a near unit root in lagged prices, we 



assign 0.9 as prior means of prices at time 𝑡𝑡 − 1. The ones at the end of the prior mean 
vector are for the monthly and year dummies.  
 
For the prior variance matrix Σ0𝑖𝑖, we select a diagonal matrix with ones on the main 
diagonal except for the elements with nonzero prior means. These elements are assigned 
prior variances of 0.01. We set the prior mean of the inverse error variance, 𝛾𝛾0𝑖𝑖2 , to 1 and 
the prior degrees of freedom parameters, 𝐷𝐷𝑝𝑝𝑖𝑖, to 20.  
 
Under the assumptions above, we can compute the marginal posterior distribution of the 
regression model parameters 𝛽𝛽𝑖𝑖 according to equation (2). The posterior model weights 
can also be computed based on equations (12) and (13).  
 
Posterior results 
Since there are too many posterior model weights to present (given our 4,096 potential 
models), we focus on the marginal probability of model specification features (variable 
inclusion) in Table 1. Such marginal posterior probabilities are the sum of individual 
model posterior probabilities of all models with that specification feature. For example, 
the posterior probability of only one lag of corn price in the corn price forecasting model 
is 0.1169, which is the sum of the posterior probabilities of all models which model 
contain the specific regressor, 𝑝𝑝𝑡𝑡−1 and no additional lags of corn price.  
 
The posterior probabilities in Table 1 should be interpreted as support for the model 
specification containing that specific feature. Based on the third row of the corn price 
model in Table 1, we conclude that 61.34% of the posterior support is placed on models 
which include two lags of corn price as regressors compared to alternative lag lengths (0, 
1, or 3).  
 
Thus, the results in Table 1 for the corn price forecasting models suggest forecasters 
should include two or three lags of corn price. In addition, posterior support is quite 
evenly split on the inclusion of M2, PMI, and interest rates, with the posterior support for 
exclusion of those leading indicators all near 50%. The exercise is more definitive with 
regard to crude oil prices and the S&P500, with roughly 2/3 and 3/4 of the posterior 
support for those variables favoring exclusion. 
 



For the soybean price model, we again find strong posterior support for two lags of the 
soybean (own crop) price, a slight tilt toward inclusion of M2 and PMI, a virtual tie on 
inclusion/exclusion of the interest rate, and strong evidence in favor of excluding lagged 
values of crude oil prices and the S&P500 index value. 
 
For wheat, two lags of the own price again receive the highest posterior support, the only 
leading indicator to get over 50% posterior support for inclusion is M2, and the results 
lean pretty heavily toward leaving out interest rates, crude oil prices, and the S&P 500 
index. 
 
In addition, we calculated the mean squared errors (MSE) for all the different model 
specifications. Table 2 shows the resulting MSE values for four possible model 
specifications: the minimal model with only year and monthly dummy variables, the 
model with the dummies plus all three lagged own prices, the full model including three 
lags of all considered variables, and the model specification with the highest posterior 
probability out of all 4,096 possibilities. Because the marginal likelihood values used to 
compute posterior model probabilities integrate over all possible coefficient values that 
receive posterior support, the point forecasts generated from the posterior means of the 
parameters need not generate the smallest forecast MSE when the posterior model 
probability is the highest. In fact, we find such a result with the full model producing 
better forecasts than the most likely model for all three crops.  
 
While the posterior probabilities of inclusion were not especially high for the leading 
economic indicators, including them does slightly increase the forecasting performance 
(reduces the MSE) compared to models with only the lagged own crop price included for 
all three commodity prices tested. Thus, while the posterior model probabilities were 
rather evenly balanced or slightly against using the leading indicators in a forecasting 
model, the actual forecasting performance suggests that the idea has some merit and 
deserves further scrutiny. 
 
Conclusions  
We explore variable and model selection problems under a Bayesian framework when 
model specification is uncertain with respect to crop price forecasting for three major US 
crops: corn, soybeans, and wheat. Under an assumption of a normal-inverse gamma 



likelihood function, analytical inference can be accomplished to both produce price 
forecasts and to estimate the posterior support for particular model features. 
Such an approach can help practitioners to choose suitable lag lengths and variables to 
include in their forecasting models. 
 
In the application here, we particularly focus on whether forecasts of these three 
commodity prices can be improved by the inclusion of five possible leading economic 
indicators. The motivation for widening the set of possible included variables is the 
recent positive correlation of agricultural commodity prices with a general set of financial 
asset prices, suggesting that measures of general economic conditions might help forecast 
agricultural commodity prices. Based on this motivation, we explored the potential value 
of adding five leading economic indicators to agricultural price forecasting models: the 
money supply, the purchasing managers’ index, interest rates, crude oil prices, and the 
S&P 500 stock price index. 
 
Because we consider up to three lags of each economic indicator plus three lags of the 
own price, our model candidate set includes 4,096 different models. After deriving 
posterior model probabilities for all models considered, we summarize support for 
different variables by focusing on the posterior probability of specific model features 
(e.g., two lagged interest rates), rather than on each of the 4,096 specific models. Based 
on these results, we find that for all three crops, two lags of their own price are the most 
supported model specification. Posterior feature probabilities offer reasonable support for 
the inclusion of M2, PMI, and interest rates with some number of lags and less support 
for inclusion of any lags of either crude oil prices or the S&P500 index. However, in 
contrast to the model feature posterior probabilities, the MSE values of our forecasting 
models show slight improvement when lagged values of the five leading economic 
indicators are included. Thus, we think this initial look at widening the set of considered 
crop forecasting models was successful and encourage future research to more carefully 
investigate variables that might improve our crop forecasting models. 
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Table 1: Model Feature Posterior Probabilities 

Feature Corn Model Post. 
Prob. 

Soybean Model 
Post. Prob. 

Wheat Model 
Post. Prob. 

no price lag 0.0000 0.0000 0.0000 
𝑝𝑝𝑡𝑡−1 0.1169 0.0004 0.1004 
𝑝𝑝𝑡𝑡−2 0.6134 0.8182 0.6405 
𝑝𝑝𝑡𝑡−3 0.2697 0.1814 0.2591 
no M2 lag 0.4483 0.4568 0.4452 
 M2𝑡𝑡−1 0.4039 0.4074 0.4052 
 M2𝑡𝑡−2 0.0848 0.0801 0.0862 
 M2𝑡𝑡−3 0.0630 0.0557 0.0634 
no PMI lag 0.5060 0.4873 0.5045 
PMI𝑡𝑡−1 0.4095 0.4119 0.4092 
PMI𝑡𝑡−2 0.0653 0.0763 0.0666 
PMI𝑡𝑡−3 0.0192 0.0245 0.0197 
no interest rate lag 0.5841 0.5047 0.6269 
 IR𝑡𝑡−1 0.3164 0.3673 0.2835 
 IR𝑡𝑡−2 0.0784 0.0903 0.0692 
 IR𝑡𝑡−3 0.0211 0.0377 0.0204 
no crude oil price lag 0.6698 0.7438 0.6674 
 CL𝑡𝑡−1 0.2603 0.2110 0.2582 
 CL𝑡𝑡−2 0.0584 0.0365 0.0618 
 CL𝑡𝑡−3 0.0115 0.0087 0.0126 
no SP 500 lag 0.7778 0.7425 0.7780 
 SP 500𝑡𝑡−1 0.1919 0.2089 0.1917 
 SP 500𝑡𝑡−2 0.0265 0.0267 0.0265 
 SP 500𝑡𝑡−3 0.0038 0.0219 0.0038 

 
  



 

Table 2: MSE for various model specifications 

 

 

 

 corn model soybean model wheat model 

Only dummy variables included  0.108646 0.240617 0.108646 

Dummies + own price lags 0.024355 0.056410 0.025281 

Most Likely Model 0.024248 0.055633 0.024870 

All variables included 0.022209 0.052035 0.023085 


